1
|
Borisova NE, Fedoseev AM, Kostikova GV, Matveev PI, Starostin LY, Sokolova MN, Evsiunina MV. Solvent Extraction and Conformation Rigidity: Actinide(IV) and Actinide(VI) Come Together. Inorg Chem 2022; 61:20774-20784. [PMID: 36516029 DOI: 10.1021/acs.inorgchem.2c02578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The first comprehensive structural and extraction study of a 2,2'-bipyridine-6,6'-dicarboxamide (L diamide) extractant for U, Np, Pu, Th, Am, and Eu ions showed great potential for actinide separation due to steric hindrance of the amidic side phenyl ring of the given compound. The study of the complexes of An(VI) and Th(IV) with 2,2'-bipyridyldicarboxamide-type extractants demonstrated the structure of the extraction species for the first time. Investigation of the extraction properties with the radiometric and millimolar quantities of actinides showed similar extraction trends. For the first time, a metal-ion-induced phenyl-ring rotation restriction was found for the U, Th, and Eu complexes by employing temperature-dependent dynamic NMR. A study of the solution behavior of the complexes accompanied by density functional theory modeling studies elucidated the mechanism of the unusual C-N bond rotation restriction induced by metal coordination.
Collapse
Affiliation(s)
- Nataliya E Borisova
- Department of ChemistryM. V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow119991, Russia
| | - Alexandre M Fedoseev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, Building 4, Moscow119071, Russia
| | - Galina V Kostikova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, Building 4, Moscow119071, Russia
| | - Petr I Matveev
- Department of ChemistryM. V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow119991, Russia
| | - Leonid Yu Starostin
- Department of ChemistryM. V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow119991, Russia
| | - Marina N Sokolova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, Building 4, Moscow119071, Russia
| | - Mariia V Evsiunina
- Department of ChemistryM. V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow119991, Russia
| |
Collapse
|
2
|
Wacker JN, Nicholas AD, Vasiliu M, Marwitz AC, Bertke JA, Dixon DA, Knope KE. Impact of Noncovalent Interactions on the Structural Chemistry of Thorium(IV)-Aquo-Chloro Complexes. Inorg Chem 2021; 60:6375-6390. [PMID: 33885290 DOI: 10.1021/acs.inorgchem.1c00099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Five novel tetravalent thorium (Th) compounds that consist of Th(H2O)xCly structural units were isolated from acidic aqueous solutions using a series of nitrogen-containing heterocyclic hydrogen (H) bond donors. Taken together with three previously reported phases, the compounds provide a series of monomeric ThIV complexes wherein the effects of noncovalent interactions (and H-bond donor identity) on Th structural chemistry can be examined. Seven distinct structural units of the general formulas [Th(H2O)xCl8-x]x-4 (x = 2, 4) and [Th(H2O)xCl9-x]x-5 (x = 5-7) are described. The complexes range from chloride-deficient [Th(H2O)7Cl2]2+ to chloride-rich [Th(H2O)2Cl6]2- species, and theory was used to understand the relative energies that separate complexes within this series via the stepwise chloride addition to an aquated Th cation. Electronic structure theory predicted the reaction energies of chloride addition and release of water through a series of transformations, generally highlighting an energetic driving force for chloride complexation. To probe the role of the counterion in the stabilization of these complexes, electrostatic potential (ESP) surfaces were calculated. The ESP surfaces indicated a dependence of the chloride distribution about the Th metal center on the pKa of the countercation, highlighting the directing effects of noncovalent interactions (e.g., Hbonding) on Th speciation.
Collapse
Affiliation(s)
- Jennifer N Wacker
- Department of Chemistry, Georgetown University, Washington, D.C. 20057, United States
| | - Aaron D Nicholas
- Department of Chemistry, The George Washington University, Washington, D.C. 20052, United States
| | - Monica Vasiliu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Alexander C Marwitz
- Department of Chemistry, Georgetown University, Washington, D.C. 20057, United States
| | - Jeffery A Bertke
- Department of Chemistry, Georgetown University, Washington, D.C. 20057, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Karah E Knope
- Department of Chemistry, Georgetown University, Washington, D.C. 20057, United States
| |
Collapse
|
3
|
Zheng Z, Lu H, Wang Y, Bao H, Li ZJ, Xiao GP, Lin J, Qian Y, Wang JQ. Tuning of the Network Dimensionality and Photoluminescent Properties in Homo- and Heteroleptic Lanthanide Coordination Polymers. Inorg Chem 2021; 60:1359-1366. [PMID: 33321039 DOI: 10.1021/acs.inorgchem.0c02447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Targeted synthesis, through a heteroleptic methodology, has resulted in three types of lanthanide (Ln) coordination polymers (CPs) with tailored dimensionality, tunable photoluminescent colors, and distinct luminescence quenching upon UV and X-ray irradiation. The homoleptic Ln(tpbz)(NO3)2 [CP-1; tpbz = 4-(2,2':6',2″-terpyridin-4'-yl)benzoate] is assembled from Ln cations and bridging tpbz ligands, accompanied by the decoration of NO3- anions, forming a one-dimensional (1D) chain structure. The presence of ancillary dicarboxylate linkers, 1,4-benzenedicarboxylate (bdc) and 2,5-thiophenedicarboxylate (tdc), promotes additional bridging between 1D chains to form a two-dimensional layer and a three-dimensional framework for Ln(tpbz)(bdc) (CP-2) and Ln(tpbz)(tdc) (CP-3), respectively. The multicolor and luminescence properties of the obtained CPs were investigated, displaying typical red EuIII-based and green TbIII-based emissions. The SmIII-bearing CP-1-CP-3, however, exhibit diverse ratiometric LnIII- and ligand-based emissions, with the photoluminescent colors varying from pink to orange to cyan. Notably, the TbIII-containing CP-1-CP-3 display distinct luminescence quenching upon continuous exposure to UV and X-ray irradiation. To our best knowledge, CP-2-Tb represents one of the most sensitive UV dosage probes (3.2 × 10-7 J) among all CPs.
Collapse
Affiliation(s)
- Zhaofa Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Huangjie Lu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yumin Wang
- School for Radiological and Interdisciplinary Sciences and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Hongliang Bao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Zi-Jian Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Guo-Ping Xiao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jian Lin
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yuan Qian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jian-Qiang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China.,Dalian National Laboratory for Clean Energy, Dalian 116023, China
| |
Collapse
|
4
|
Hu SX, Zhang P, Lu E, Zhang P. Decisive Role of 5f-Orbital Covalence in the Structure and Stability of Pentavalent Transuranic Oxo [M 6O 8] Clusters. Inorg Chem 2020; 59:18068-18077. [PMID: 33287539 DOI: 10.1021/acs.inorgchem.0c02539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Actinide metal oxo clusters are of vital importance in actinide chemistry, as well as in environmental and materials sciences. They are ubiquitous in both aqueous and nonaqueous phases and play key roles in nuclear materials (e.g., nuclear fuel) and nuclear waste management. Despite their importance, our structural understanding of the actinide metal oxo clusters, particularly the transuranic ones, is very limited because of experimental challenges such as high radioactivity. Herein we report a systematic theoretical study on the structures and stabilities of seven actinide metal oxo-hydroxo clusters [AnIV6O4(OH)4L12] (1-An; An = Th-Cm; L = O2CH-) along with their group 4 (Ti, Zr, Hf, Rf) and lanthanide (Ce) counterparts [MIV6O4(OH)4L12] (1-M). The work shows the Td-symmetric structures of all of the 1-An/M clusters and suggests the positions of the -OH functional groups, which are experimentally challenging to determine. Furthermore, by removing six electrons from 1-An, we found that oxidation could happen on the AnIV metal ions, producing [AnV6O4(OH)4L12]6+ (2-An; An = Pa, U, Np), or on the O2- and OH- ligands, producing [AnIV6(O•-)4(OH•)2(OH)2L12]6+ (3-An; An = Pu, Am, Cm). On the basis of 2-An, we constructed a series of tetravalent and pentavalent actinide metal oxo clusters [AnIV6O14]4- (4-An) and [AnV6O14]2+ (5-An), which proves the feasibility of the highly important pentavalent actinyl clusters, demonstrates the f orbital's structure-directing role in the formation of linear [O≡AnV═O]+ actinyl ions, and expands the concept of actinyl-actinyl interaction into pentavalent transuranic actinyl clusters.
Collapse
Affiliation(s)
- Shu-Xian Hu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.,Beijing Computational Science Research Center, Beijing 100193, China
| | - Peng Zhang
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Erli Lu
- School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, U.K
| | - Ping Zhang
- Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| |
Collapse
|
5
|
Colliard I, Falaise C, Nyman M. Bridging the Transuranics with Uranium(IV) Sulfate Aqueous Species and Solid Phases. Inorg Chem 2020; 59:17049-17057. [PMID: 33211485 DOI: 10.1021/acs.inorgchem.0c02267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Isolating isomorphic compounds of tetravalent actinides (i.e., ThIV, UIV, NpIV, and PuIV) improve our understanding of the bonding behavior across the series, in addition to their relationship with tetravalent transition metals (Zr and Hf) and lanthanides (Ce). Similarities between these tetravalent metals are particularly illuminated in their hydrolysis and condensation behavior in aqueous systems, leading to polynuclear clusters typified by the hexamer [MIV6O4(OH)4]12+ building block. Prior studies have shown the predominance and coexistence of smaller species for ThIV (monomers, dimers, and hexamers) and larger species for UIV, NpIV, and PuIV (including 38-mers and 70-mers). We show here that aqueous uranium(IV) sulfate also displays behavior similar to that of ThIV (and ZrIV) in its isolated solid-phase and solution speciation. Two single-crystal X-ray structures are described: a dihydroxide-bridged dimer (U2) formulated as U2(OH)2(SO4)3(H2O)4 and a monomer-linked hexamer framework (U-U6) as (U(H2O)3.5)2U6O4(OH)4(SO4)10(H2O)9. These structures are similar to those previously described for ThIV. Moreover, cocrystallization of monomer and dimer and of dimer and monomer-hexamer phases for both ThIV (prior) and UIV (current) indicates the coexistence of these species in solution. Because it was not possible to effectively study the sulfate-rich solutions via X-ray scattering from which U2 and U-U6 crystallized, we provide a parallel solution speciation study in low sulfate conditions, as a function of the pH. Raman spectroscopy, UV-vis spectroscopy, and small-angle X-ray scattering of these show decreasing sulfate binding, increased hydrolysis, increased species size, and increased complexity, with increasing pH. This study describes a bridge across the first half the actinide series, highlighting UIV similarities to ThIV, in addition to the previously known similarities to the transuranic elements.
Collapse
Affiliation(s)
- Ian Colliard
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Clement Falaise
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
6
|
Colliard I, Nyman M. Building [U IV 70 (OH) 36 (O) 64 ] 4- Oxocluster Frameworks with Sulfate, Transition Metals, and U V. Chemistry 2020; 26:12481-12488. [PMID: 32609912 DOI: 10.1002/chem.202002403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 11/10/2022]
Abstract
Uranium(IV) oxide clusters, colloids, and materials are designed and studied for 1) nuclear materials applications, 2) understanding the environmental fate and transport of actinides, and 3) exploring the complex bonding behavior of open-shell f-elements. UIV -oxyhydroxsulfate clusters are particularly relevant in industrial processes and in nature. Recent studies have shown that counter-cations to these polynuclear anions differentiate rich structural topologies in the solid-state. Herein, we present nine different structures with wheel-shaped [U70 (OH)36 (O)64 (SO4 )60 ]4- (U70 ) linked into one- and two-dimensional frameworks with sulfate, divalent transition metals (CrII , FeII , CoII , NiII ) and UV . Small-angle X-ray scattering of these phases dissolved in butylamine reveals differing supramolecular assembly of U70 clusters, controlled primarily by sulfates. However, observed trends in transition metal linking guide future design of U70 materials with different topologies. Finally, U70 linking via UIV -O-UV -O-UIV bridges presents a rare example of mixed-oxidation-state uranium oxides without disorder.
Collapse
Affiliation(s)
- Ian Colliard
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
7
|
Lu H, Diefenbach K, Li ZJ, Bao H, Guo X, Wang JQ, Albrecht-Schmitt TE, Lin J. Structural Complexity and Magnetic Orderings in a Large Family of 3d-4f Heterobimetallic Sulfates. Inorg Chem 2020; 59:13398-13406. [PMID: 32806019 DOI: 10.1021/acs.inorgchem.0c01765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The synthesis of a large family of heterobimetallic lanthanide copper sulfates was realized via stoichiometric hydrothermal reactions among Ln2O3, CuO, and H2SO4, giving rise to four distinct phases, namely Ln2Cu(SO4)2(OH)4 (Ln = Sm-Ho) (LnCuSO4-1), Ln4Cu(SO4)2(OH)10 (Ln = Tm-Lu) (LnCuSO4-2), LnCu(SO4)(OH)3 (Ln = Nd-Gd, except Pm) (LnCuSO4-3), and LnCu(SO4)(OH)3 (Ln = Dy-Lu) (LnCuSO4-4), with completely different topologies. The passage from LnCuSO4-1 and LnCuSO4-3 to LnCuSO4-2 and LnCuSO4-4 across the 4f series, respectively, can be ascribed to the effect of lanthanide contraction, which progressively induces shrinking of the Ln-O distance, reduction in the Ln coordination number, and eventually structural transitions. The incorporation of identical 3d-4f metal ions into different spin-lattices, in conjunction with substitution of diverse Ln3+ cations within the same spin-lattice, gives rise to tunable magnetic properties varying from ferromagnetic ordering in GdCuSO4-3 and HoCuSO4-4 to antiferromagnetic ordering in YbCuSO4-4, and to paramagnetic correlations found in GdCuSO4-1 and YbCuSO4-2.
Collapse
Affiliation(s)
- Huangjie Lu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, People's Republic of China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People's Republic of China
| | - Kariem Diefenbach
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way 118 DLC, Tallahassee, Florida 32306, United States
| | - Zi-Jian Li
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, People's Republic of China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People's Republic of China
| | - Hongliang Bao
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, People's Republic of China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People's Republic of China
| | - Xiaofeng Guo
- Department of Chemistry and Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, Washington 99164-4630, United States
| | - Jian-Qiang Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, People's Republic of China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People's Republic of China.,Dalian National Laboratory for Clean Energy, Dalian 116023, People's Republic of China
| | - Thomas E Albrecht-Schmitt
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way 118 DLC, Tallahassee, Florida 32306, United States
| | - Jian Lin
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, People's Republic of China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People's Republic of China
| |
Collapse
|
8
|
Colliard I, Morrison G, Loye HCZ, Nyman M. Supramolecular Assembly of U(IV) Clusters and Superatoms with Unconventional Countercations. J Am Chem Soc 2020; 142:9039-9047. [PMID: 32319763 DOI: 10.1021/jacs.0c03041] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Superatoms are nanometer-sized molecules or particles that form ordered lattices, mimicking their atomic counterparts. Hierarchical assembly of superatoms gives rise to emergent properties in lattices of quantum dots, p-block clusters, and fullerenes. Here, we introduce a family of uranium-oxysulfate cluster anions whose hierarchical assembly in water is controlled by two parameters: acidity and the lanthanide or transition-metal countercation. In acid, larger LnIII (Ln = La-Ho) link hexamer (U6) oxoclusters into body-centered cubic frameworks, while smaller LnIII (Ln = Er-Lu and Y) promote linking of 14 U6 clusters into hollow superclusters (U84 superatoms). U84 assembles into superlattices including cubic-closest packed, body-centered cubic, and interpenetrating networks, bridged by interstitial countercations and U6 clusters. Divalent transition metals (TM = MnII and ZnII) charge-balance and promote the fusion of 10 U6 and 10 U monomers into a wheel-shaped cluster (U70). Dissolution of U70 in organic media reveals (by small-angle X-ray scattering) that differing supramolecular assemblies are accessed, controlled by TMII-linking of U70 clusters. Magnetic measurements of these assemblies reveal Curie-Weiss behavior at high temperatures, without pairing of the 5f2-electrons down to 2 K.
Collapse
Affiliation(s)
- Ian Colliard
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Gregory Morrison
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Hans-Conrad Zur Loye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|