1
|
Juda CE, Casaday CE, Teesdale JJ, Bartholomew AK, Lin B, Carsch KM, Musgrave RA, Zheng SL, Wang X, Hoffmann CM, Wang S, Chen YS, Betley TA. Composition Determination of Heterometallic Trinuclear Clusters via Anomalous X-ray and Neutron Diffraction. J Am Chem Soc 2024; 146:30320-30331. [PMID: 39460696 DOI: 10.1021/jacs.4c10226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Anomalous X-ray diffraction (AXD) and neutron diffraction can be used to crystallographically distinguish between metals of similar electron density. Despite the use of AXD for structural characterization in mixed metal clusters, there are no benchmark studies evaluating the accuracy of AXD toward assessing elemental occupancy in molecules with comparisons with what is determined via neutron diffraction. We collected resonant diffraction data on several homo and heterometallic clusters and refined their anomalous scattering components to determine metal site occupancies. Theoretical resonant scattering terms for Fe0, Co0, and Zn0 were compared against experimental values, revealing theoretical values are ill-suited to serve as references for occupancy determination. The cluster featuring distinct cation and anion metal compositions [CoCp2*][(tbsL)Fe3(μ3-NAr)] was used to assess the accuracy of different f' references for occupancy determination (f'theoretical ± 15-17%; f'experimental ± 10%). This methodology was applied toward calculating the occupancy of three different clusters: (tbsL)Fe2Zn(py) (6), (tbsL)Fe2Zn(μ3-NAr)(py) (7), and [CoCp*2][(tbsL)Fe2Zn(μ3-NAr)] (8). The first two clusters maintain 100% Fe/Zn site isolation, whereas 8 showed metal mixing within the sites. The large crystal size of 8 enabled collection of neutron diffraction data which was compared against the results found with AXD. The ability of AXD to replicate the metal occupancies as determined by neutron diffraction supports the AXD occupancy methodology developed herein. Furthermore, the advantages innate to AXD (e.g., smaller crystal sizes, shorter collection times, and greater availability of synchrotron resources) versus neutron diffraction further support the need for its development as a standard technique.
Collapse
Affiliation(s)
- Cristin E Juda
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Claire E Casaday
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Justin J Teesdale
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Amymarie K Bartholomew
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Benjamin Lin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Kurtis M Carsch
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Rebecca A Musgrave
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Shao-Liang Zheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Xiaoping Wang
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | | | - SuYin Wang
- NSF's ChemMatCARS, The University of Chicago, Advanced Photon Source, Lemont, Illinois 60429, United States
| | - Yu Sheng Chen
- NSF's ChemMatCARS, The University of Chicago, Advanced Photon Source, Lemont, Illinois 60429, United States
| | - Theodore A Betley
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
2
|
Le LN, Joyce JP, Oyala PH, DeBeer S, Agapie T. Highly Activated Terminal Carbon Monoxide Ligand in an Iron-Sulfur Cluster Model of FeMco with Intermediate Local Spin State at Fe. J Am Chem Soc 2024; 146:5045-5050. [PMID: 38358932 PMCID: PMC10910499 DOI: 10.1021/jacs.3c12025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
Nitrogenases, the enzymes that convert N2 to NH3, also catalyze the reductive coupling of CO to yield hydrocarbons. CO-coordinated species of nitrogenase clusters have been isolated and used to infer mechanistic information. However, synthetic FeS clusters displaying CO ligands remain rare, which limits benchmarking. Starting from a synthetic cluster that models a cubane portion of the FeMo cofactor (FeMoco), including a bridging carbyne ligand, we report a heterometallic tungsten-iron-sulfur cluster with a single terminal CO coordination in two oxidation states with a high level of CO activation (νCO = 1851 and 1751 cm-1). The local Fe coordination environment (2S, 1C, 1CO) is identical to that in the protein making this system a suitable benchmark. Computational studies find an unusual intermediate spin electronic configuration at the Fe sites promoted by the presence the carbyne ligand. This electronic feature is partly responsible for the high degree of CO activation in the reduced cluster.
Collapse
Affiliation(s)
- Linh N.
V. Le
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Justin P. Joyce
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Paul H. Oyala
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Theodor Agapie
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
3
|
Alayoglu P, Chang T, Yan C, Chen YS, Mankad NP. Uncovering a CF 3 Effect on X-ray Absorption Energies of [Cu(CF 3 ) 4 ] - and Related Copper Compounds by Using Resonant Diffraction Anomalous Fine Structure (DAFS) Measurements. Angew Chem Int Ed Engl 2023; 62:e202313744. [PMID: 37938103 PMCID: PMC10842927 DOI: 10.1002/anie.202313744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
Understanding the electronic structures of high-valent metal complexes aids the advancement of metal-catalyzed cross coupling methodologies. A prototypical complex with formally high valency is [Cu(CF3 )4 ]- (1), which has a formal Cu(III) oxidation state but whose physical analysis has led some to a Cu(I) assignment in an inverted ligand field model. Recent examinations of 1 by X-ray spectroscopies have led previous authors to contradictory conclusions, motivating the re-examination of its X-ray absorption profile here by a complementary method, resonant diffraction anomalous fine structure (DAFS). From analysis of DAFS measurements for a series of seven mononuclear Cu complexes including 1, here it is shown that there is a systematic trifluoromethyl effect on X-ray absorption that blue shifts the resonant Cu K-edge energy by 2-3 eV per CF3 , completely accounting for observed changes in DAFS profiles between formally Cu(III) complexes like 1 and formally Cu(I) complexes like (Ph3 P)3 CuCF3 (3). Thus, in agreement with the inverted ligand field model, the data presented herein imply that 1 is best described as containing a Cu(I) ion with dn count approaching 10.
Collapse
Affiliation(s)
- Pinar Alayoglu
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Tieyan Chang
- NSF's ChemMatCARS, University of Chicago, Argonne, IL 60439, USA
| | - Connly Yan
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yu-Sheng Chen
- NSF's ChemMatCARS, University of Chicago, Argonne, IL 60439, USA
| | - Neal P Mankad
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
4
|
Alayoglu P, Chang T, Lorenzo Ocampo MV, Murray LJ, Chen YS, Mankad NP. Metal Site-Specific Electrostatic Field Effects on a Tricopper(I) Cluster Probed by Resonant Diffraction Anomalous Fine Structure (DAFS). Inorg Chem 2023; 62:15267-15276. [PMID: 37651726 DOI: 10.1021/acs.inorgchem.3c02472] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Studies of multinuclear metal complexes are greatly enhanced by resonant diffraction measurements, which probe X-ray absorption profiles of crystallographically independent metal sites within a cluster. In particular, X-ray diffraction anomalous fine structure (DAFS) analysis provides data that can be interpreted akin to site-specific XANES, allowing for differences in metal K-edge resonances to be deconvoluted even for different metal sites within a homometallic system. Despite the prevalence of Cu-containing clusters in biology and energy science, DAFS has yet to be used to analyze multicopper complexes of any type until now. Here, we report an evaluation of trends using a series of strategically chosen Cu(I) and Cu(II) complexes to determine how energy dependencies of anomalous scattering factors are impacted by coordination geometry, ligand shell, cluster nuclearity, and oxidation state. This calibration data is used to analyze a formally tricopper(I) complex that was found by DAFS to be site-differentiated due to the unsymmetrical influence on different Cu sites of the electrostatic field from a proximal K+ cation.
Collapse
Affiliation(s)
- Pinar Alayoglu
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, United States
| | - Tieyan Chang
- ChemMatCARS, The University of Chicago, Argonne, Illinois 60439, United States
| | - M Victoria Lorenzo Ocampo
- Center for Catalysis and Florida Center for Heterocyclic Chemistry, Department of Chemistry, University of Florida, Gainesville, Florida 32611 United States
| | - Leslie J Murray
- Center for Catalysis and Florida Center for Heterocyclic Chemistry, Department of Chemistry, University of Florida, Gainesville, Florida 32611 United States
| | - Yu-Sheng Chen
- ChemMatCARS, The University of Chicago, Argonne, Illinois 60439, United States
| | - Neal P Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, United States
| |
Collapse
|
5
|
Teptarakulkarn P, Lorpaiboon W, Anusanti T, Laowiwatkasem N, Chainok K, Sangtrirutnugul P, Surawatanawong P, Chantarojsiri T. Incorporation of Cation Affects the Redox Reactivity of Fe- NNN Complexes on C-H Oxidation. Inorg Chem 2022; 61:11066-11074. [PMID: 35815773 DOI: 10.1021/acs.inorgchem.2c00762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cations such as Lewis acids have been shown to enhance the catalytic activity of high-valent Fe-oxygen intermediates. Herein, we present a pyridine diamine ethylene glycol macrocycle, which can form Zn(II)- or Fe(III)-complex with the NNN site, while allowing redox-inactive cations to bind to the ethylene glycol moiety. The addition of alkali, alkali earth, and lanthanum ions resulted in positive shifts to the Fe(III/II) redox potential. Calculation of dissociation constants showed the tightest binding with a Ba2+ ion. Density functional theory calculations were used to elucidate the effects of redox inactive cations toward the electronic structures of Fe complexes. Although the Fe-NNN complexes, both in the absence and presence of cations, can catalyze C-H oxidation of 9,10-dihydroanthracene, to give anthracene [hydrogen atom transfer (HAT) product], anthrone, and anthraquinone [oxygen atom transfer (OAT) products], highest overall activity and OAT/HAT product ratios were obtained in the presence of dications, that is, Ba2+ and Mg2+, respectively.
Collapse
Affiliation(s)
- Pathorn Teptarakulkarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Wanutcha Lorpaiboon
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Thana Anusanti
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Natchapol Laowiwatkasem
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand
| | - Preeyanuch Sangtrirutnugul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Panida Surawatanawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Teera Chantarojsiri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
6
|
Bartholomew AK, Musgrave RA, Anderton KJ, Juda CE, Dong Y, Bu W, Wang SY, Chen YS, Betley TA. Revealing redox isomerism in trichromium imides by anomalous diffraction. Chem Sci 2021; 12:15739-15749. [PMID: 35003606 PMCID: PMC8654065 DOI: 10.1039/d1sc04819h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/02/2021] [Indexed: 12/02/2022] Open
Abstract
In polynuclear biological active sites, multiple electrons are needed for turnover, and the distribution of these electrons among the metal sites is affected by the structure of the active site. However, the study of the interplay between structure and redox distribution is difficult not only in biological systems but also in synthetic polynuclear clusters since most redox changes produce only one thermodynamically stable product. Here, the unusual chemistry of a sterically hindered trichromium complex allowed us to probe the relationship between structural and redox isomerism. Two structurally isomeric trichromium imides were isolated: asymmetric terminal imide (tbsL)Cr3(NDipp) and symmetric, μ3-bridging imide (tbsL)Cr3(μ3–NBn) ((tbsL)6− = (1,3,5-C6H9(NC6H4-o-NSitBuMe2)3)6−). Along with the homovalent isocyanide adduct (tbsL)Cr3(CNBn) and the bisimide (tbsL)Cr3(μ3–NPh)(NPh), both imide isomers were examined by multiple-wavelength anomalous diffraction (MAD) to determine the redox load distribution by the free refinement of atomic scattering factors. Despite their compositional similarities, the bridging imide shows uniform oxidation of all three Cr sites while the terminal imide shows oxidation at only two Cr sites. Further oxidation from the bridging imide to the bisimide is only borne at the Cr site bound to the second, terminal imido fragment. Thus, depending on the structural motifs present in each [Cr3] complex, MAD revealed complete localization of oxidation, partial localization, and complete delocalization, all supported by the same hexadentate ligand scaffold. Application of high-resolution Multiwavelength Anomalous Diffraction (MAD) allows the assignment of localized, partly delocalized, and fully delocalized oxidation in a series of trichromium imide isomers.![]()
Collapse
Affiliation(s)
| | - Rebecca A Musgrave
- Department of Chemistry and Chemical Biology, Harvard University Cambridge MA 02139 USA
| | - Kevin J Anderton
- Department of Chemistry and Chemical Biology, Harvard University Cambridge MA 02139 USA
| | - Cristin E Juda
- Department of Chemistry and Chemical Biology, Harvard University Cambridge MA 02139 USA
| | - Yuyang Dong
- Department of Chemistry and Chemical Biology, Harvard University Cambridge MA 02139 USA
| | - Wei Bu
- ChemMatCARS, The University of Chicago Argonne Illinois 60439 USA
| | - Su-Yin Wang
- ChemMatCARS, The University of Chicago Argonne Illinois 60439 USA
| | - Yu-Sheng Chen
- ChemMatCARS, The University of Chicago Argonne Illinois 60439 USA
| | - Theodore A Betley
- Department of Chemistry and Chemical Biology, Harvard University Cambridge MA 02139 USA
| |
Collapse
|
7
|
Partial synthetic models of FeMoco with sulfide and carbyne ligands: Effect of interstitial atom in nitrogenase active site. Proc Natl Acad Sci U S A 2021; 118:2109241118. [PMID: 34857636 DOI: 10.1073/pnas.2109241118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 01/13/2023] Open
Abstract
Nitrogen-fixing organisms perform dinitrogen reduction to ammonia at an Fe-M (M = Mo, Fe, or V) cofactor (FeMco) of nitrogenase. FeMco displays eight metal centers bridged by sulfides and a carbide having the MFe7S8C cluster composition. The role of the carbide ligand, a unique motif in protein active sites, remains poorly understood. Toward addressing how the carbon bridge affects the physical and chemical properties of the cluster, we isolated synthetic models of subsite MFe3S3C displaying sulfides and a chelating carbyne ligand. We developed synthetic protocols for structurally related clusters, [Tp*M'Fe3S3X]n-, where M' = Mo or W, the bridging ligand X = CR, N, NR, S, and Tp* = Tris(3,5-dimethyl-1-pyrazolyl)hydroborate, to study the effects of the identity of the heterometal and the bridging X group on structure and electrochemistry. While the nature of M' results in minor changes, the chelating, μ3-bridging carbyne has a large impact on reduction potentials, being up to 1 V more reducing compared to nonchelating N and S analogs.
Collapse
|
8
|
Joseph C, Cobb CR, Rose MJ. Single-Step Sulfur Insertions into Iron Carbide Carbonyl Clusters: Unlocking the Synthetic Door to FeMoco Analogues. Angew Chem Int Ed Engl 2021; 60:3433-3437. [PMID: 33089646 DOI: 10.1002/anie.202011517] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/09/2020] [Indexed: 11/09/2022]
Abstract
The one-step syntheses, X-ray structures, and spectroscopic characterization of synthetic iron clusters, bearing either inorganic sulfides or thiolate with interstitial carbide motifs, are reported. Treatment of iron carbide carbonyl clusters [Fen (μn -C)(CO)m ]x (n=5,6; m=15,16; x=0,-2) with electrophilic sulfur sources (S2 Cl2 , S8 ) results in the formation of several μ4 -S dimers of clusters, and moreover, iron-sulfide-(sulfocarbide) clusters. The core sulfocarbide unit {C-S}4- serves as a structural model for a proposed intermediate in the radical S-adenosyl-L-methionine biogenesis of the M-cluster. Furthermore, the electrophilic sulfur strategy has been extended to provide the first ever thiolato-iron-carbide complex: an analogous reaction with toluylsulfenyl chloride affords the cluster [Fe5 (μ5 -C)(SC7 H7 )(CO)13 ]- . The strategy described herein provides a breakthrough towards developing syntheses of biomimetic iron-sulfur-carbide clusters like FeMoco.
Collapse
Affiliation(s)
- Chris Joseph
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Caitlyn R Cobb
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Michael J Rose
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
9
|
Joseph C, Cobb CR, Rose MJ. Single‐Step Sulfur Insertions into Iron Carbide Carbonyl Clusters: Unlocking the Synthetic Door to FeMoco Analogues. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chris Joseph
- Department of Chemistry The University of Texas at Austin Austin TX 78712 USA
| | - Caitlyn R. Cobb
- Department of Chemistry The University of Texas at Austin Austin TX 78712 USA
| | - Michael J. Rose
- Department of Chemistry The University of Texas at Austin Austin TX 78712 USA
| |
Collapse
|
10
|
Construction of Synthetic Models for Nitrogenase-Relevant NifB Biogenesis Intermediates and Iron-Carbide-Sulfide Clusters. Catalysts 2020. [DOI: 10.3390/catal10111317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The family of nitrogenase enzymes catalyzes the reduction of atmospheric dinitrogen (N2) to ammonia under remarkably benign conditions of temperature, pressure, and pH. Therefore, the development of synthetic complexes or materials that can similarly perform this reaction is of critical interest. The primary obstacle for obtaining realistic synthetic models of the active site iron-sulfur-carbide cluster (e.g., FeMoco) is the incorporation of a truly inorganic carbide. This review summarizes the present state of knowledge regarding biological and chemical (synthetic) incorporation of carbide into iron-sulfur clusters. This includes the Nif cluster of proteins and associated biochemistry involved in the endogenous biogenesis of FeMoco. We focus on the chemical (synthetic) incorporation portion of our own efforts to incorporate and modify C1 units in iron/sulfur clusters. We also highlight recent contributions from other research groups in the area toward C1 and/or inorganic carbide insertion.
Collapse
|