1
|
Ding S, Yang GS, Wang SQ, Hui YT, Wang YJ, Tang Z, Jiang C, Su ZM. Carbazolyl-Decorated Metal-Organic Framework with a High Fluorescent Quantum Yield for Detection and Photocatalytic Degradation of Organic Contaminants. Inorg Chem 2024; 63:22572-22582. [PMID: 39528405 DOI: 10.1021/acs.inorgchem.4c04044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A carbazolyl-based fluorescent metal-organic framework with deep-blue light emission and a high quantum yield (88%) has been screened out by changing the ratio of mixed ligands, named Cz-MOF-2, which was constructed by ZrO4(OH)4 clusters, 3-(9-ethyl-9H-carbazol-3-yl)-4-methylthieno[2,3-b]thiophene-2,5-dicarboxylate (H2ECMTDC) and 3,4-dimethyl-dihydrothieno[2,3-b]thiophene-2,5-dicarboxylate (H2DMTDC). Cz-MOF-2 has excellent sensitivity in fluorescent sensing of 2,6-dichloro-4-nitroaniline (DCN), nitrofurazone (NZF), and nitrofurantoin (NFT) with detection limits of 3.37 × 10-7, 1.64 × 10-5, and 1.76 × 10-5 M, respectively. The quenching mechanisms involving electron transfer and competitive absorption were comprehensively elucidated through DFT calculations and UV absorption experiments. Cz-MOF-2 has been fabricated into a rapidly regenerated composite membrane with PVDF as a visualized fluorescent sensor for DCN. Furthermore, the carbazolyl groups covalently modified in the framework endowed Cz-MOF-2 with a suitable band gap (2.58 eV) for photocatalytic degradation of organic contaminants. It demonstrated superior photocatalytic efficiency compared to UiO-66 and NH2-UiO-66 in the degradation of tetracycline (TC), and the removal efficiency was up to 85% (20 mg of catalyst, 50 mL, 20 mg/L TC solution and 180 min) under simulated sunlight irradiation using a 300 W Xe lamp. Photoelectrochemical tests demonstrate that Cz-MOF-2 exhibits high photocurrent density and low charge transfer resistance, which provide evidence for the efficient charge separation capability. Radical trapping experiments and ESR detection have substantiated that ·O2- and h+ are the primary active species involved in this photocatalytic reaction. This work highlights the potential of MOFs in the targeted design and development of fluorescent sensors and photocatalysts for environmental detection and remediation.
Collapse
Affiliation(s)
- Shan Ding
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P.R. China
| | - Guang-Sheng Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P.R. China
| | - Shi-Qi Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P.R. China
| | - Yu-Ting Hui
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P.R. China
| | - Yi-Jia Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P.R. China
| | - Zhe Tang
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384 ,P.R. China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Chunjie Jiang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P.R. China
| | - Zhong-Min Su
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, P.R. China
| |
Collapse
|
2
|
Chen GY, Luo ML, Chen L, Wang JL, Chai TQ, Wang D, Yang FQ. Selective fluorescence detection of acetylsalicylic acid, succinic acid and ascorbic acid based on a responsive lanthanide metal fluorescent coordination polymer. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4981-4994. [PMID: 38973656 DOI: 10.1039/d4ay00696h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
A fluorescent sensor for highly selective and ultrasensitive detection of acetylsalicylic acid (ASA), succinic acid (SA), and ascorbic acid (AA) was reported. The water-soluble fluorescent ligand salicylic acid (Sal) was generated through catalyzing ASA by the hydrolase activity of zeolitic-imidazolate framework-8 (ZIF-8) or natural esterase (Est). The Sal can coordinate with 2-methylimidazole (2-MIm) and Ln(III) to form a fluorescent lanthanide coordination polymer (LCP), which has a fluorescence emission peak with the maximum wavelength at 412 nm (the excitation wavelength at 300 nm). Therefore, the detection of ASA can be achieved through the fluorescence intensity changes of LCPs in the system, which has comparable sensitivity and good selectivity (linear range of 0.031-1.00 mM and LODs of 11.72 and 3.22 μM) as compared to a direct reaction between Est/ZIF-8 and ASA for detecting ASA (linear range of 0.05-1.20 mM and limits of detection (LODs) of 4.43 and 4.58 μM). Furthermore, upon the addition of SA and AA, the fluorescence intensity of the reaction system can be enhanced and weakened through changing the energy resonance transfer pathways and affecting the enzymatic reaction process, respectively, realizing their sensitive and selective fluorescence detection. The established fluorescent sensors can work well in a wide linear range of SA concentrations from 0 to 2.50 mM (Est-based reaction system) and 0 to 1.50 mM (ZIF-8-based reaction system) with the LODs of 0.032 and 0.028 mM, respectively. The linear ranges of AA concentrations are from 0.0078 to 0.25 mM (Est-based reaction system) and 0.0078 to 0.13 mM (ZIF-8-based reaction system) with the LODs of 2.54 and 3.80 μM, respectively. The established sensors were successfully used in the detection of SA in rabbit plasma, with a recovery of 84.0%-98.7%. Additionally, the contents of ASA in Aspirin Enteric-Coated tablets and AA in vitamin C tablets were also determined by the developed methods.
Collapse
Affiliation(s)
- Guo-Ying Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Mao-Ling Luo
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Li Chen
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
| | - Jia-Li Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Tong-Qing Chai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Dan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
3
|
Rajak R, Kumar N, Ghule VD, Dharavath S. Highly Dense N-N-Bridged Dinitramino Bistriazole-Based 3D Metal-Organic Frameworks with Balanced Outstanding Energetic Performance. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38598691 DOI: 10.1021/acsami.4c04026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Due to the inherent conflict between energy and safety, the construction of energetic materials or energetic metal-organic frameworks (E-MOFs) with balanced thermal stability, sensitivity, and high detonation performance is challenging for chemists worldwide. In this regard, in recent times self-assembly of energetic ligands (high nitrogen- and oxygen-containing small molecules) with alkali metals were probed as a promising strategy to build high-energy materials with excellent density, insensitivity, stability, and detonation performance. Herein, based on the nitrogen-rich N,N'-([4,4'-bi(1,2,4-triazole)]-3,3'-dial)dinitramide (H2BDNBT) energetic ligand, two new environmentally benign E-MOFs including potassium [K2BDNBT]n (K-MOF) and sodium [Na2BDNBT]n (Na-MOF) have been introduced and characterized by NMR, IR, TGA-DSC, ICP-MS, PXRD, elemental analyses, and SCXRD. Interestingly, Na-MOF and K-MOF demonstrate solvent-free 3D dense frameworks having crystal densities of 2.16 and 2.14 g cm-3, respectively. Both the E-MOFs show high detonation velocity (VOD) of 8557-9724 m/s, detonation pressure (DP) of 30.41-36.97 GPa, positive heat of formation of 122.52-242.25 kJ mol-1, and insensitivity to mechanical stimuli such as impact and friction (IS = 30-40 J, FS > 360 N). Among them, Na-MOF has a detonation velocity (9724 m/s) superior to that of conventional explosives. Additionally, both the E-MOFs are highly heat-resistant, having higher decomposition (319 °C for K-MOF and 293 °C for Na-MOF) than the traditional explosives RDX (210 °C), HMX (279 °C), and CL-20 (221 °C). This stability is ascribed to the extensive structure and strong covalent interactions between BDNBT2- and K(I)/Na(I) ions. To the best of our knowledge, for the first time, we report dinitramino-based E-MOFs as highly stable secondary explosives, and Na-MOF may serve as a promising next-generation high-energy-density material for the replacement of presently used secondary thermally stable energetic materials such as RDX, HNS, HMX, and CL-20.
Collapse
Affiliation(s)
- Richa Rajak
- Energetic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Navaneet Kumar
- Energetic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Vikas D Ghule
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra 136119, Haryana, India
| | - Srinivas Dharavath
- Energetic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
4
|
Sainaba AB, Saha R, Venkateswarulu M, Zangrando E, Mukherjee PS. Pt(II) Tetrafacial Barrel with Aggregation-Induced Emission for Sensing. Inorg Chem 2024; 63:508-517. [PMID: 38117135 DOI: 10.1021/acs.inorgchem.3c03370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
A new tetraphenylpyrazine-based tetraimidazole ligand (L) was synthesized and used for subcomponent self-assembly with cis-(tmeda)Pd(NO3)2 and cis-Pt(PEt3)2(OTf)2, leading to the formation of two tetrafacial barrels [Pd8L4(tmeda)8](NO3)16 (1) and [Pt8L4(PEt3)16](OTf)16 (2), respectively. Although ligand L is aggregation-induced emission (AIE) active, barrel 2 showed a magnificently higher AIE activity than ligand L, while 1 failed to retain the AIE properties of the ligand. Pd(II) barrel 1, undergoing an aggregation-caused quenching (ACQ) phenomenon, nullified the AIE activity of the ligand to be used in the photophysical application. The enhanced emission in the aggregated state of Pt(II) barrel 2 was used for the recognition of picric acid (PA), which is explosive in nature and one of the groundwater contaminants in landmine areas. The recognition of picric acid was found to be selective in comparison with that of other nitroaromatic compounds (NACs), which could be attributed to ground-state complex formation and resonance energy transfer between picric acid and barrel 2. The use of new AIE-active assembly 2 for selective detection of PA with a low detection limit is noteworthy.
Collapse
Affiliation(s)
- Arppitha Baby Sainaba
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mangili Venkateswarulu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, via Giorgieri 1, 34127 Trieste, Italy
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
5
|
Sarkar P, Tohora N, Mahato M, Ahamed S, Sultana T, Das SK. A Chromo-fluorogenic Probe for Selective Detection of Picric Acid Alongside Its Recovery by Aliphatic Amines and Construction of Molecular Logic Gates. J Fluoresc 2023:10.1007/s10895-023-03555-y. [PMID: 38158478 DOI: 10.1007/s10895-023-03555-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Nitroaromatic compounds are illicit explosive chemicals. For environmental security and homeland safety, selective and sensitive identification of these secondary-class explosives has been a reason for the exhaustive research arena of chemists for about a decade. We introduced a sensitive optical sensor with desalted neutral red (NR) dye. After ingressing picric acid (PA) in acetonitrile, the probe becomes non-fluorescent, displaying a colorimetric change from yellow to pink. The quenched phenomena and the changed color were re-established with aliphatic amine, trimethylamine (TEA). The reversibility is produced cyclically, both in fluorimetrically and spectrophotometrically. The detection limit for PA with our probe comes out as 0.639 µM; this value is significantly lower than many chemosensors available in the literature. Also, NR-stained filter paper strips-based test kit analysis has been deployed as a displayable photonic device for in-situ detection of PA. Furthermore, the whole system was conceptualized to produce single input, single output, and double input single output logic gates, which can be applied to digital devices. The chronological input manner as NTP (NR- TEA-PA) pushed us to configure a molecular keypad lock system, the basis of digital locking devices. The repeatable & reversible detection system exhibits "Write read- Erase-read Write-read' type memory devices.
Collapse
Affiliation(s)
- Pallobi Sarkar
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Najmin Tohora
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Manas Mahato
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Sabbir Ahamed
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Tuhina Sultana
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Sudhir Kumar Das
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
6
|
Khan MS, Li Y, Li DS, Qiu J, Xu X, Yang HY. A review of metal-organic framework (MOF) materials as an effective photocatalyst for degradation of organic pollutants. NANOSCALE ADVANCES 2023; 5:6318-6348. [PMID: 38045530 PMCID: PMC10690739 DOI: 10.1039/d3na00627a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/30/2023] [Indexed: 12/05/2023]
Abstract
Water plays a vital role in all aspects of life. Recently, water pollution has increased exponentially due to various organic and inorganic pollutants. Organic pollutants are hard to degrade; therefore, cost-effective and sustainable approaches are needed to degrade these pollutants. Organic dyes are the major source of organic pollutants from coloring industries. The photoactive metal-organic frameworks (MOFs) offer an ultimate strategy for constructing photocatalysts to degrade pollutants present in wastewater. Therefore, tuning the metal ions/clusters and organic ligands for the better photocatalytic activity of MOFs is a tremendous approach for wastewater treatment. This review comprehensively reports various MOFs and their composites, especially POM-based MOF composites, for the enhanced photocatalytic degradation of organic pollutants in the aqueous phase. A brief discussion on various theoretical aspects such as density functional theory (DFT) and machine learning (ML) related to MOF and MOF composite-based photocatalysts has been presented. Thus, this article may eventually pave the way for applying different structural features to modulate novel porous materials for enhanced photodegradation properties toward organic pollutants.
Collapse
Affiliation(s)
- M Shahnawaz Khan
- Pillar of Engineering Product Development, Singapore University of Technology and Design 8 Somapah Road 487372 Singapore
| | - Yixiang Li
- Pillar of Engineering Product Development, Singapore University of Technology and Design 8 Somapah Road 487372 Singapore
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University Yichang 443002 P. R. China
| | - Jianbei Qiu
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology Kunming Yunnan 650093 China
| | - Xuhui Xu
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology Kunming Yunnan 650093 China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design 8 Somapah Road 487372 Singapore
| |
Collapse
|
7
|
Arul P, Nandhini C, Huang ST, Gowthaman NSK. Development of water-dispersible Dy(III)-based organic framework as a fluorescent and electrochemical probe for quantitative detection of tannic acid in real alcoholic and fruit beverages. Anal Chim Acta 2023; 1274:341582. [PMID: 37455066 DOI: 10.1016/j.aca.2023.341582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Tannic acid (TA) is a water-soluble polyphenol and used in beverages, medical fields as clarifying and additive agents. In daily life, TA is unavoidable, and excessive consumption of tannin containing foods can harm health. Thus, rapid and sensitive quantification is highly necessary. Herein, an eco-friendly fluorometric and electrochemical sensing of TA was developed based on a dysprosium(III)-metal-organic framework (Dy(III)-MOF). An aqueous dispersion of Dy(III)-MOF exhibits strong dual emissions at 479 and 572 nm with an excitation at 272 nm, due to the 4f-4f electronic transition and "antenna effect". Chromophore site of the functional ligand, and Dy(III) ion could potentially serve as a sensing probe for TA via quenching (fluorescence). The fluorometric sensor worked well in a wide linear range concentrations from 0.02 to 25 μM with a limit of detection (LOD) of 0.0053 μM. Secondly, the cyclic voltammetric of TA at Dy(III)-MOF modified screen-printed carbon electrode (SPCE) has been investigated. The Dy(III)-MOF/SPCE showed an anodic peak signal at +0.22 V with a five-fold stronger current than the control electrode surface. Under optimized sensing parameters, the Dy(III)-MOF/SPCE delivered wide linear concentrations from 0.01 to 200 μM with a LOD of 0.0023 μM (S/N = 3). Accessibility of real practical samples in alcoholic and juice-based beverages were quantified, resulting in superior recovery rates (98.13-99.53%), F-test, and t-test confirmed high reliability (<95% confidence level (n = 3)). Finally, practicability result of the electrochemical method was validated by fluorometric with a relative standard deviation (RSD) of 0.18-0.46 ± 0.17% (n = 3). The designed probe has proven to be a key candidate for the accurate analysis of TA in beverage samples to ensure food quality.
Collapse
Affiliation(s)
- P Arul
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei-106, Taiwan, ROC.
| | - C Nandhini
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei-106, Taiwan, ROC
| | - Sheng-Tung Huang
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei-106, Taiwan, ROC.
| | - N S K Gowthaman
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500-Subang Jaya, Selangor, Malaysia
| |
Collapse
|
8
|
Shekurov RP, Khrizanforov MN, Bezkishko IA, Ivshin KA, Zagidullin AA, Lazareva AA, Kataeva ON, Miluykov VA. Influence of the Substituent's Size in the Phosphinate Group on the Conformational Possibilities of Ferrocenylbisphosphinic Acids in the Design of Coordination Polymers and Metal-Organic Frameworks. Int J Mol Sci 2023; 24:14087. [PMID: 37762396 PMCID: PMC10531850 DOI: 10.3390/ijms241814087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
This paper illustrates how the size and type of substituent R in the phosphinate group of ferrocenyl bisphosphinic acids can affect conformational possibilities and coordination packing. It also demonstrates that H-phosphinate plays a key role in variational mobility, while Me- or Ph- substituents of the phosphinate group can only lead to 0D complexes or 1D coordination polymer. Overall, this paper provides valuable insights into the design and construction of coordination polymers based on ferrocene-contained linkers. It sheds light on how different reaction conditions and substituents can affect conformational possibilities and coordination packing, which could have significant implications for developing new polymers with unique properties.
Collapse
Affiliation(s)
- Ruslan P. Shekurov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 420088 Kazan, Russia; (R.P.S.); (I.A.B.); (K.A.I.); (A.A.Z.); (A.A.L.); (O.N.K.); (V.A.M.)
| | - Mikhail N. Khrizanforov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 420088 Kazan, Russia; (R.P.S.); (I.A.B.); (K.A.I.); (A.A.Z.); (A.A.L.); (O.N.K.); (V.A.M.)
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 420008 Kazan, Russia
| | - Ilya A. Bezkishko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 420088 Kazan, Russia; (R.P.S.); (I.A.B.); (K.A.I.); (A.A.Z.); (A.A.L.); (O.N.K.); (V.A.M.)
| | - Kamil A. Ivshin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 420088 Kazan, Russia; (R.P.S.); (I.A.B.); (K.A.I.); (A.A.Z.); (A.A.L.); (O.N.K.); (V.A.M.)
| | - Almaz A. Zagidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 420088 Kazan, Russia; (R.P.S.); (I.A.B.); (K.A.I.); (A.A.Z.); (A.A.L.); (O.N.K.); (V.A.M.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Anna A. Lazareva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 420088 Kazan, Russia; (R.P.S.); (I.A.B.); (K.A.I.); (A.A.Z.); (A.A.L.); (O.N.K.); (V.A.M.)
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 420008 Kazan, Russia
| | - Olga N. Kataeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 420088 Kazan, Russia; (R.P.S.); (I.A.B.); (K.A.I.); (A.A.Z.); (A.A.L.); (O.N.K.); (V.A.M.)
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 420008 Kazan, Russia
| | - Vasili A. Miluykov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 420088 Kazan, Russia; (R.P.S.); (I.A.B.); (K.A.I.); (A.A.Z.); (A.A.L.); (O.N.K.); (V.A.M.)
| |
Collapse
|
9
|
Erokhin KS, Pentsak EO, Sorokin VR, Agaev YV, Zaytsev RG, Isaeva VI, Ananikov VP. Dynamic behavior of metal nanoparticles in MOF materials: analysis with electron microscopy and deep learning. Phys Chem Chem Phys 2023; 25:21640-21648. [PMID: 37551526 DOI: 10.1039/d3cp02595k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Electron microscopy is a key characterization technique for nanoscale systems, and electron microscopy images are typically recorded and analyzed in terms of the morphology of the objects under study in static mode. The emerging current trend is to analyze the dynamic behavior at the nanoscale observed during electron microscopy measurements. In this work, the study of the stability of MOF structures with different compositions and topologies under conditions of an electron microscope experiment revealed an unusual dynamic behavior of M NPs formed due to the electron-beam-induced transformation of specific frameworks. The transition to the liquid phase led to spatial movement, rapid sintering, and an increase in the M NPs size within seconds. In the case of copper nanoparticles, instantaneous sublimation was observed. The dynamic behavior of Co NPs was analyzed with a computational framework combining deep learning and classic computer vision techniques. The present study for the first time revealed unique information about the stability of a variety of MOFs under an electron beam and the dynamic behavior of the formed M NPs. The formation of Fe, Ni, Cu, and Co NPs was observed from a molecular framework with a specific subsequent behavior - a stable form for Fe, excessive dynamics for Co, and sublimation/condensation for Cu. Two important outcomes of the present study should be mentioned: (i) electron microscopy investigations of MOF samples should be made with care, as decomposition under an electron beam may lead to incorrect results and the appearance of "phantom" nanoparticles; and (ii) MOFs represent an excellent model for fundamental studies of molecular-to-nano transitions in situ in video mode, including a number of dynamic transformations.
Collapse
Affiliation(s)
- Kirill S Erokhin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, 119991, Russia.
| | - Evgeniy O Pentsak
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, 119991, Russia.
| | - Vyacheslav R Sorokin
- Platov South-Russian State Polytechnic University (NPI), Prosveschenia Str. 132, Novocherkassk 346428, Russia
| | - Yury V Agaev
- Platov South-Russian State Polytechnic University (NPI), Prosveschenia Str. 132, Novocherkassk 346428, Russia
| | - Roman G Zaytsev
- Platov South-Russian State Polytechnic University (NPI), Prosveschenia Str. 132, Novocherkassk 346428, Russia
| | - Vera I Isaeva
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, 119991, Russia.
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, 119991, Russia.
- Platov South-Russian State Polytechnic University (NPI), Prosveschenia Str. 132, Novocherkassk 346428, Russia
| |
Collapse
|
10
|
Yang M, Hanayama H, Fang L, Addicoat MA, Guo Y, Graf R, Harano K, Kikkawa J, Jin E, Narita A, Müllen K. Saturated Linkers in Two-Dimensional Covalent Organic Frameworks Boost Their Luminescence. J Am Chem Soc 2023. [PMID: 37339431 DOI: 10.1021/jacs.3c03614] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The development of highly luminescent two-dimensional covalent organic frameworks (COFs) for sensing applications remains challenging. To suppress commonly observed photoluminescence quenching of COFs, we propose a strategy involving interrupting the intralayer conjugation and interlayer interactions using cyclohexane as the linker unit. By variation of the building block structures, imine-bonded COFs with various topologies and porosities are obtained. Experimental and theoretical analyses of these COFs disclose high crystallinity and large interlayer distances, demonstrating enhanced emission with record-high photoluminescence quantum yields of up to 57% in the solid state. The resulting cyclohexane-linked COF also exhibits excellent sensing performance for the trace recognition of Fe3+ ions, explosive and toxic picric acid, and phenyl glyoxylic acid as metabolites. These findings inspire a facile and general strategy to develop highly emissive imine-bonded COFs for detecting various molecules.
Collapse
Affiliation(s)
- Meijia Yang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Hiroki Hanayama
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa 904-0495, Japan
| | - Long Fang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Matthew A Addicoat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K
| | - Yunyu Guo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry and International Center of Future Science, Jilin University, Changchun 130012, China
| | - Robert Graf
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Koji Harano
- Center for Basic Research on Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jun Kikkawa
- Center for Basic Research on Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Enquan Jin
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa 904-0495, Japan
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa 904-0495, Japan
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
11
|
Ren Y, Ma Z, Gao T, Liang Y. Advance Progress on Luminescent Sensing of Nitroaromatics by Crystalline Lanthanide-Organic Complexes. Molecules 2023; 28:molecules28114481. [PMID: 37298958 DOI: 10.3390/molecules28114481] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Water environment pollution is becoming an increasingly serious issue due to industrial pollutants with the rapid development of modern industry. Among many pollutants, the toxic and explosive nitroaromatics are used extensively in the chemical industry, resulting in environmental pollution of soil and groundwater. Therefore, the detection of nitroaromatics is of great significance to environmental monitoring, citizen life and homeland security. Lanthanide-organic complexes with controllable structural features and excellent optical performance have been rationally designed and successfully prepared and used as lanthanide-based sensors for the detection of nitroaromatics. This review will focus on crystalline luminescent lanthanide-organic sensing materials with different dimensional structures, including the 0D discrete structure, 1D and 2D coordination polymers and the 3D framework. Large numbers of studies have shown that several nitroaromatics could be detected by crystalline lanthanide-organic-complex-based sensors, for instance, nitrobenzene (NB), nitrophenol (4-NP or 2-NP), trinitrophenol (TNP) and so on. The various fluorescence detection mechanisms were summarized and sorted out in the review, which might help researchers or readers to comprehensively understand the mechanism of the fluorescence detection of nitroaromatics and provide a theoretical basis for the rational design of new crystalline lanthanide-organic complex-based sensors.
Collapse
Affiliation(s)
- Yixia Ren
- Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China
| | - Zhihu Ma
- Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China
| | - Ting Gao
- Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China
| | - Yucang Liang
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| |
Collapse
|
12
|
Rajak R, Kumar P, Ghule VD, Dharavath S. Poly Tetrazole Containing Thermally Stable and Insensitive Alkali Metal-Based 3D Energetic Metal-Organic Frameworks. Inorg Chem 2023; 62:8389-8396. [PMID: 37192156 DOI: 10.1021/acs.inorgchem.3c00994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Poly tetrazole-containing thermally stable and insensitive alkali metal-based 3D energetic metal-organic frameworks (EMOFs) are promising high energy density materials to balance the sensitivity, stability, and detonation performance of explosives in defense, space, and civilian applications. Herein, the self-assembly of L3- ligand with alkali metals Na(I) and K(I) was prepared at ambient conditions, introducing two new EMOFs, [Na3(L)3(H2O)6]n (1) and [K3(L)3(H2O)3]n (2). Single crystal analysis reveals that Na-MOF (1) exhibited a 3D wave-like supramolecular structure with significant hydrogen bonding among the layers, while K-MOF (2) also featured a 3D framework. Both EMOFs were thoroughly characterized by NMR, IR, PXRD, and TGA/DSC analyses. Compounds 1 and 2 show excellent thermal decomposition Td = 344 and 337 °C, respectively, compared to the presently used benchmark explosives RDX (210 °C), HMX (279 °C), and HNS (318 °C), which is attributed to structural reinforcement induced by extensive coordination. They also show remarkable detonation performance (VOD = 8500 m s-1, 7320 m s-1, DP = 26.74 GPa, 20 GPa for 1 and 2, respectively) and insensitivity toward impact and friction (IS ≥ 40 J, FS ≥ 360 N for 1; IS ≥ 40 J, FS ≥ 360 N for 2). Their excellent synthetic feasibility and energetic performance suggest that they are the perfect blend for the replacement of present benchmark explosives such as HNS, RDX, and HMX.
Collapse
Affiliation(s)
- Richa Rajak
- Energetic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Parasar Kumar
- Energetic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Vikas D Ghule
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra, Haryana 136119, India
| | - Srinivas Dharavath
- Energetic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
13
|
Hu JH, Zhang W, Ren CX, Xiong Y, Zhang JY, He J, Huang Y, Tao Z, Xiao X. A novel portable smart phone sensing platform based on a supramolecular fluorescence probe for quick visual quantitative detection of picric acid. Anal Chim Acta 2023; 1254:341095. [PMID: 37005021 DOI: 10.1016/j.aca.2023.341095] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023]
Abstract
Picric acid (PA) is a lethal explosive substance that is easily soluble in water and harmful to the environment. Here, a supramolecular polymer material BTPY@Q[8] with aggregation induced emission (AIE) was prepared by supramolecular self-assembly of cucurbit uril (Q[8]) and 1,3,5-tris[4-(pyridin-4-yl) phenyl] benzene derivative (BTPY), which exhibited aggregation-induced fluorescence enhancement. To this supramolecular self-assembly, the addition of a number of nitrophenols was found to have no obvious effect on the fluorescence, however on addition of PA, the fluorescence intensity underwent a dramatic quench. For PA, BTPY@Q[8] had sensitive specificity and effective selectivity. Based on this, a quick and simple on-site visual PA fluorescence quantitative detection platform was developed using smart phones, and the platform was used to monitor temperature. Machine learning (ML) is a popular pattern recognition technology, which can accurately predict the results from data. Therefore, ML has much more potential for analyzing and improving sensing data than the widely used statistical pattern recognition method. In the field of analytical science, the sensing platform offers a reliable method for the quantitative detection of PA that can be applied to other analytes or micropollutant screening.
Collapse
|
14
|
Deka R, Rajak R, Kumar V, Mobin SM. Effect of Electrolytic Cations on a 3D Cd-MOF for Supercapacitive Electrodes. Inorg Chem 2023; 62:3084-3094. [PMID: 36758151 DOI: 10.1021/acs.inorgchem.2c03879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
A cadmium-based metal-organic framework (Cd-MOF) is synthesized in a facile manner at ambient temperature by an easy slow diffusion process. The three-dimensional (3D) structure of Cd-MOF is authenticated by single-crystal X-ray diffraction studies and exhibits a cuboid-shaped morphology with an average edge length of ∼1.13 μm. The prepared Cd-MOF was found to be electroactive in nature, which resulted in a specific capacitance of 647 F g-1 at 4 A g-1 by maintaining a retention of ∼78% over 10,000 successive cycles in the absence of any binder. Further, to distinguish the efficiency of Cd-MOF electrodes, different electrolytes (NaOH, KOH, and LiOH) were explored, wherein NaOH revealed a higher capacitive response due to its combined effect of ionic and hydrated ionic radii. To investigate the practical applicability, an asymmetric supercapacitor (ASC) device is fabricated by employing Cd-MOF as the positive electrode and activated carbon (AC) as the negative electrode, enabling it to light a commercial light-emitting diode (LED) bulb (∼1.8 V). The as-fabricated ASC device delivers comparable energy density and power density.
Collapse
|
15
|
Barot YB, Anand V, Mishra R. AIE-active phenothiazine based Schiff-base for the selective sensing of the explosive picric acid in real water samples and paper-based device. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
High sensitive fluorescent sensing and photocatalytic degradation performance of two-dimensional Tb-organic network. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Zhang XY, Zhao BB, Huang SJ, Song JY, Liu XF. Crystal structure of diaqua-diphenanthroline-κ 2
N,N′-bis(μ 2-2-carboxy-3,4,5,6-tetrafluorobenzoato-κ 2
O:O′)-bis(μ 2-tetrafluorophthalato-κ 3
O,O′:O′)didysprosium(III) – phenanthroline (1/2), C 80H 38Dy 2F 16N 8O 18. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C80H38Dy2F16N8O18, triclinic,
P
1
‾
$P\overline{1}$
(no. 2), a = 11.3924(5) Å, b = 12.7091(4) Å, c = 13.2583(5) Å, α = 102.496(3)°, β = 97.955(4)°, γ = 105.588(4)°, V = 1765.36(12) Å3, Z = 2, Rgt
(F) = 0.0298, wRref
(F
2) = 0.0606, T = 293(2) K.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- College of Food and Bioengineering , Henan University of Science and Technology , Luoyang , Henan 471022 , P. R. China
| | - Bei-Bei Zhao
- College of Food and Bioengineering , Henan University of Science and Technology , Luoyang , Henan 471022 , P. R. China
| | - Shi-Jie Huang
- College of Food and Bioengineering , Henan University of Science and Technology , Luoyang , Henan 471022 , P. R. China
| | - Jun-Ya Song
- College of Food and Bioengineering , Henan University of Science and Technology , Luoyang , Henan 471022 , P. R. China
| | - Xin-Fang Liu
- Henan Key Laboratory of Function–Oriented Porous Materials, College of Chemistry and Chemical Engineering , Luoyang Normal University , Luoyang , Henan 471934 , P. R. China
| |
Collapse
|
18
|
Ghosh P, Maity T, Khatun N, Debnath R, Koner S. 2D paddle wheel lanthanide metal-organic framework: Synthesis, structure and exploration of catalytic N-arylation reaction. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Razavi SAA, Morsali A, Piroozzadeh M. A Dihydrotetrazine-Functionalized Metal-Organic Framework as a Highly Selective Luminescent Host-Guest Sensor for Detection of 2,4,6-Trinitrophenol. Inorg Chem 2022; 61:7820-7834. [PMID: 35544681 DOI: 10.1021/acs.inorgchem.2c00308] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pore decoration of metal-organic frameworks (MOFs) with functional groups is a useful strategy to attain high selectivity toward specific analytes, especially in the presence of interfering molecules with similar structures and energy levels, through selective host-guest interactions. In this work, we applied a dihydrotetrazine-decorated MOF, TMU-34, with the formula [Zn(OBA)(H2DPT)0.5]n·DMF, where H2OBA is 4,4'-oxybis(benzoic acid) and H2DPT is 3,6-bis(pyridin-4-yl)-1,4-dihydro-1,2,4,5-tetrazine, for the highly selective detection of phenolic NACs, especially TNP (94% quenching efficiency, detection limit 8.1 × 10-6 M, KSV = 182663 mol L-1), in the presence of other substituted NACs especially -NH2-substituted NACs. Investigations reveal that the quenching mechanism is dominated by photoinduced MOF-to-TNP electron transfer through possible hydrogen-bonding interactions between the phenolic hydroxyl group of TNP and dihydrotetrazine functions of TMU-34. Despite extensive publications on the detection of TNP in the presence of other NACs, the significance of this work will be elucidated if attention is paid to the fact that TMU-34 is among the rare and highly selective MOF-based TNP sensors in the presence of -NH2-substituted NACs as the serious interferers.
Collapse
Affiliation(s)
- Sayed Ali Akbar Razavi
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14117-13116, Islamic Republic of Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14117-13116, Islamic Republic of Iran
| | - Maryam Piroozzadeh
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14117-13116, Islamic Republic of Iran
| |
Collapse
|
20
|
Kaur N, Tiwari P, Mate N, Sharma V, Mobin SM. Photoactivatable carbon dots as a label-free fluorescent probe for picric acid detection and light-induced bacterial inactivation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 229:112412. [PMID: 35227941 DOI: 10.1016/j.jphotobiol.2022.112412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 01/18/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
The zero-dimensional carbon nanostructure known as carbon dots showed attractive attributes such as multicolour emission, very high quantum yield, up-conversion, very good aqueous solubility, eco-friendliness, and excellent biocompatibility. These outstanding features of the carbon dots have raised significant interest among the research community worldwide. In the current work, water-soluble nitrogen, silver, and gold co-doped bimetallic carbon dots (BCDs) were prepared using the one-pot hydrothermal method with citric acid as a sole carbon source. As prepared BCDs showed size in the range of 4-8 nm and excitation-independent emission behaviour with maximum emission observed at 427 nm. Additionally, these BCDs showed a very high quantum yield value of 50% and fluorescence lifetime value of 10.1 ns respectively. Interestingly, as prepared BCDs selectively sense picric acid (PA) by exhibiting "selective fluorescence turn-off" behaviour in the presence of PA with a limit of detection value (LOD) of 46 nM. Further, as prepared BCDs were explored for photodynamic therapy to inactivate bacterial growth in the presence of light (400-700 nm) by generating singlet oxygen. Thus as prepared BCDs offer lots of potentials to use a nanoprobe to detect picric acid in an aqueous medium and to design next-generation antibacterial materials.
Collapse
Affiliation(s)
- Navpreet Kaur
- Department of Biosciences and Bio-Medical Engineering, Indian Institute of Technology, Simrol, Khandwa Road, Indore 453552, India
| | - Pranav Tiwari
- Department of Chemistry, Indian Institute of Technology, Simrol, Khandwa Road, Indore 453552, India
| | - Nirmiti Mate
- Department of Chemistry, Indian Institute of Technology, Simrol, Khandwa Road, Indore 453552, India
| | - Vinay Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Jammu 181221, Jammu & Kashmir, India
| | - Shaikh M Mobin
- Department of Biosciences and Bio-Medical Engineering, Indian Institute of Technology, Simrol, Khandwa Road, Indore 453552, India; Department of Chemistry, Indian Institute of Technology, Simrol, Khandwa Road, Indore 453552, India.
| |
Collapse
|
21
|
Ding S, Cheng C, Xu JH, Tang Z, Yang GS, Peng SF, Yu LQ, Jiang CJ, Su ZM. A water-stable Zn 4O-based MOF decorated with carbazolyl chromophores for multi-responsive fluorescence sensing of Fe 3+, Cr 2O 72− and nitro-compounds. NEW J CHEM 2022. [DOI: 10.1039/d2nj03236h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A MOF with strong deep blue light emission and high quantum efficiency has high selectivity and sensitivity for detecting 2,6-dichloro-4-nitroaniline.
Collapse
Affiliation(s)
- Shan Ding
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Cong Cheng
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Jia-Hui Xu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Zhe Tang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Guang-Sheng Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Shuai-Feng Peng
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Lin-Qun Yu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Chun-Jie Jiang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Zhong-Min Su
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
22
|
Liu HF, Ye-Tao, Qin XH, Chao-Chen, Huang FP, Zhang XQ, Bian HD. Three-fold interpenetrated metal–organic framework as a multifunctional fluorescent probe for detecting 2,4,6-trinitrophenol, levofloxacin, and l-cystine. CrystEngComm 2022. [DOI: 10.1039/d1ce01590g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A robust Zn(ii) MOF with good chemical and thermal stability, was prepared as an effective fluorescent probe for 2,4,6-trinitrophenol (TNP), levofloxacin (LVX) and l-cystine (l-Cys) with recyclability.
Collapse
Affiliation(s)
- Han-Fu Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Ye-Tao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Xiao-Huan Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Chao-Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Fu-Ping Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Xiu-Qing Zhang
- College of Chemistry and Bioengineering, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin University of Technology, Guilin, P.R. China
| | - He-Dong Bian
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, 530008, P. R. China
| |
Collapse
|
23
|
A multifunctional luminescent chemosensor of YbⅢ-MOF for the detection of Nitrobenzene, Fe3+ and Cr2O72–. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Patra SK, Sen B, Rabha M, Khatua S. An aggregation-induced emission-active bis-heteroleptic ruthenium(ii) complex of thiophenyl substituted phenanthroline for the selective “turn-off” detection of picric acid. NEW J CHEM 2022. [DOI: 10.1039/d1nj04798a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A bis-heteroleptic Ru(ii) polypyridine complex-based AIEgen has been developed for the selective detection of nitroaromatic explosive picric acid in aqueous media.
Collapse
Affiliation(s)
- Sumit Kumar Patra
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong, Meghalaya 793022, India
| | - Bhaskar Sen
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong, Meghalaya 793022, India
| | - Monosh Rabha
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong, Meghalaya 793022, India
| | - Snehadrinarayan Khatua
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong, Meghalaya 793022, India
| |
Collapse
|
25
|
Wang K, Duan Y, Chen J, Wang H, Liu H. A dye encapsulated zinc-based metal-organic framework as a dual-emission sensor for highly sensitive detection of antibiotics. Dalton Trans 2021; 51:685-694. [PMID: 34909812 DOI: 10.1039/d1dt03950d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembly of two Zn-MOFs, [Zn2L(DMF)3]·H2O·5DMF (1) and [Zn2L(H2O)2]·4H2O·3DMF (2), was achieved with an amide-functionalized tetracarboxylate ligand under similar conditions. Incorporated amide groups make the tetratopic linkers exhibit different configurations, tetrahedron and square, and subsequently combine tetrahedral [Zn2(CO2)4] clusters or square paddle-well [Zn2(CO2)4] clusters to afford a lon net for 1 and a nbo net for 2. Remarkably, 2 demonstrated high porosity and amide group decorated cages, and thereby proved to be a good capturing agent for a fluorescent dye molecule (DMASM). Consequently, a dual-emitting DMASM@2 sensor was successfully fabricated based on effective energy transfer from the host framework to DMASM with the variable luminescent color being visible to the naked eye. DMASM@2 could be used for the detection of metronidazole (MDZ) and dimetridazole (DTZ) with high sensitivity and remarkable recyclability.
Collapse
Affiliation(s)
- Kang Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Yuhan Duan
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Jiajing Chen
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Haiying Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Huiyan Liu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| |
Collapse
|
26
|
Rajak R, Saraf M, Kumar P, Natarajan K, Mobin SM. Construction of a Cu-Based Metal-Organic Framework by Employing a Mixed-Ligand Strategy and Its Facile Conversion into Nanofibrous CuO for Electrochemical Energy Storage Applications. Inorg Chem 2021; 60:16986-16995. [PMID: 34699204 DOI: 10.1021/acs.inorgchem.1c02062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recently, metal-organic frameworks (MOFs) have been widely employed as a sacrificial template for the construction of nanostructured materials for a range of applications including energy storage. Herein, we report a facile mixed-ligand strategy for the synthesis of a Cu-MOF, [Cu3(Azopy)3(BTTC)3(H2O)3·2H2O]n (where BTTC = 1,2,4,5-benzenetetracarboxylic acid and Azopy = 4,4'-azopyridine), via a slow-diffusion method at room temperature. X-ray analysis authenticates the two-dimensional (2D)-layered framework of Cu-MOF. Topologically, this 2D-layered structure is assigned as a 4-connected unimodal net with sql topology. Further, nanostructured CuO is obtained via a simple precipitation method by employing Cu-MOF as a precursor. After analysis of their physicochemical properties through various techniques, both materials are used as surface modifiers of glassy carbon electrodes for a comparative electrochemical study. The results reveal a superior charge storage performance of CuO (244.2 F g-1 at a current density of 0.8 A g-1) with a high rate capability compared to Cu-MOF. This observation paves the pathway for the strategic design of high-performing supercapacitor electrode materials.
Collapse
Affiliation(s)
- Richa Rajak
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Mohit Saraf
- Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India.,A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Praveen Kumar
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Kaushik Natarajan
- Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Shaikh M Mobin
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Khandwa Road, Indore 453552, India.,Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India.,Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India.,Center for Electric Vehicle and Intelligent Transport Systems, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| |
Collapse
|
27
|
Pang CM, Cao XY, Xiao Y, Luo SH, Chen Q, Zhou YJ, Wang ZY. N-alkylation briefly constructs tunable multifunctional sensor materials: Multianalyte detection and reversible adsorption. iScience 2021; 24:103126. [PMID: 34632330 PMCID: PMC8487030 DOI: 10.1016/j.isci.2021.103126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 12/28/2022] Open
Abstract
A series of N-alkyl-substituted polybenzimidazoles (SPBIs), synthesized by simple condensation and N-alkylation, act as functional materials with tunable microstructures and sensing performance. For their controllable morphologies, the formation of nano-/microspheres is observed at the n(RBr)/n(PBI) feed ratio of 5:1. Products with different degrees of alkylation can recognize metal ions and nitroaromatic compounds (NACs). For example, SPBI-c, obtained at the feed ratio of 1:1, can selectively detect Cu2+, Fe3+, and NACs. By contrast, SPBI-a, obtained at the feed ratio of 0.1:1, can exclusively detect Cu2+ with high sensitivity. Their sensing mechanisms have been studied by FT-IR spectroscopy, SEM, XPS, and DFT calculations. Interestingly, the SPBIs can adsorb Cu2+ in solution and show good recyclability. These results demonstrate that polymeric materials with both sensing and adsorption applications can be realized by regulating the alkylation extent of the main chain, thus providing a new approach for the facile synthesis of multifunctional materials.
Collapse
Affiliation(s)
- Chu-Ming Pang
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
- School of Health Medicine, Guangzhou Huashang College, Guangzhou 511300, P. R. China
| | - Xi-Ying Cao
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Ying Xiao
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Shi-He Luo
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, P. R. China
| | - Qi Chen
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Yong-Jun Zhou
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, P. R. China
| |
Collapse
|
28
|
Vizuet JP, Lewis AL, McCandless GT, Balkus KJ. Holmium-based metal-organic frameworks using the BDC linker. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Kumar R, Naz Ansari S, Deka R, Kumar P, Saraf M, Mobin SM. Progress and Perspectives on Covalent-organic Frameworks (COFs) and Composites for Various Energy Applications. Chemistry 2021; 27:13669-13698. [PMID: 34288163 DOI: 10.1002/chem.202101587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 11/10/2022]
Abstract
Covalent-organic frameworks (COFs), being a new member of the crystalline porous materials family, have emerged as important materials for energy storage/conversion/generation devices. They possess high surface areas, ordered micro/mesopores, designable structures and an ability to precisely control electro-active groups in their pores, which broaden their application window. Thanks to their low weight density, long range crystallinity, reticular nature and tunable synthesis approach towards two and three dimensional (2D and 3D) networks, they have been found suitable for a range of challenging electrochemical applications. Our review focuses on the progress made on the design, synthesis and structure of COFs and their composites for various energy applications, such as metal-ion batteries, supercapacitors, water-splitting and solar cells. Additionally, attempts have been made to correlate the structural and mechanistic characteristics of COFs with their applications.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Shagufi Naz Ansari
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Rakesh Deka
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Praveen Kumar
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Mohit Saraf
- Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Shaikh M Mobin
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India.,Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India.,Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| |
Collapse
|
30
|
Pandey R, Singh D, Thakur N, Raj KK. Catalytic C-H Bond Activation and Knoevenagel Condensation Using Pyridine-2,3-Dicarboxylate-Based Metal-Organic Frameworks. ACS OMEGA 2021; 6:13240-13259. [PMID: 34056473 PMCID: PMC8158822 DOI: 10.1021/acsomega.1c01155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/23/2021] [Indexed: 05/08/2023]
Abstract
Three 1D coordination polymers (CPs) [M(pdca)(H2O)2] n (M = Zn, Cd, and Co; 1-3), and a 3D coordination framework {[(CH3)2NH2][CuK(2,3-pdca)(pa)(NO3)2]} n (4) (2,3-pdca = pyridine-2,3-dicarboxylate and pa = picolinic acid), have been synthesized adopting a solvothermal reaction strategy. The CPs have been thoroughly characterized using various spectral techniques, that is, elemental analyses, FT-IR, TGA, DSC, UV/vis, and luminescence. Structural information on 1-4 was obtained by PXRD and X-ray single-crystal analyses, whereas morphological insights were attained through FESEM, AFM, EDX, HRTEM, and BET surface area analyses. Roughness parameters were calculated from AFM analysis, whereas dimensions of small domains and interplanar spacing were defined with the aid of HRTEM. CPs 1-3 are 1D isostructural networks, whereas 4 is a 3D framework. Moreover, 1-4 display moderate luminescence at rt. In addition, 1-4 have been applied as economic and efficient porous catalysts for the Knoevenagel condensation reaction and C-H bond activation under mild conditions with good yields (95-98 and 97-99%), respectively. Notably, 1-3 can be reused up to seven cycles, whereas 4 can be reused up to five catalytic cycles with retained catalytic efficiency. Relative catalytic efficacy toward the Knoevenagel condensation reaction follows in the order 2 > 1 > 3 > 4, whereas 2 > 4 > 1 > 3 for C-H activation. The present result demonstrates synthetic, structural, optical, morphological, and catalytic aspects of 1-4.
Collapse
Affiliation(s)
- Rampal Pandey
- Department
of Chemistry, National Institute of Technology
Uttarakhand, Srinagar, Uttarakhand 246174, India
| | - Durgesh Singh
- Department
of Chemistry, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Neha Thakur
- Department
of Chemistry, National Institute of Technology
Uttarakhand, Srinagar, Uttarakhand 246174, India
| | - Krishna K. Raj
- Department
of Chemistry, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| |
Collapse
|
31
|
Ghosh A, Seth SK, Ghosh A, Pattanayak P, Mallick A, Purkayastha P. A New Compound for Sequential Sensing of Picric Acid and Aliphatic Amines: Physicochemical Details and Construction of Molecular Logic Gates. Chem Asian J 2021; 16:1157-1164. [PMID: 33787004 DOI: 10.1002/asia.202100117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/30/2021] [Indexed: 01/09/2023]
Abstract
Picric acid (PA) at low concentration is a serious water pollutant. Alongside, aliphatic amines (AAs) add to the queue to pollute surface water. Plenty of reports are available to sense PA with an ultralow limit of detection (LOD). However, only a handful of works are testified to detect AAs. A new fluorescent donor-acceptor compound has been synthesized with inherent intramolecular charge transfer (ICT) character that enables selective and sensitive colorimetric quantitative detection of PA and AAs with low LODs in non-aqueous as well as aqueous solutions. The synthesized compound is based on a hemicyanine skeleton containing two pyridenylmethylamino groups at the donor and a benzothiazole moiety at the acceptor ends. The detailed mechanisms and reaction dynamics are explained spectroscopically along with computational support. The fluorescence property of the detecting compound changes due to protonation of its pyridinyl centers by PA leading to quenching of fluorescence and subsequently de-protonation by AAs to revive the signal. We have further designed logic circuits from the acquired optical responses by sequential interactions.
Collapse
Affiliation(s)
- Ashutosh Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, WB 741262, Mohanpur, India
| | - Sourav Kanti Seth
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, WB 741262, Mohanpur, India
| | - Arnab Ghosh
- Department of Materials Science, Indian Association for the Cultivation of Science, 700032, Jadavpur, Kolkata, India
| | - Pradip Pattanayak
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, WB 741262, Mohanpur, India
| | - Arabinda Mallick
- Department of Chemistry, Kazi Nazrul University, Kalla Bypass More, WB 713340, Burdwan, India
| | - Pradipta Purkayastha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, WB 741262, Mohanpur, India
| |
Collapse
|
32
|
|
33
|
Saraf M, Tavakkoli Yaraki M, Prateek, Tan YN, Gupta RK. Insights and Perspectives Regarding Nanostructured Fluorescent Materials toward Tackling COVID-19 and Future Pandemics. ACS APPLIED NANO MATERIALS 2021; 4:911-948. [PMID: 37556236 PMCID: PMC7885806 DOI: 10.1021/acsanm.0c02945] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/26/2021] [Indexed: 07/28/2023]
Abstract
The COVID-19 outbreak has exposed the world's preparation to fight against unknown/unexplored infectious and life-threatening pathogens. The unavailability of vaccines, slow or sometimes unreliable real-time virus/bacteria detection techniques, insufficient personal protective equipment (PPE), and a shortage of ventilators and many other transportation equipments have further raised serious concerns. Material research has been playing a pivotal role in developing antimicrobial agents for water treatment and photodynamic therapy, fast and ultrasensitive biosensors for virus/biomarkers detection, as well as for relevant biomedical and environmental applications. It has been noticed that these research efforts nowadays primarily focus on the nanomaterials-based platforms owing to their simplicity, reliability, and feasibility. In particular, nanostructured fluorescent materials have shown key potential due to their fascinating optical and unique properties at the nanoscale to combat against a COVID-19 kind of pandemic. Keeping these points in mind, this review attempts to give a perspective on the four key fluorescent materials of different families, including carbon dots, metal nanoclusters, aggregation-induced-emission luminogens, and MXenes, which possess great potential for the development of ultrasensitive biosensors and infective antimicrobial agents to fight against various infections/diseases. Particular emphasis has been given to the biomedical and environmental applications that are linked directly or indirectly to the efforts in combating COVID-19 pandemics. This review also aims to raise the awareness of researchers and scientists across the world to utilize such powerful materials in tackling similar pandemics in future.
Collapse
Affiliation(s)
- Mohit Saraf
- Department of Chemical Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
| | - Mohammad Tavakkoli Yaraki
- Department of Chemical and Biomolecular Engineering,
National University of Singapore, 4 Engineering Drive 4,
117585, Singapore
- Research and Development Department,
Nanofy Technologies Pte. Ltd., 048580,
Singapore
| | - Prateek
- Department of Chemical Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
| | - Yen Nee Tan
- Faculty of Science, Agriculture & Engineering,
Newcastle University, Newcastle upon Tyne NE1 7RU,
U.K.
- Newcastle Research & Innovation Institute,
Devan Nair Institute for Employment & Employability, 80
Jurong East Street 21, 609607, Singapore
| | - Raju Kumar Gupta
- Department of Chemical Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
- Centre for Environmental Science and Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
- Department of Sustanable Energy Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
| |
Collapse
|
34
|
Abazari R, Sanati S, Morsali A, Kirillov AM, Slawin AMZ, Carpenter-Warren CL. Simultaneous Presence of Open Metal Sites and Amine Groups on a 3D Dy(III)-Metal–Organic Framework Catalyst for Mild and Solvent-Free Conversion of CO2 to Cyclic Carbonates. Inorg Chem 2021; 60:2056-2067. [DOI: 10.1021/acs.inorgchem.0c03634] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115-175, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115-175, Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115-175, Iran
| | - Alexander M. Kirillov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenido Rovisco Pais, 1049-001 Lisbon, Portugal
- Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya strasse, Moscow 117198, Russia
| | - Alexandra M. Z. Slawin
- School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom
| | | |
Collapse
|
35
|
Gao R, Wang J, Wang H, Dong W, Zhu J. Fluorescent nucleotide-lanthanide nanoparticles for highly selective determination of picric acid. Mikrochim Acta 2021; 188:18. [PMID: 33404778 DOI: 10.1007/s00604-020-04686-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/08/2020] [Indexed: 11/28/2022]
Abstract
A new method based on coordination polymer nanoparticles (CPNs) derived from nucleotides and Tb3+ ions (GMP/Tb) for the selective and sensitive determination of aqueous 2,4,6-trinitrophenol (TNP) (picric acid) is established. The fluorescence of GMP/Tb nanoparticles is effectively quenched by TNP via photo-induced charge transfer (PCT), thus achieving its selectivity toward TNP over other nitroaromatic explosives. The decreased fluorescence of GMP/Tb shows a good linear relationship to the concentrations of TNP ranging from 5.0 to 40.0 μM, and the limit of detection is 26.0 nM (5.96 ppb). The proposed GMP/Tb probe also achieves satisfactory results in real samples. The obtained recoveries of this method in river water samples are in the range 93.15-106.10%. The relative standard deviation (RSD) are 0.57 to 1.01% based on three repeated determinations. This fabricated detector provides a feasible path for determination of ppb-level TNP in natural water samples, which can help humans to avoid TNP-contaminated drinking water. Graphical abstract.
Collapse
Affiliation(s)
- Ruru Gao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Junhong Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Han Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wei Dong
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Junwu Zhu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
36
|
Zhao T, Zhang F, Zhou J, Zhao X. Luminescent Metal-Organic Frameworks for Nitroaromatic Compounds Detection. COMMENT INORG CHEM 2020. [DOI: 10.1080/02603594.2020.1853537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Tianhao Zhao
- College of Science, Sichuan Agricultural University, Ya’an, China
| | - Fenhang Zhang
- College of Science, Sichuan Agricultural University, Ya’an, China
| | - Jing Zhou
- College of Science, Sichuan Agricultural University, Ya’an, China
| | - Xiaoqing Zhao
- College of Science, Sichuan Agricultural University, Ya’an, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, China
| |
Collapse
|
37
|
Jin F. Construction of a novel 2D Pb(II)-Organic framework: Syntheses, crystal structure, and property. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
38
|
Farahmand Kateshali A, Gholizadeh Dogaheh S, Soleimannejad J, Blake AJ. Structural diversity and applications of Ce(III)-based coordination polymers. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Fan SJ, Sun R, Yan YB, Sun HB, Pang SN, Xu SD. A Dy(iii)–organic framework as a fluorescent probe for highly selective detection of picric acid and treatment activity on human lung cancer cells. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractA dysprosium(iii) organic framework, {[Dy(H2O)(BTCTB)]·2H2O}n (1, H3BTCTB = 3,3′,3′′-[1,3,5-benzenetriyltris(carbonylimino)]tris-benzoic acid), was synthesized through the hydrothermal reaction of Dy(NO3)3 with the C3-symmetric organic ligand H3BTCTB at 160°C for 96 h. At the same time, the sensitivity of picric acid in water medium was tested with material 1 as the fluorescent sensor. The detection limit was 0.71 µM and KSV of this experiment was 8.55 × 104 M−1, which might be attributed to the presence of abundant amide groups in the framework of 1. In addition, the treatment effect of compound 1 against the NCI-H292 lung cancer cells was evaluated. The Cell Counting Kit-8 (CCK-8) method was conducted to measure the viability of cancer cell after treated through the compound 1. The DCFH-DA was applied for the determination of ROS. The relative expression of the inflammatory genes was measured with RT-PCR. The western blotting was conducted to detect the effect of the compound against MDM-2 levels in NCI-H292 lung cancer cells. The possible binding interactions in terms of binding poses are probed by performing molecular docking simulations.
Collapse
Affiliation(s)
- Shi-Jie Fan
- Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Cancer Institute, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Ren Sun
- Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Cancer Institute, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Yu-Bo Yan
- Department of Surgery, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hao-Bo Sun
- Department of Surgery, Harbin Medical University, Harbin, Heilongjiang, China
| | - Sai-Nan Pang
- Department of Surgery, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shi-Dong Xu
- Department of Surgery, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
40
|
Synthesis, crystal structure and catalytic property of a highly stable 3D Cu(II)-organic framework. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Rajak R, Saraf M, Mobin SM. Mixed-Ligand Architected Unique Topological Heterometallic Sodium/Cobalt-Based Metal–Organic Framework for High-Performance Supercapacitors. Inorg Chem 2020; 59:1642-1652. [DOI: 10.1021/acs.inorgchem.9b02762] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Rajak R, Kumar R, Ansari SN, Saraf M, Mobin SM. Recent highlights and future prospects on mixed-metal MOFs as emerging supercapacitor candidates. Dalton Trans 2020; 49:11792-11818. [PMID: 32779674 DOI: 10.1039/d0dt01676d] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mixed-metal metal-organic frameworks (M-MOFs) consist of at least two different metal ions as nodes in the same framework. The incorporation of a second or more metal ions provides structural/compositional diversity, multi-functionality and stability to the framework. Moreover, the periodical array of different metal ions in the framework may alter the physical/chemical properties of M-MOFs and result in fascinating applications. M-MOFs with exciting structural features offer superior supercapacitor performances compared to single metal MOFs due to the synergic effect of different metal ions. In this review, we summarize several synthetic methods to construct M-MOFs by employing various organic ligands or metalloligands. Further, we discuss the electrochemical performance of several M-MOFs and their derived composite materials for supercapacitor applications.
Collapse
Affiliation(s)
- Richa Rajak
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India.
| | - Ravinder Kumar
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India.
| | - Shagufi Naz Ansari
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India.
| | - Mohit Saraf
- Discipline of Metallurgy Engineering and Materials Science (MEMS), Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Shaikh M Mobin
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India. and Discipline of Metallurgy Engineering and Materials Science (MEMS), Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India and Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| |
Collapse
|
43
|
Gao W, Zhou AM, Wei H, Wang CL, Liu JP, Zhang XM. Water-stable LnIII-based coordination polymers displaying slow magnetic relaxation and luminescence sensing properties. NEW J CHEM 2020. [DOI: 10.1039/d0nj00828a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Six Ln-CPs were synthesized: Dy-CP shows slow magnetic relaxation, and Eu-CP and Tb-CP exhibit recyclable and multi-responsive sensing for Fe3+, MnO4−, CrVI-anions (CrO42−, Cr2O72−) and TNP in an aqueous system.
Collapse
Affiliation(s)
- Wei Gao
- College of Chemistry and Materials Science
- Huaibei Normal University
- Anhui 235000
- China
| | - Ai-Mei Zhou
- College of Chemistry and Materials Science
- Huaibei Normal University
- Anhui 235000
- China
| | - Han Wei
- College of Chemistry and Materials Science
- Huaibei Normal University
- Anhui 235000
- China
| | - Cui-Li Wang
- College of Chemistry and Materials Science
- Huaibei Normal University
- Anhui 235000
- China
| | - Jie-Ping Liu
- College of Chemistry and Materials Science
- Huaibei Normal University
- Anhui 235000
- China
| | - Xiu-Mei Zhang
- College of Chemistry and Materials Science
- Huaibei Normal University
- Anhui 235000
- China
| |
Collapse
|
44
|
Mohanty A, Singh UP, Butcher RJ, Das N, Roy P. Synthesis of fluorescent MOFs: live-cell imaging and sensing of a herbicide. CrystEngComm 2020. [DOI: 10.1039/d0ce00490a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Various metal–organic frameworks of Zn(ii) and Cd(ii) have been synthesized hydrothermally for the detection of herbicide (simazine) as well as nitro-aromatic compounds. Also these MOFs show live-cell imaging for MCF-7 cells.
Collapse
Affiliation(s)
- Aurobinda Mohanty
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee – 247667
- India
| | - Udai P. Singh
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee – 247667
- India
| | - R. J. Butcher
- Department of Chemistry
- Howard University
- Washington
- USA
| | - Neeladrisingha Das
- Department of Biotechnology
- Indian Institute of Technology Roorkee
- Roorkee – 247667
- India
| | - Partha Roy
- Department of Biotechnology
- Indian Institute of Technology Roorkee
- Roorkee – 247667
- India
| |
Collapse
|
45
|
Wang X, Zhang X, Cao H, Huang Y. A facile and rapid approach to synthesize uric acid-capped Ti3C2 MXene quantum dots for the sensitive determination of 2,4,6-trinitrophenol both on surfaces and in solution. J Mater Chem B 2020; 8:10837-10844. [DOI: 10.1039/d0tb02078h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The UA@Ti3C2 QDs with blue light emission were synthesized by a simple and green microwave-assisted method, and used as a sensitive and selective probe for the detection of TNP both on surfaces and in solution.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Xiaodan Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Haiyan Cao
- Key Laboratory of Chongqing Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- China
| | - Yuming Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
46
|
Liu X, Du L, Li R, Ma N, You M, Feng X. Different effects in the selective detection of aniline and Fe 3+ by lanthanide-based coordination polymers containing multiple reactive sites. CrystEngComm 2020. [DOI: 10.1039/d0ce00238k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Isostructural Ln-CPs (1-Eu and 2-Tb) show almost the same high detection ability for Fe3+ and different detection abilities for aniline. The detection difference was studied through PXRD, UV-vis, luminescence lifetimes and Hirshfeld surface analysis.
Collapse
Affiliation(s)
- Xinfang Liu
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function Oriented Porous Materials
- Luoyang Normal University
- Luoyang
- China
| | - Liyong Du
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
- PR China
| | - Rongfang Li
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function Oriented Porous Materials
- Luoyang Normal University
- Luoyang
- China
| | - Ningning Ma
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function Oriented Porous Materials
- Luoyang Normal University
- Luoyang
- China
| | - Mengdi You
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function Oriented Porous Materials
- Luoyang Normal University
- Luoyang
- China
| | - Xun Feng
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function Oriented Porous Materials
- Luoyang Normal University
- Luoyang
- China
| |
Collapse
|
47
|
Xu TY, Li JM, Han YH, Wang AR, He KH, Shi ZF. A new 3D four-fold interpenetrated dia-like luminescent Zn(ii)-based metal–organic framework: the sensitive detection of Fe3+, Cr2O72−, and CrO42− in water, and nitrobenzene in ethanol. NEW J CHEM 2020. [DOI: 10.1039/c9nj06056a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A four-fold interpenetrating Zn-MOF as a multi-responsive fluorescent sensor for Fe3+, Cr2O72−, and CrO42− ions in water, and NB in ethanol is reported.
Collapse
Affiliation(s)
- Tian-Yang Xu
- Guangxi Colleges and Universities Key Laboratory of Beibu Gulf Oil and Natural Gas Resource Effective Utilization
- College of Petroleum and Chemical Engineering
- Beibu Gulf University
- Qinzhou 535011
- People's Republic of China
| | - Jia-Ming Li
- Guangxi Colleges and Universities Key Laboratory of Beibu Gulf Oil and Natural Gas Resource Effective Utilization
- College of Petroleum and Chemical Engineering
- Beibu Gulf University
- Qinzhou 535011
- People's Republic of China
| | - Ya-Hui Han
- Sichuan Vocational College of Chemical Technology
- Luzhou 646000
- People's Republic of China
| | - Ai-Rong Wang
- Guangxi Colleges and Universities Key Laboratory of Beibu Gulf Oil and Natural Gas Resource Effective Utilization
- College of Petroleum and Chemical Engineering
- Beibu Gulf University
- Qinzhou 535011
- People's Republic of China
| | - Kun-Huan He
- Guangxi Colleges and Universities Key Laboratory of Beibu Gulf Oil and Natural Gas Resource Effective Utilization
- College of Petroleum and Chemical Engineering
- Beibu Gulf University
- Qinzhou 535011
- People's Republic of China
| | - Zhong-Feng Shi
- Guangxi Colleges and Universities Key Laboratory of Beibu Gulf Oil and Natural Gas Resource Effective Utilization
- College of Petroleum and Chemical Engineering
- Beibu Gulf University
- Qinzhou 535011
- People's Republic of China
| |
Collapse
|