1
|
Wu R, Hua M, Lu Y, Chen L, Chen Y, Hu Z. Modulating Pore Wall Chemistry Empowers Sonodynamic Activity of Two-Dimensional Covalent Organic Framework Heterojunctions for Pro-Oxidative Nanotherapy. Angew Chem Int Ed Engl 2025; 64:e202416461. [PMID: 39384540 DOI: 10.1002/anie.202416461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
Covalent organic frameworks (COFs) have garnered growing interest in the field of biomedicine; however, their application in sonodynamic therapy remains underexplored due to limited understanding of their intrinsic activity and structure-property relationships. Here, we present a pore wall chemistry modulation strategy for empowering sonodynamic activity to two-dimensional (2D) COF heterojunctions through in situ growth of COFs on bismuth oxycarbonate nanosheets (B NSs). Compared to the negligible sonodynamic effects observed in the pristine B NSs, the 2D heterojunction with vinyl-decorated COF pore walls demonstrates a 3.6-fold enhancement in sonocatalytic singlet oxygen generation. This performance also significantly outperforms that of isoreticular COFs functionalized with methoxy or non-substituted groups. Mechanistic studies reveal that the vinyl groups in the B@COF (BC) heterojunction facilitate the separation and transfer of charge carriers while also enhancing the adsorption of oxygen molecules. Furthermore, peroxymonosulfate (PMS) loading into the porous COFs boosts the therapeutic efficacy of antitumor nanotherapy via sonocatalytic dual oxidative species generation. These findings underscore the critical role of pore wall chemistry in modulating the sonocatalytic properties of COFs, and advance the development of COF-based sonosensitizers for pro-oxidative applications.
Collapse
Affiliation(s)
- Ruohui Wu
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
| | - Mengying Hua
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
| | - Yanjia Lu
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Zhongqian Hu
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
| |
Collapse
|
2
|
Hong C, Liu Z, Mao Q, Zheng J, Sun Y, Lv Y, Wang P, Wu M, Lin J, Gao C, Ma X, Pan Y, Zhang J, Chen T, Yang X, Wu A. Oxygen-defect bismuth oxychloride nanosheets for ultrasonic cavitation effect enhanced sonodynamic and second near-infrared photo-induced therapy of breast cancer. Biomaterials 2025; 312:122709. [PMID: 39094521 DOI: 10.1016/j.biomaterials.2024.122709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
Sonodynamic therapy (SDT) relies heavily on the presence of oxygen to induce cell death. Its effectiveness is thus diminished in the hypoxic regions of tumor tissue. To address this issue, the exploration of ultrasound-based synergistic treatment modalities has become a significant research focus. Here, we report an ultrasonic cavitation effect enhanced sonodynamic and 1208 nm photo-induced cancer treatment strategy based on thermoelectric/piezoelectric oxygen-defect bismuth oxychloride nanosheets (BNs) to realize the high-performance eradication of tumors. Upon ultrasonic irradiation, the local high temperature and high pressure generated by the ultrasonic cavitation effect combined with the thermoelectric and piezoelectric effects of BNs create a built-in electric field. This facilitates the separation of carriers, increasing their mobility and extending their lifetimes, thereby greatly improving the effectiveness of SDT and NIR-Ⅱ phototherapy on hypoxia. The Tween-20 modified BNs (TBNs) demonstrate ∼88.6 % elimination rate against deep-seated tumor cells under hypoxic conditions. In vivo experiments confirm the excellent antitumor efficacy of TBNs, achieving complete tumor elimination within 10 days with no recurrences. Furthermore, due to the high X-ray attenuation of Bi and excellent NIR-Ⅱ absorption, TBNs enable precise cancer diagnosis through photoacoustic (PA) imaging and computed tomography (CT).
Collapse
Affiliation(s)
- Chengyuan Hong
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo, 315100, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Zhusheng Liu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China; Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315300, China
| | - Quanliang Mao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China; Department of Radiology, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Ningbo, 315010, China
| | - Jianjun Zheng
- Ningbo Clinical Research Center for Medical Imaging, Ningbo, 315010, China
| | - Yanzi Sun
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China; Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315300, China
| | - Yagui Lv
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China; Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315300, China
| | - Pengyu Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Manxiang Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Jie Lin
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Changyong Gao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Xuehua Ma
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Yuning Pan
- Department of Radiology, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Ningbo, 315010, China; Ningbo Clinical Research Center for Medical Imaging, Ningbo, 315010, China
| | - Jingfeng Zhang
- Ningbo Clinical Research Center for Medical Imaging, Ningbo, 315010, China
| | - Tianxiang Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China; Ningbo Clinical Research Center for Medical Imaging, Ningbo, 315010, China.
| | - Xiaogang Yang
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo, 315100, China.
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China.
| |
Collapse
|
3
|
Ma J, Shen H, Mi Z. Enhancing Proton Therapy Efficacy Through Nanoparticle-Mediated Radiosensitization. Cells 2024; 13:1841. [PMID: 39594590 PMCID: PMC11593106 DOI: 10.3390/cells13221841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Proton therapy, characterized by its unique Bragg peak, offers the potential to optimize the destruction of cancer cells while sparing healthy tissues, positioning it as one of the most advanced cancer treatment modalities currently available. However, in comparison to heavy ions, protons exhibit a relatively lower relative biological effectiveness (RBE), which limits the efficacy of proton therapy. The incorporation of nanoparticles for radiosensitization presents a novel approach to enhance the RBE of protons. This review provides a comprehensive discussion of the recent advancements in augmenting the biological effects of proton therapy through the use of nanoparticles. It examines the various types of nanoparticles that have been the focus of extensive research, elucidates their mechanisms of radiation sensitization, and evaluates the factors influencing the efficiency of this sensitization process. Furthermore, this review discusses the latest synergistic therapeutic strategies that integrate nanoparticle-mediated radiosensitization and outlines prospective directions for the future application of nanoparticles in conjunction with proton therapy.
Collapse
Affiliation(s)
| | | | - Zhaohong Mi
- Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Kavousi N, Nazari M, Toossi MTB, Azimian H, Alibolandi M. Smart bismuth-based platform: A focus on radiotherapy and multimodal systems. J Drug Deliv Sci Technol 2024; 101:106136. [DOI: 10.1016/j.jddst.2024.106136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Shi S, Zhong H, Zhang Y, Mei Q. Targeted delivery of nano-radiosensitizers for tumor radiotherapy. Coord Chem Rev 2024; 518:216101. [DOI: 10.1016/j.ccr.2024.216101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Cui Q, Gao Y, Wen Q, Wang T, Ren X, Cheng L, Bai M, Cheng C. Tunable Structured 2D Nanobiocatalysts: Synthesis, Catalytic Properties and New Horizons in Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311584. [PMID: 38566551 DOI: 10.1002/smll.202311584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/18/2024] [Indexed: 04/04/2024]
Abstract
2D materials have offered essential contributions to boosting biocatalytic efficiency in diverse biomedical applications due to the intrinsic enzyme-mimetic activity and massive specific surface area for loading metal catalytic centers. Since the difficulty of high-quality synthesis, the varied structure, and the tough choice of efficient surface loading sites with catalytic properties, the artificial building of 2D nanobiocatalysts still faces great challenges. Here, in this review, a timely and comprehensive summarization of the latest progress and future trends in the design and biotherapeutic applications of 2D nanobiocatalysts is provided, which is essential for their development. First, an overview of the synthesis-structure-fundamentals and structure-property relationships of 2D nanobiocatalysts, both metal-free and metal-based is provided. After that, the effective design of the active sites of nanobiocatalysts is discussed. Then, the progress of their applied research in recent years, including biomedical analysis, biomedical therapeutics, pharmacokinetics, and toxicology is systematically highlighted. Finally, future research directions of 2D nanobiocatalysts are prospected. Overall, this review to provide cutting-edge and multidisciplinary guidance for accelerating future developments and biomedical applications of 2D nanobiocatalysts is expected.
Collapse
Affiliation(s)
- Qiqi Cui
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yang Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research, Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qinlong Wen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ting Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiancheng Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Liang Cheng
- Department of Materials Science and Engineering, Center for Oral Diseases, The Macau University of Science and Technology, Taipa, Macau, China
| | - Mingru Bai
- Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research, Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research, Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
7
|
Liu C, Zhang Y, Wen J, Liu J, Huo M, Shen Y, Luo H, Zhang H. Red blood membrane camouflaging Bismuth nanoflowers designed for radio-photothermal therapy in lung cancer. J Drug Target 2024; 32:544-556. [PMID: 38469874 DOI: 10.1080/1061186x.2024.2329110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Radio-photothermal therapy is an effective modality for cancer treatment. To overcome the radio-resistance in the hypoxic microenvironment and improve the sensitivity of radiotherapy, metal nanoparticles, and radio-photothermal therapy are widely used in the research of improving the curative effect and reducing the side effects of radiotherapy. Here, we developed red blood membrane camouflaging bismuth nanoflowers (RBCM-BNF) with outstanding physiological stability and biodegradability for lung tumours. In vitro data proved that the RBCM-BNF had the greatest cancer cell-killing ability combined with X-ray irradiation and photo-thermal treatment. Meanwhile, in vivo studies revealed that RBCM-BNF can alleviate the hypoxic microenvironment and promote tumour cell apoptosis by inhibiting HIF-1α expression and increasing caspase-3 expression. Therefore, RBCM-BNF had a good radio-sensitising effect and might be a promising biomimetic nanoplatform as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Chang Liu
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, China
| | - Yuanyuan Zhang
- Department of Pharmacy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, China
| | - Jing Wen
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, China
| | - Ji Liu
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, China
| | - Meirong Huo
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, China
| | - Yan Shen
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, China
| | - Hao Luo
- Department of Internal Medicine Oncology, Lianshui People's Hospital, Lianshui, Jiangsu Province, China
| | - Hui Zhang
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, China
| |
Collapse
|
8
|
Zhao Y, Wang X, He M, Zeng G, Xu Z, Zhang L, Kang Y, Xue P. Vacancy-Rich Bismuth-Based Nanosheets for Mitochondrial Destruction via CO Poisoning, Ca 2+ Dyshomeostasis, and Oxidative Damage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307404. [PMID: 38054772 DOI: 10.1002/smll.202307404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/02/2023] [Indexed: 12/07/2023]
Abstract
Mitochondria are core regulators of tumor cell homeostasis, and their damage has become an arresting therapeutic modality against cancer. Despite the development of many mitochondrial-targeted pharmaceutical agents, the exploration of more powerful and multifunctional medications is still underway. Herein, oxygen vacancy-rich BiO2-x wrapped with CaCO3 (named BiO2-x@CaCO3/PEG, BCP) is developed for full-fledged attack on mitochondrial function. After endocytosis of BCP by tumor cells, the CaCO3 shell can be decomposed in the acidic lysosomal compartment, leading to immediate Ca2+ release and CO2 production in the cytoplasm. Near-infrared irradiation enhances the adsorption of CO2 onto BiO2-x defects, which enables highly efficient photocatalysis of CO2-to-CO. Meanwhile, such BiO2-x nanosheets possess catalase-, peroxidase- and oxidase-like catalytic activities under acidic pH conditions, allowing hypoxia relief and the accumulation of diverse reactive oxygen species (ROS) in the tumor microenvironment. Ca2+ overload-induced ion dyshomeostasis, CO-mediated respiratory chain poisoning, ROS-triggered oxidative stress aggravation, and cytosolic hyperoxia can cause severe mitochondrial disorders, which further lead to type I cell death in carcinoma. Not only does BCP cause irreversible apoptosis, but immunogenic cell death is simultaneously triggered to activate antitumor immunity for metastasis inhibition. Collectively, this platform promises high benefits in malignant tumor therapy and may expand the medical applications of bismuth-based nanoagents.
Collapse
Affiliation(s)
- Yinmin Zhao
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Xiaoqin Wang
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Mengting He
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Guicheng Zeng
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Lei Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Yuejun Kang
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
- Yibin Academy of Southwest University, Yibin, 644000, China
| | - Peng Xue
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
- Yibin Academy of Southwest University, Yibin, 644000, China
| |
Collapse
|
9
|
Yin M, Yuan Y, Huang Y, Liu X, Meng F, Luo L, Tian S, Liu B. Carbon-Iodine Polydiacetylene Nanofibers for Image-Guided Radiotherapy and Tumor-Microenvironment-Enhanced Radiosensitization. ACS NANO 2024; 18:8325-8336. [PMID: 38447099 DOI: 10.1021/acsnano.3c12623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Radiotherapy is a mainstay treatment used in clinics for locoregional therapy, although it still represents a great challenge to improve the sensitivity and accuracy of radiotherapy for tumors. Here, we report the conjugated polymer, polydiiododiacetylene (PIDA), with an iodine content of 84 wt %, as a highly effective computed tomography (CT) contrast agent and tumor microenvironment-responsive radiosensitizer. PIDA exhibited several key properties that contribute to the improvement of precision radiotherapy. The integrated PIDA nanofibers confined within the tumor envelope demonstrated amplified CT intensity and prolonged retention, providing an accurate calculation of dose distribution and precise radiation delivery for CT image-guided radiotherapy. Therefore, our strategy pioneers PIDA nanofibers as a bridge to cleverly connect a fiducial marker to guide accurate radiotherapy and a radiosensitizer to improve tumor sensitivity, thereby minimizing potential damage to surrounding tissues and facilitating on-demand therapeutic intervention in tumors.
Collapse
Affiliation(s)
- Mingming Yin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ye Yuan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sidan Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
10
|
Cheng C, Wang H, Zhao J, Wang Y, Zhao G, Zhang Y, Liu X, Wang Y. Advances in the application of metal oxide nanozymes in tumor detection and treatment. Colloids Surf B Biointerfaces 2024; 235:113767. [PMID: 38295464 DOI: 10.1016/j.colsurfb.2024.113767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
Natural enzymes play an important role to support the regular life activities of the human body. However, the application conditions of natural enzymes are harsh and there are limitations in their use. As artificial enzymes, nanozymes possess the substrate specificity of natural enzymes. Due to the advantages of low cost, good stability and strong catalytic properties, nanozymes hold a wide range of applications in the fields of sensing, chemical, food and medicine. Some of the more common ones are noble metal nanozymes, metal oxide nanozymes and carbon-based nanozymes. Among them, metal oxide nanozymes have attracted much attention because of their decent fixity, exceedingly good physicochemical properties and other advantages. Today, malignant tumors pose a great danger to the human body and are a serious threat to human health. However, traditional treatments have more side effects, and finding new treatment modalities is particularly important for tumor treatment. For example, enzyme therapy can be used to catalyze reactions in the body to achieve tumor treatment. Nanozymes can exert enzymatic activity and effectively treat malignant tumors through catalysis and synergy, and have made certain progress. This paper reviews the detection and application of metal oxide nanozymes in tumor detection and treatment in recent years and provides an outlook on their future application and development.
Collapse
Affiliation(s)
- Chunfang Cheng
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Huixin Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Jingyu Zhao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Yingying Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Guanhui Zhao
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, People's Republic of China.
| | - Yong Zhang
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Xin Liu
- Clinical Laboratory, Jinan Shizhong District People's Hospital, Jinan 250000, People's Republic of China
| | - Yaoguang Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China.
| |
Collapse
|
11
|
Li J, Wang T, Shi Y, Ye Z, Zhang X, Ming J, Zhang Y, Hu X, Li Y, Zhang D, Xu Q, Yang J, Chen X, Liu N, Su X. A continuously efficient O 2-supplying strategy for long-term modulation of hypoxic tumor microenvironment to enhance long-acting radionuclides internal therapy. J Nanobiotechnology 2024; 22:7. [PMID: 38166931 PMCID: PMC10763042 DOI: 10.1186/s12951-023-02268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Radionuclides internal radiotherapy (RIT) is a clinically powerful method for cancer treatment, but still poses unsatisfactory therapeutic outcomes due to the hypoxic characteristic of tumor microenvironment (TME). Catalase (CAT) or CAT-like nanomaterials can be used to enzymatically decompose TME endogenous H2O2 to boost TME oxygenation and thus alleviate the hypoxic level within tumors, but their effectiveness is still hindered by the short-lasting of hypoxia relief owing to their poor stability or degradability, thereby failing to match the long therapeutic duration of RIT. Herein, we proposed an innovative strategy of using facet-dependent CAT-like Pd-based two-dimensional (2D) nanoplatforms to continuously enhance RIT. Specifically, rationally designed 2D Pd@Au nanosheets (NSs) enable consistent enzymatic conversion of endogenous H2O2 into O2 to overcome hypoxia-induced RIT resistance. Furthermore, partially coated Au layer afford NIR-II responsiveness and moderate photothermal treatment that augmenting their enzymatic functionality. This approach with dual-effect paves the way for reshaping TME and consequently facilitating the brachytherapy ablation of cancer. Our work offers a significant advancement in the integration of catalytic nanomedicine and nuclear medicine, with the overarching goal of amplifying the clinical benefits of RIT-treated patients.
Collapse
Affiliation(s)
- Jingchao Li
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Tingting Wang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuanfei Shi
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zichen Ye
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xun Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiang Ming
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yafei Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xinyan Hu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yun Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Dongsheng Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qianhe Xu
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jun Yang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiaolan Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Nian Liu
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Xinhui Su
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
12
|
Hong C, Chen T, Wu M, Lin J, Gao C, Ma X, Liu Z, Yang X, Wu A. Bismuth-based two-dimensional nanomaterials for cancer diagnosis and treatment. J Mater Chem B 2023; 11:8866-8882. [PMID: 37661768 DOI: 10.1039/d3tb01544k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The intrinsic high X-ray attenuation and insignificant biological toxicity of Bi-based nanomaterials make them a category of advanced materials in oncology. Bi-based two-dimensional nanomaterials have gained rapid development in cancer diagnosis and treatment owing to their adjustable bandgap structure, high specific surface area and strong NIR absorption. In addition to the single functional cancer diagnosis and treatment modalities, Bi-based two-dimensional nanomaterials have been certified for accomplishing multi-imaging guided multifunctional synergistic cancer therapies. In this review, we summarize the recent progress including controllable synthesis, defect engineering and surface modifications of Bi-based two-dimensional nanomaterials for cancer diagnosis and treatment in the past ten years. Their medical applications in cancer imaging and therapies are also presented. Finally, we discuss the potential challenges and future research priorities of Bi-based two-dimensional nanomaterials.
Collapse
Affiliation(s)
- Chengyuan Hong
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China.
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, 315100, P. R. China.
| | - Tianxiang Chen
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China.
| | - Manxiang Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China.
| | - Jie Lin
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China.
| | - Changyong Gao
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China.
| | - Xuehua Ma
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China.
| | - Zhusheng Liu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China.
| | - Xiaogang Yang
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, 315100, P. R. China.
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China.
| |
Collapse
|
13
|
Shen J, Chen G, Zhao L, Huang G, Liu H, Liu B, Miao Y, Li Y. Recent Advances in Nanoplatform Construction Strategy for Alleviating Tumor Hypoxia. Adv Healthc Mater 2023; 12:e2300089. [PMID: 37055912 DOI: 10.1002/adhm.202300089] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/13/2023] [Indexed: 04/15/2023]
Abstract
Hypoxia is a typical feature of most solid tumors and has important effects on tumor cells' proliferation, invasion, and metastasis. This is the key factor that leads to poor efficacy of different kinds of therapy including chemotherapy, radiotherapy, photodynamic therapy, etc. In recent years, the construction of hypoxia-relieving functional nanoplatforms through nanotechnology has become a new strategy to reverse the current situation of tumor microenvironment hypoxia and improve the effectiveness of tumor treatment. Here, the main strategies and recent progress in constructing nanoplatforms are focused on to directly carry oxygen, generate oxygen in situ, inhibit mitochondrial respiration, and enhance blood perfusion to alleviate tumor hypoxia. The advantages and disadvantages of these nanoplatforms are compared. Meanwhile, nanoplatforms based on organic and inorganic substances are also summarized and classified. Through the comprehensive overview, it is hoped that the summary of these nanoplatforms for alleviating hypoxia could provide new enlightenment and prospects for the construction of nanomaterials in this field.
Collapse
Affiliation(s)
- Jing Shen
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Guobo Chen
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Linghao Zhao
- Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Guoyang Huang
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Hui Liu
- Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Baolin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuhao Li
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
14
|
Shahbazi-Gahrouei D, Choghazardi Y, Kazemzadeh A, Naseri P, Shahbazi-Gahrouei S. A review of bismuth-based nanoparticles and their applications in radiosensitising and dose enhancement for cancer radiation therapy. IET Nanobiotechnol 2023. [PMID: 37139612 DOI: 10.1049/nbt2.12134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 05/05/2023] Open
Abstract
About 50% of cancer patients receive radiation therapy. Despite the therapeutic benefits of this method, the toxicity of radiation in the normal tissues is unavoidable To improve the quality of radiation therapy, in addition to other methods such as IMRT, IGRT, and high radiation dose, nanoparticles have shown excellent potential when ionising radiation is applied to the target volume. Recently, bismuth-based nanoparticles (BiNPs) have become particularly popular in radiation therapy due to their high atomic numbers (Z), high X-ray attenuation coefficient, low toxicity, and low cost. Moreover, it is easy to synthesise in a variety of sizes and shapes. This study aimed to review the effects of the bismuth-based NP and its combination with other compounds, and their potential synergies in radiotherapy, discussed based on their physical, chemical, and biological interactions. Targeted and non-targeted bismuth-based NPs used in radiotherapy as radiosensitizers and dose enhancement effects are described. The results reported in the literature were categorised into various groups. Also, this review has highlighted the importance of bismuth-based NPs in different forms of cancer treatment to find the highest efficiency for applying them as a suitable candidate for various cancer therapy and future clinical applications.
Collapse
Affiliation(s)
- Daryoush Shahbazi-Gahrouei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yazdan Choghazardi
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezoo Kazemzadeh
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Paria Naseri
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
15
|
Zu Y, Wang Z, Yao H, Yan L. Oxygen-generating biocatalytic nanomaterials for tumor hypoxia relief in cancer radiotherapy. J Mater Chem B 2023; 11:3071-3088. [PMID: 36920849 DOI: 10.1039/d2tb02751h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Radiotherapy (RT), the most commonly used treatment method in clinics, shows unique advantages such as strong penetration, high energy intensity, and low systemic side effects. However, in vivo tumor hypoxia seriously hinders the therapeutic effect of RT. Hypoxia is a common characteristic of locally advanced solid tumor microenvironments, which leads to the proliferation, invasion and metastasis of tumor cells. In addition, oxygen consumption during RT will further aggravate tumor hypoxia, causing a variety of adverse side effects. In recent years, various biocatalytic nanomaterials (BCNs) have been explored to regulate and reverse tumor hypoxia microenvironments during RT. In this review, the most recent efforts toward developing oxygen-generating BCNs in relieving tumor hypoxia in RT are focused upon. The classification, engineering nanocatalytical activity of oxygen-generating BCNs and combined therapy based on these BCNs are systematically introduced and discussed. The challenges and prospects of these oxygen-generating BCNs in RT applications are also summarized.
Collapse
Affiliation(s)
- Yan Zu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Ziyu Wang
- College of Medical and Biological lnformation Engineering, Northeastern University, Shenyang 110170, China
| | - Huiqin Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
A Cell-Penetrating Peptide Modified Cu 2-xSe/Au Nanohybrid with Enhanced Efficacy for Combined Radio-Photothermal Therapy. Molecules 2023; 28:molecules28010423. [PMID: 36615627 PMCID: PMC9823383 DOI: 10.3390/molecules28010423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Radiotherapy (RT) is one of the main clinical therapeutic strategies against cancer. Currently, multiple radiosensitizers aimed at enhancing X-ray absorption in cancer tissues have been developed, while limitations still exist for their further applications, such as poor cellular uptake, hypoxia-induced radioresistance, and unavoidable damage to adjacent normal body tissues. In order to address these problems, a cell-penetrating TAT peptide (YGRKKRRQRRRC)-modified nanohybrid was constructed by doping high-Z element Au in hollow semiconductor Cu2-xSe nanoparticles for combined RT and photothermal therapy (PTT) against breast cancer. The obtained Cu2-xSe nanoparticles possessed excellent radiosensitizing properties based on their particular band structures, and high photothermal conversion efficiency beneficial for tumor ablation and promoting RT efficacy. Further doping high-Z element Au deposited more high-energy radiation for better radiosensitizing performance. Conjugation of TAT peptides outside the constructed Cu2-xSe/Au nanoparticles facilitated their cellular uptake, thus reducing overdosage-induced side effects. This prepared multifunctional nanohybrid showed powerful suppression effects towards breast cancer, both in vitro and in vivo via integrating enhanced cell penetration and uptake, and combined RT/PTT strategies.
Collapse
|
17
|
Gao XJ, Yan J, Zheng JJ, Zhong S, Gao X. Clear-Box Machine Learning for Virtual Screening of 2D Nanozymes to Target Tumor Hydrogen Peroxide. Adv Healthc Mater 2022; 12:e2202925. [PMID: 36565096 DOI: 10.1002/adhm.202202925] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/10/2022] [Indexed: 12/25/2022]
Abstract
Targeting tumor hydrogen peroxide (H2 O2 ) with catalytic materials has provided a novel chemotherapy strategy against solid tumors. Because numerous materials have been fabricated so far, there is an urgent need for an efficient in silico method, which can automatically screen out appropriate candidates from materials libraries for further therapeutic evaluation. In this work, adsorption-energy-based descriptors and criteria are developed for the catalase-like activities of materials surfaces. The result enables a comprehensive prediction of H2 O2 -targeted catalytic activities of materials by density functional theory (DFT) calculations. To expedite the prediction, machine learning models, which efficiently calculate the adsorption energies for 2D materials without DFT, are further developed. The finally obtained method takes advantage of both interpretability of physics model and high efficiency of machine learning. It provides an efficient approach for in silico screening of 2D materials toward tumor catalytic therapy, and it will greatly promote the development of catalytic nanomaterials for medical applications.
Collapse
Affiliation(s)
- Xuejiao J Gao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P. R. China.,Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Jun Yan
- State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, 100195, P. R. China.,School of Cyber Security, University of Chinese Academy of Sciences, Beijing, 100195, P. R. China
| | - Jia-Jia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Shengliang Zhong
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| |
Collapse
|
18
|
Han D, Zhang X, Ma Y, Yang X, Li Z. The development of live microorganism-based oxygen shuttles for enhanced hypoxic tumor therapy. Mater Today Bio 2022; 18:100517. [PMID: 36578285 PMCID: PMC9791452 DOI: 10.1016/j.mtbio.2022.100517] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Hypoxia is a prominent feature of malignant tumors and contributes to tumor proliferation, metastasis, and drug resistance in various solid tumors. Therefore, improving tumor oxygenation is crucial for curing tumors. To date, multiple strategies, including oxygen delivering and producing materials, have been designed to increase the oxygen concentration in hypoxic tumors. However, the unsustainable supply of oxygen is still the main obstacle, resulting in a suboptimal outcome in treating oxygen-deprived tumors. Thus, a sufficient oxygen supply is highly desirable in the treatment of hypoxic tumors. Photosynthesis, as the main source of oxygen in nature through the conversion of light energy into chemical energy and oxygen, has been widely studied in scientific research. Moreover, photosynthetic microorganisms have been increasingly applied in cancer therapy by increasing oxygenation, which improves the therapeutic effect of oxygen-consuming tumor therapeutic tools such as radiotherapy and photodynamic therapy. In this review, we summarize recent advances in the design and manufacture of live bacteria as oxygen shuttles for a new generation of hypoxic tumor treatment strategies. Finally, current challenges and future directions are also discussed for successfully addressing hypoxic tumor issues.
Collapse
Affiliation(s)
- Dandan Han
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523059, China,College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Xing Zhang
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Yichuan Ma
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Xinjian Yang
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China,Corresponding author.
| | - Zhenhua Li
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523059, China,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangdong, 510515, PR China,Corresponding author. Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523059, China.
| |
Collapse
|
19
|
Cong C, Li C, Cao G, Liu C, Yuan Y, Zhang X, Wang D, Gao D. Dual-activity nanozyme to initiate tandem catalysis for doubly enhancing ATP-depletion anti-tumor therapy. BIOMATERIALS ADVANCES 2022; 143:213181. [PMID: 36347175 DOI: 10.1016/j.bioadv.2022.213181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/30/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Nanozymes can regulate metabolism to achieve precise anti-tumor therapy. However, the application of nanozymes with single catalytic properties is limited by complex tumor microenvironment (TME). Herein, we report a rarely discovered nanozyme ruthenium (Ru), which has double catalytic activity of glucose-oxidase-like (GOx-like) activity and peroxidase-like (POD-like) activity. Importantly, the GOx-like activity of Ru was proposed for the first time, which can catalyze glucose and O2 to product H2O2. And then, Ru nanozyme can connect the tandem catalysis to enhance various tumor therapy. Firstly, the atovaquone (ATO) and Ru NPs were covered with a hybrid membrane of tumor cells and liposomes to obtain Ru@ATO-Lip/M with homologous targeting. Due to the enhanced permeability and retention (EPR) effect and the tumor targeting, the Ru@ATO-Lip/M NPs could be efficiently delivered to tumor and taken up by tumor cells. Subsequently, the acidic environment of tumor activated Ru to catalyze H2O2 producing OH (Fenton-like reaction). Meanwhile, newly discovered ability of Ru catalyzed glucose and O2 to produce gluconic acid and H2O2, which provided sufficient substrates (H2O2) for continuously generating more OH. Therefore, Ru nanozyme aggravated the starvation and chemodynamic therapy (CDT). Further, ATO improved the hypoxia of the tumor microenvironment, achieving steadily synergistic anti-tumor effect. This study verified the glucose oxidase-like properties of Ru NPs for the first time, and the strategy enhanced the synergistic anti-tumor effects by CDT and starvation therapy, which provided a basis for further exploration of Ru nanozyme activity and application on antitumor.
Collapse
Affiliation(s)
- Cong Cong
- State Key Laboratory of Metastableí Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China
| | - Chunhui Li
- State Key Laboratory of Metastableí Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China
| | - Guanghui Cao
- State Key Laboratory of Metastableí Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China
| | - Chang Liu
- State Key Laboratory of Metastableí Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China
| | - Yi Yuan
- College of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Xuwu Zhang
- State Key Laboratory of Metastableí Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China.
| | - Desong Wang
- State Key Laboratory of Metastableí Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China.
| | - Dawei Gao
- State Key Laboratory of Metastableí Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China.
| |
Collapse
|
20
|
Bai ZJ, Tian S, Zeng TQ, Chen L, Wang BH, Hu B, Wang X, Zhou W, Pan JB, Shen S, Guo JK, Xie TL, Li YJ, Au CT, Yin SF. Cs 3Bi 2Br 9 Nanodots Stabilized on Defective BiOBr Nanosheets by Interfacial Chemical Bonding: Modulated Charge Transfer for Photocatalytic C( sp3)–H Bond Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhang-Jun Bai
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Sheng Tian
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Tian-Qin Zeng
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Lang Chen
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Bing-Hao Wang
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Biao Hu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Xiong Wang
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Wei Zhou
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Jin-Bo Pan
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Sheng Shen
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Jun-Kang Guo
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Ting-Liang Xie
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - You-Ji Li
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, Hunan416000, China
| | - Chak-Tong Au
- College of Chemical Engineering, Fuzhou University, Fuzhou350002, P. R. China
| | - Shuang-Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| |
Collapse
|
21
|
Hu B, Xiao X, Chen P, Qian J, Yuan G, Ye Y, Zeng L, Zhong S, Wang X, Qin X, Yang Y, Pan Y, Zhang Y. Enhancing anti-tumor effect of ultrasensitive bimetallic RuCu nanoparticles as radiosensitizers with dual enzyme-like activities. Biomaterials 2022; 290:121811. [DOI: 10.1016/j.biomaterials.2022.121811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
|
22
|
Liu B, Liu C, Zhang X, Yao S, Wang Z, Liu Z, Song K, Li J. X-ray triggered pea-shaped LuAG:Mn/Ca nano-scintillators and their applications for photodynamic therapy. J Mater Chem B 2022; 10:6380-6391. [PMID: 35968697 DOI: 10.1039/d2tb01080a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic therapy (PDT) is a new minimally invasive technology for disease diagnosis and treatment. However, the biological tissue attenuation of visible light renders the depth of its penetration in tissues quite modest, which significantly restricts its therapeutic applicability. Therefore, it is an essential but yet a difficult task to enhance the X-ray sensitization impact while concurrently limiting the tissue scattering by the rational design of novel biological vectors. Herein, a novel Lu3Al5O12:Mn/Ca-Ce6@SiO2 nanoparticle system (LAMCCS) based on a pea-shaped LuAG:Mn/Ca nano-scintillator (LAMC) activating photosensitizer agent (Ce6) was designed. Due to the high radiosensitization of LAMC nano-scintillators and efficient energy conversion efficiency between LAMC and Ce6, more singlet oxygen (1O2) could be generated to efficiently damage DNA fragments and reveal a good effect of inhibiting the long-term proliferation of tumor cells in vitro. Significantly, synergistic therapy with PDT/radiotherapy (RT) and from LAMCCS nanocomposites may still maintain a high tumor growth inhibition rate of 72% than single RT of 10% in vivo. Owing to their excellent ability for X-ray sensitization and energy conversion, LAMCCS nanocomposites may have significant tumor growth suppression rates under lower X-ray dose irradiation due to their outstanding X-ray sensitization and energy conversion capabilities, which may open up a new avenue for the advancement of cancer therapy.
Collapse
Affiliation(s)
- Bin Liu
- School of Material Science and Engineering, University of Jinan, Jinan, China.
| | - Chang Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Division of Gynecologic Oncology, Qilu Hospital of Shandong University, Jinan, China.
| | - Xiaolei Zhang
- School of Material Science and Engineering, University of Jinan, Jinan, China.
| | - Shu Yao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Division of Gynecologic Oncology, Qilu Hospital of Shandong University, Jinan, China.
| | - Ziying Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Division of Gynecologic Oncology, Qilu Hospital of Shandong University, Jinan, China.
| | - Zongming Liu
- School of Material Science and Engineering, University of Jinan, Jinan, China.
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Division of Gynecologic Oncology, Qilu Hospital of Shandong University, Jinan, China.
| | - Jinkai Li
- School of Material Science and Engineering, University of Jinan, Jinan, China.
- Infovision Optoelectronics(Kunshan)Co, Ltd, Kunshan, China
| |
Collapse
|
23
|
Hua Y, Huang JH, Shao ZH, Luo XM, Wang ZY, Liu JQ, Zhao X, Chen X, Zang SQ. Composition-Dependent Enzyme Mimicking Activity and Radiosensitizing Effect of Bimetallic Clusters to Modulate Tumor Hypoxia for Enhanced Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203734. [PMID: 35681250 DOI: 10.1002/adma.202203734] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Alloying is an efficient chemistry to tailor the properties of metal clusters. As a class of promising radiosensitizers, most previously reported metal clusters exhibit unitary function and cannot overcome radioresistance of hypoxic tumors. Here, atomically precise alloy clusters Pt2 M4 (M = Au, Ag, Cu) are synthesized with bright luminescence and adequate biocompatibility, and their composition-dependent enzyme mimicking activity and radiosensitizing effect is explored. Specifically, only the Pt2 Au4 cluster displays catalase-like activity, while the others do not have clusterzyme properties, and its radiosensitizing effect is the highest among all the alloy clusters tested. By taking advantage of the sustainable production of O2 via the decomposition of endogenous H2 O2 , the Pt2 Au4 cluster modulates tumor hypoxia as well as increases the efficacy of radiotherapy. This work thus advances the cluster alloying strategy to produce multifunctional therapeutic agents for improving hypoxic tumor therapy.
Collapse
Affiliation(s)
- Yue Hua
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jia-Hong Huang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zi-Hui Shao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xi-Ming Luo
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhao-Yang Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun-Qi Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, China
| | - Xueli Zhao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering and Biomedical Engineering, National University of Singapore, Singapore, 117545, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
24
|
Xu Q, Zhang Y, Yang Z, Jiang G, Lv M, Wang H, Liu C, Xie J, Wang C, Guo K, Gu Z, Yong Y. Tumor microenvironment-activated single-atom platinum nanozyme with H 2O 2 self-supplement and O 2-evolving for tumor-specific cascade catalysis chemodynamic and chemoradiotherapy. Theranostics 2022; 12:5155-5171. [PMID: 35836808 PMCID: PMC9274735 DOI: 10.7150/thno.73039] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/11/2022] [Indexed: 01/12/2023] Open
Abstract
Nanozyme-based tumor collaborative catalytic therapy has attracted a great deal of attention in recent years. However, their cooperative outcome remains a great challenge due to the unique characteristics of tumor microenvironment (TME), such as insufficient endogenous hydrogen peroxide (H2O2) level, hypoxia, and overexpressed intracellular glutathione (GSH). Methods: Herein, a TME-activated atomic-level engineered PtN4C single-atom nanozyme (PtN4C-SAzyme) is fabricated to induce the "butterfly effect" of reactive oxygen species (ROS) through facilitating intracellular H2O2 cycle accumulation and GSH deprivation as well as X-ray deposition for ROS-involving CDT and O2-dependent chemoradiotherapy. Results: In the paradigm, the SAzyme could boost substantial ∙OH generation by their admirable peroxidase-like activity as well as X-ray deposition capacity. Simultaneously, O2 self-sufficiency, GSH elimination and elevated Pt2+ release can be achieved through the self-cyclic valence alteration of Pt (IV) and Pt (II) for alleviating tumor hypoxia, overwhelming the anti-oxidation defense effect and overcoming drug-resistance. More importantly, the PtN4C-SAzyme could also convert O2·- into H2O2 by their superior superoxide dismutase-like activity and achieve the sustainable replenishment of endogenous H2O2, and H2O2 can further react with the PtN4C-SAzyme for realizing the cyclic accumulation of ∙OH and O2 at tumor site, thereby generating a "key" to unlock the multi enzymes-like properties of SAzymes for tumor-specific self-reinforcing CDT and chemoradiotherapy. Conclusions: This work not only provides a promising TME-activated SAzyme-based paradigm with H2O2 self-supplement and O2-evolving capacity for intensive CDT and chemoradiotherapy but also opens new horizons for the construction and tumor catalytic therapy of other SAzymes.
Collapse
Affiliation(s)
- Qiqi Xu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.,Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yuetong Zhang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.,Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Zulu Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.,Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Mingzhu Lv
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.,Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Huan Wang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.,Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Chenghui Liu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.,Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jiani Xie
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Chengyan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100040, China
| | - Kun Guo
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100040, China
| | - Yuan Yong
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.,Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.,✉ Corresponding author: Yuan Yong, E-mail:
| |
Collapse
|
25
|
Chong Y, Ning J, Min S, Ye J, Ge C. Emerging nanozymes for potentiating radiotherapy and radiation protection. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
26
|
Wang Y, Zhang H, Liu Y, Younis MH, Cai W, Bu W. Catalytic radiosensitization: Insights from materials physicochemistry. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2022; 57:262-278. [PMID: 36425004 PMCID: PMC9681018 DOI: 10.1016/j.mattod.2022.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Radiotherapy is indispensable in clinical cancer treatment, but because both tumor and normal tissues have similar sensitivity to X-rays, their clinical curative effect is intrinsically limited. Advanced nanomaterials and nanotechnologies have been developed for radiotherapy sensitization, typically employing high atomic number (high-Z) materials to enhance the energy deposition of X-rays in tumor tissues, but the efficiency is largely limited by the toxicity of heavy metals. A new and promising approach for radiosensitization is catalytic radiosensitization, which takes advantage of the catalytic activity of nanomaterials triggered by radiation. The efficiency of catalytic radiosensitization can be greatly enhanced by electron modulation and energy conversion of nanocatalysts upon X-ray irradiation, further enhancing the clinical curative effect. In this review, we highlight the challenges and opportunities in cancer radiosensitization, discuss novel approaches to catalytic radiosensitization, and finally describe the development of catalytic radiosensitization based on an in-depth understanding of radio-nano interactions and catalysis-biological interactions.
Collapse
Affiliation(s)
- Ya Wang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, PR China
| | - Huilin Zhang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, PR China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Yanyan Liu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, PR China
| | - Muhsin H. Younis
- Department of Radiology and Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Weibo Cai
- Department of Radiology and Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Wenbo Bu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, PR China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| |
Collapse
|
27
|
Duneş G, Soran A, Silvestru C. Organopnictogen(III) bis(arylthiolates) containing NCN-aryl pincer ligands: from synthesis and characterization to reactivity. Dalton Trans 2022; 51:10406-10419. [PMID: 35762306 DOI: 10.1039/d2dt01436j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Salt elimination reactions between organopnictogen(III) dichlorides, RPnCl2 [R1 = 2,6-(Me2NCH2)2C6H3, Pn = Sb (1), Bi (2); R2 = 2,6-{MeN(CH2CH2)2NCH2}2C6H3, Pn = Sb (3), Bi (4); R3 = 2,6-{O(CH2CH2)2NCH2}2C6H3, Pn = Sb (5), Bi (6)] and 2 equivalents of KSC6H3Me2-2,6 afforded the isolation of a series of new NCN-chelated monoorganopnictogen(III) bis(arylthiolates), RPn(SC6H3Me2-2,6)2 [R1, Pn = Sb (7), Bi (8); R2, Pn = Sb (9), Bi (10); R3, Pn = Sb (11), Bi (12)]. Compounds 7 and 8 are unstable upon exposure to a dry O2 atmosphere and their aerobic decomposition yields the monoorganopnictogen(III) oxides, cyclo-[2,6-(Me2NCH2)2C6H3Pn(μ-O)]2 [Pn = Sb (13), Bi (14)] with concomitant formation of the corresponding disulfide, ArS-SAr (Ar = C6H3Me2-2,6). The oxidative addition of elemental sulfur or selenium to 7 undergoes a similar reaction path and gives stable heterocyclic species cyclo-[2,6-(Me2NCH2)2C6H3Sb(μ-E)]2 [E = S (15), Se (16)]. The reaction of 12 with I2 (1 : 1 molar ratio) gives the diiodide [2,6-{O(CH2CH2)2NCH2}2C6H3]BiI2 (17), along with the S-S oxidative coupling by-product, ArS-SAr. The use of an excess of iodine affords the crystallization of a 2 : 1 iodine adduct of 17 (17·0.5I2), built through halogen bonding. All new compounds were characterized by multinuclear NMR spectroscopy and ESI-MS as well as single crystal X-ray diffraction (except compounds 9 and 10).
Collapse
Affiliation(s)
- Gabriel Duneş
- Department of Chemistry, Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC), Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania.
| | - Albert Soran
- Department of Chemistry, Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC), Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania.
| | - Cristian Silvestru
- Department of Chemistry, Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC), Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania.
| |
Collapse
|
28
|
Ouyang J, Xie A, Zhou J, Liu R, Wang L, Liu H, Kong N, Tao W. Minimally invasive nanomedicine: nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Chem Soc Rev 2022; 51:4996-5041. [PMID: 35616098 DOI: 10.1039/d1cs01148k] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Traditional treatments such as chemotherapy and surgery usually cause severe side effects and excruciating pain. The emergence of nanomedicines and minimally invasive therapies (MITs) has brought hope to patients with malignant diseases. Especially, minimally invasive nanomedicines (MINs), which combine the advantages of nanomedicines and MITs, can effectively target pathological cells/tissues/organs to improve the bioavailability of drugs, minimize side effects and achieve painless treatment with a small incision or no incision, thereby acquiring good therapeutic effects. In this review, we provide a comprehensive review of the research status and challenges of MINs, which generally refers to the medical applications of nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Additionally, we also discuss their combined application in various fields including cancers, cardiovascular diseases, tissue engineering, neuro-functional diseases, and infectious diseases. The prospects, and potential bench-to-bedside translation of MINs are also presented in this review. We expect that this review can inspire the broad interest for a wide range of readers working in the fields of interdisciplinary subjects including (but not limited to) chemistry, nanomedicine, bioengineering, nanotechnology, materials science, pharmacology, and biomedicine.
Collapse
Affiliation(s)
- Jiang Ouyang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Angel Xie
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Jun Zhou
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Runcong Liu
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong 519000, China
| | - Liqiang Wang
- Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Haijun Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Zhao J, Zhang Y, Zhang J, Wu H, Li J, Zhao Y, Zhang L, Zou D, Li Z, Wang S. Synthetic and Biodegradable Molybdenum (IV) Diselenide Triggers the Cascade Photo- and Immunotherapy of Tumor. Adv Healthc Mater 2022; 11:e2200524. [PMID: 35611682 DOI: 10.1002/adhm.202200524] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/08/2022] [Indexed: 11/12/2022]
Abstract
In this study, a polyvinylpyrrolidone (PVP)-decorated MoSe2 (MoSe2 -PVP) nanoparticle with excellent photothermal transforming ability and chlorin E6 (Ce6) loading capacity is designed for combined tumor photothermal therapy (PTT), tumor photodynamic therapy (PDT), and immunotherapy. The light-to-heat conversion efficiency under irradiation with an 808 nm near-infrared laser is as high as 59.28%. The MoSe2 -PVP NPs could function as an artificial catalase and catalyze the decomposition of H2 O2 . Their catalytic activity and thermal durability are higher than the native catalase, which relieve the tumor hypoxia status and sensitize the tumor PDT. The data show that the synthetic MoSe2 -PVP is biodegradable, owing to the oxidation of the Mo4+ to Mo6+ . Moreover, its degradation products could increase the proportion of mature dendritic cells and CD8+ thymus (T) cells and promote the infiltration of active CD8+ T cells in tumors. The immune checkpoint inhibitor, programmed cell death protein 1 monoclonal antibody is combined with MoSe2 -PVP and it is found that its degradation product could efficiently change the immune microenvironment of the tumor.
Collapse
Affiliation(s)
- Jiulong Zhao
- Department of Gastroenterology Changhai Hospital Naval Military Medical University No. 168 Changhai Road Shanghai 200433 P. R. China
| | - Yao Zhang
- Department of Gastroenterology Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine No. 197, Rui Jin Er Road Shanghai 200025 P. R. China
| | - Jing Zhang
- School of Materials and Chemistry University of Shanghai for Science and Technology No. 516 Jungong Road Shanghai 200093 P. R. China
| | - Hang Wu
- Department of Gastroenterology Changhai Hospital Naval Military Medical University No. 168 Changhai Road Shanghai 200433 P. R. China
| | - Jinfeng Li
- School of Materials and Chemistry University of Shanghai for Science and Technology No. 516 Jungong Road Shanghai 200093 P. R. China
| | - Yizhou Zhao
- Department of Gastroenterology Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine No. 197, Rui Jin Er Road Shanghai 200025 P. R. China
| | - Liying Zhang
- School of Materials and Chemistry University of Shanghai for Science and Technology No. 516 Jungong Road Shanghai 200093 P. R. China
| | - Duowu Zou
- Department of Gastroenterology Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine No. 197, Rui Jin Er Road Shanghai 200025 P. R. China
| | - Zhaoshen Li
- Department of Gastroenterology Changhai Hospital Naval Military Medical University No. 168 Changhai Road Shanghai 200433 P. R. China
| | - Shige Wang
- Department of Gastroenterology Changhai Hospital Naval Military Medical University No. 168 Changhai Road Shanghai 200433 P. R. China
- School of Materials and Chemistry University of Shanghai for Science and Technology No. 516 Jungong Road Shanghai 200093 P. R. China
- Shanghai Collaborative Innovation Center of Energy Therapy for Tumors University of Shanghai for Science and Technology No. 516 Jungong Road Shanghai 200093 P. R. China
| |
Collapse
|
30
|
Cu2O nanoparticles modified BiO2-x nanosheets for efficient electrochemical reduction of nitrate-N and nitrobenzene from wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Two-Dimensional Nanomaterial-based catalytic Medicine: Theories, advanced catalyst and system design. Adv Drug Deliv Rev 2022; 184:114241. [PMID: 35367308 DOI: 10.1016/j.addr.2022.114241] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/17/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023]
Abstract
Two-dimensional nanomaterial-based catalytic medicines that associate the superiorities of novel catalytic mechanisms with nanotechnology have emerged as absorbing therapeutic strategies for cancer therapy. Catalytic medicines featuring high efficiency and selectivity have been widely used as effective anticancer strategies without applying traditional nonselective and highly toxic chemodrugs. Moreover, two-dimensional nanomaterials are characterized by distinctive physicochemical properties, such as a sizeable bandgap, good conductivity, fast electron transfer and photoelectrochemical activity. The introduction of two-dimensional nanomaterials into catalytic medicine provides a more effective, controllable, and precise antitumor strategy. In this review, different types of two-dimensional nanomaterial-based catalytic nanomedicines are generalized, and their catalytic theories, advanced catalytic pathways and catalytic nanosystem design are also discussed in detail. Notably, future challenges and obstacles in the design and further clinical transformation of two-dimensional nanomaterial-based catalytic nanomedicine are prospected.
Collapse
|
32
|
Xiao J, Zeng L, Ding S, Chen Y, Zhang X, Bian X, Tian G. Tumor-Tropic Adipose-Derived Mesenchymal Stromal Cell Mediated Bi 2 Se 3 Nano-Radiosensitizers Delivery for Targeted Radiotherapy of Non-Small Cell Lung Cancer. Adv Healthc Mater 2022; 11:e2200143. [PMID: 35195958 DOI: 10.1002/adhm.202200143] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/15/2022] [Indexed: 11/05/2022]
Abstract
With the successful marriage between nanotechnology and oncology, various high-Z element containing nanoparticles (NPs) are approved as radiosensitizers to overcome radiation resistance for enhanced radiotherapy (RT). Unfortunately, NPs themselves lack specificity to tumors. Due to the inherent tropism nature of malignant cells, mesenchymal stem cells (MSCs) emerge as cell-mediated delivery vehicles for functional NPs to improve their therapeutic index. Herein, radiosensitive bismuth selenide (Bi2 Se3 ) NPs-laden adipose-derived mesenchymal stromal cells (AD-MSCs/Bi2 Se3 ) are engineered for targeted RT of non-small cell lung cancer (NSCLC). The results reveal that the optimized intracellular loading strategy hardly affects cell viability, specific surface markers, or migration capability of AD-MSCs, and Bi2 Se3 NPs can be efficiently transported from AD-MSCs to tumor cells. In vivo biodistribution test shows that the Bi2 Se3 NPs accumulation in tumor is increased 20 times via AD-MSCs-mediated delivery. Therefore, AD-MSCs/Bi2 Se3 administration synchronized with X-ray irradiation controls the tumor progress well in orthotopic A549 tumor bearing mice. Considering that MSCs migrate better to irradiated tumor cells in comparison to nonirradiated ones and MSCs preferentially accumulate within lung tissues after systemic administration into accounts, the tumor-tropic MSCs/NPs system is feasible and promising for targeted RT treatment of NSCLC.
Collapse
Affiliation(s)
- Jingfang Xiao
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 40038 P. R. China
| | - Lijuan Zeng
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 40038 P. R. China
| | - Shuaishuai Ding
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 40038 P. R. China
| | - Yemiao Chen
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 40038 P. R. China
- Biobank of The First Affiliated Hospital Third Military Medical University (Army Medical University) Chongqing 40038 P. R. China
- Clinical Research Center Chongqing Public Health Medical Center Chongqing 400036 P. R. China
| | - Xiao Zhang
- International Joint Research Center for Precision Biotherapy and Department of Stem Cell and Regenerative Medicine The First Affiliated Hospital Third Military Medical University (Army Medical University) Chongqing 400038 P. R. China
| | - Xiu‐wu Bian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 40038 P. R. China
| | - Gan Tian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 40038 P. R. China
| |
Collapse
|
33
|
Chen J, Dong H, Bai L, Li L, Chen S, Tian X, Pan Y. Multifunctional high- Z nanoradiosensitizers for multimodal synergistic cancer therapy. J Mater Chem B 2022; 10:1328-1342. [PMID: 35018941 DOI: 10.1039/d1tb02524d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radiotherapy (RT) is one of the most common and effective clinical therapies for malignant tumors. However, there are several limitations that undermine the clinical efficacy of cancer RT, including the low X-ray attenuation coefficient of organs, serious damage to normal tissues, and radioresistance in hypoxic tumors. With the rapid development of nanotechnology and nanomedicine, high-Z nanoradiosensitizers provide novel opportunities to overcome radioresistance and improve the efficacy of RT by deposition of radiation energy through photoelectric effects. To date, several types of nanoradiosensitizers have entered clinical trials. Nevertheless, the limitation of the single treatment mode and the unclear mechanism of nanoparticle radiosensitization have hindered the further development of nanoradiosensitizers. In this review, we systematically describe the interaction mechanisms between X-rays and nanomaterials and summarize recent advances in multifunctional high-Z nanomaterials for radiotherapeutic-based multimodal synergistic cancer therapy. Finally, the challenges and prospects are discussed to stimulate the development of nanomedicine-based cancer RT.
Collapse
Affiliation(s)
- Jieyao Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Haiyue Dong
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Lu Bai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Linrong Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Sijie Chen
- Ming Wai Lau Centre of Reparative Medicine Karolinska Institutet, Hong Kong
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
34
|
Dynamic nano-assemblies based on two-dimensional inorganic nanoparticles: Construction and preclinical demonstration. Adv Drug Deliv Rev 2022; 180:114031. [PMID: 34736985 DOI: 10.1016/j.addr.2021.114031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022]
Abstract
Dynamic drug delivery systems (DDSs) have the ability of transforming their morphology and functionality in response to the biological microenvironments at the disease site and/or external stimuli, show spatio-temporally controllable drug delivery, and enhance the treatment efficacy. Due to the large surface area and modification flexibility, two-dimensional (2D) inorganic nanomaterials are being increasingly exploited for developing intelligent DDSs for biomedical applications. In this review, we summarize the engineering methodologies used to construct transformable 2D DDSs, including changing compositions, creating defects, and surface dot-coating with polymers, biomolecules, or nanodots. Then we present and discuss dynamic inorganic 2D DDSs whose transformation is driven by the diseased characteristics, such as pH gradient, redox, hypoxia, and enzyme in the tumor microenvironment as well as the external stimuli including light, magnetism, and ultrasound. Finally, the limitations and challenges of current transformable inorganic DDSs for clinical translation and their in vivo safety assessment are discussed.
Collapse
|
35
|
A GdW10@PDA-CAT Sensitizer with High-Z Effect and Self-Supplied Oxygen for Hypoxic-Tumor Radiotherapy. Molecules 2021; 27:molecules27010128. [PMID: 35011360 PMCID: PMC8746738 DOI: 10.3390/molecules27010128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/13/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
Anticancer treatment is largely affected by the hypoxic tumor microenvironment (TME), which causes the resistance of the tumor to radiotherapy. Combining radiosensitizer compounds and O2 self-enriched moieties is an emerging strategy in hypoxic-tumor treatments. Herein, we engineered GdW10@PDA-CAT (K3Na4H2GdW10O36·2H2O, GdW10, polydopamine, PDA, catalase, CAT) composites as a radiosensitizer for the TME-manipulated enhancement of radiotherapy. In the composites, Gd (Z = 64) and W (Z = 74), as the high Z elements, make X-ray gather in tumor cells, thereby enhancing DNA damage induced by radiation. CAT can convert H2O2 to O2 and H2O to enhance the X-ray effect under hypoxic TME. CAT and PDA modification enhances the biocompatibility of the composites. Our results showed that GdW10@PDA-CAT composites increased the efficiency of radiotherapy in HT29 cells in culture. This polyoxometalates and O2 self-supplement composites provide a promising radiosensitizer for the radiotherapy field.
Collapse
|
36
|
Liu J, Huang L, Li Y, Yang L, Wang C, Liu J, Song Y, Yang M, Li H. Construction of oxygen vacancy assisted Z-scheme BiO 2-x/BiOBr heterojunction for LED light pollutants degradation and bacteria inactivation. J Colloid Interface Sci 2021; 600:344-357. [PMID: 34022730 DOI: 10.1016/j.jcis.2021.04.143] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022]
Abstract
It is well known that the most important task of photocatalytic technology is to synthesize photocatalysts with compact heterojunction structure and high redox ability. To achieve the goal, a novel Z-scheme BiO2-x/BiOBr heterojunction containing oxygen vacancy was synthesized by an in-situ generation process. Several techniques, X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) have verified the BiO2-x/BiOBr heterojunction. XPS and electron spin resonance (ESR) reveals the presence of oxygen vacancy in the BiO2-x/BiOBr composite. As expected, the BiO2-x/BiOBr composite showed good performance in removing Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Rhodamine B (RhB) and tetracycline (TC). The effects of inorganic ions, pH value and water matrix were investigated with many details. The active species and proposed mechanism were revealed by trapping experiment and related characterizations. The synergistic effect of oxygen vacancy and Z-scheme heterojunction makes the BiO2-x/BiOBr composite possess excellent photocatalytic activity.
Collapse
Affiliation(s)
- Jiawei Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Liying Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Yeping Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Lei Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Chaobao Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Juan Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Yanhua Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Mengxin Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huaming Li
- Institute for Energy Research of Jiangsu University, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
37
|
|
38
|
Zhang L, Zhu C, Huang R, Ding Y, Ruan C, Shen XC. Mechanisms of Reactive Oxygen Species Generated by Inorganic Nanomaterials for Cancer Therapeutics. Front Chem 2021; 9:630969. [PMID: 33816437 PMCID: PMC8012804 DOI: 10.3389/fchem.2021.630969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/25/2021] [Indexed: 01/19/2023] Open
Abstract
Recently, inorganic nanomaterials have received considerable attention for use in biomedical applications owing to their unique physicochemical properties based on their shapes, sizes, and surface characteristics. Photodynamic therapy (PDT), sonodynamic therapy (SDT), and chemical dynamic therapy (CDT), which are cancer therapeutics mediated by reactive oxygen species (ROS), have the potential to significantly enhance the therapeutic precision and efficacy for cancer. To facilitate cancer therapeutics, numerous inorganic nanomaterials have been developed to generate ROS. This mini review provides an overview of the generation mechanisms of ROS by representative inorganic nanomaterials for cancer therapeutics, including the structures of engineered inorganic nanomaterials, ROS production conditions, ROS types, and the applications of the inorganic nanomaterials in cancer PDT, SDT, and CDT.
Collapse
Affiliation(s)
- Lizhen Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
- Guilin Normal College, Guilin, China
| | - Chengyuan Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Rongtao Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Yanwen Ding
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Changping Ruan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| |
Collapse
|
39
|
Yu X, Liu X, Yang K, Chen X, Li W. Pnictogen Semimetal (Sb, Bi)-Based Nanomaterials for Cancer Imaging and Therapy: A Materials Perspective. ACS NANO 2021; 15:2038-2067. [PMID: 33486944 DOI: 10.1021/acsnano.0c07899] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Innovative multifunctional nanomaterials have attracted tremendous interest in current research by facilitating simultaneous cancer imaging and therapy. Among them, antimony (Sb)- and bismuth (Bi)-based nanoparticles are important species with multifunction to boost cancer theranostic efficacy. Despite the rapid development, the extensive previous work treated Sb- and Bi-based nanoparticles as mutually independent species, and therefore a thorough understanding of their relationship in cancer theranostics was lacking. We propose here that the identical chemical nature of Sb and Bi, being semimetals, provides their derived nanoparticles with inherent multifunction for near-infrared laser-driven and/or X-ray-based cancer imaging and therapy as well as some other imparted functions. An overview of recent progress on Sb- and Bi-based nanoparticles for cancer theranostics is provided to highlight the relationship between chemical nature and multifunction. The understanding of Sb- and Bi-based nanoparticles in this way might shed light on the further design of smart multifunctional nanoparticles for cancer theranostics.
Collapse
Affiliation(s)
- Xujiang Yu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyi Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kai Yang
- School of Radiation Medicine and Protection (SRMP) and School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 117597
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
40
|
Hong L, Wang JL, Geng JX, Zhao YH, Zhou GX, Zhang J, Liu LW, Qu JL. Rational design of an oxygen-enriching nanoemulsion for enhanced near-infrared laser activatable photodynamic therapy against hypoxic tumors. Colloids Surf B Biointerfaces 2021; 198:111500. [DOI: 10.1016/j.colsurfb.2020.111500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 01/10/2023]
|
41
|
Huang WQ, Wang F, Shen AZ, Zhang L, Nie X, Zhang Z, Chen G, Xia L, Wang LH, Ding SG, Meng QY, Zhang WJ, Hong CY, You YZ. Single nanosheet can sustainably generate oxygen and inhibit respiration simultaneously in cancer cells. MATERIALS HORIZONS 2021; 8:597-605. [PMID: 34821276 DOI: 10.1039/d0mh01446j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In a tumor, the abnormal cancer cell proliferation results in an insufficient O2 supply, and meanwhile cancer cells consume O2 very fast. The imbalance between a low oxygen supply and overwhelming oxygen consumption results in a low oxygen concentration in solid tumors. Therefore, in order to relieve hypoxia in tumors, it is necessary to not only sustainably generate O2, but also inhibit mitochondrial respiration simultaneously. Here, we found that a single Ti2C(OH)2 nanomaterial not only can sustainably generate O2 but also simultaneously highly inhibits mitochondrial respiration via binding phosphorylation proteins onto the surface in cancer cells. Ce6 was linked onto Ti2C(OH)2, forming Ti2C(OH)2-Ce6. Ti2C(OH)2-Ce6 could highly relieve hypoxia in tumors via the combination of sustainable O2 generation and respiration inhibition, produce enough 1O2 to kill cancer cells via PDT, and also effectively convert the absorbed light energy into thermal energy to kill cancer cell via PTT, thereby highly enhancing the cancer therapy.
Collapse
Affiliation(s)
- Wei-Qiang Huang
- The Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Barba-Nieto I, Gómez-Cerezo N, Kubacka A, Fernández-García M. Oxide-based composites: applications in thermo-photocatalysis. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01067k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent progress on oxide-based thermo-photocatalytic composite systems. Role of plasmonic, defect-related, and thermal effects on the catalytic performance.
Collapse
Affiliation(s)
- Irene Barba-Nieto
- Instituto de Catálisis y Petroleoquímica, CSIC, Marie Curie 2, 28049 Madrid, Spain
| | | | - Anna Kubacka
- Instituto de Catálisis y Petroleoquímica, CSIC, Marie Curie 2, 28049 Madrid, Spain
| | | |
Collapse
|
43
|
Yu Z, Sun Y, Sun T, Wang T. Combined Application of Nanotechnology and Multiple Therapies with Tumor Immune Checkpoints. ChemistrySelect 2020. [DOI: 10.1002/slct.202004070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhenghao Yu
- Key Laboratory of Forest Plant Ecology Ministry of Education Engineering Research Center of Forest Bio-Preparation College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University Harbin 150040 P. R. China
| | - Yuan Sun
- Research Center of Pharmaceutical Engineering and Technology Harbin University of Commerce Harbin 150076 China
| | - Tiedong Sun
- Key Laboratory of Forest Plant Ecology Ministry of Education Engineering Research Center of Forest Bio-Preparation College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University Harbin 150040 P. R. China
| | - Ting Wang
- Key Laboratory of Forest Plant Ecology Ministry of Education Engineering Research Center of Forest Bio-Preparation College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University Harbin 150040 P. R. China
| |
Collapse
|
44
|
Li W, Wang C, Yao Y, Wu C, Luo W, Zou Z. Photocatalytic Materials: An Apollo’s Arrow to Tumor Cells. TRENDS IN CHEMISTRY 2020. [DOI: 10.1016/j.trechm.2020.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Sun X, Ni N, Ma Y, Wang Y, Leong DT. Retooling Cancer Nanotherapeutics' Entry into Tumors to Alleviate Tumoral Hypoxia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003000. [PMID: 32803846 DOI: 10.1002/smll.202003000] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Anti-hypoxia cancer nanomedicine (AHCN) holds exciting potential in improving oxygen-dependent therapeutic efficiencies of malignant tumors. However, most studies regarding AHCN focus on optimizing structure and function of nanomaterials with presupposed successful entry into tumor cells. From such a traditional perspective, the main barrier that AHCN needs to overcome is mainly the tumor cell membrane. However, such an oversimplified perspective would neglect that real tumors have many biological, physiological, physical, and chemical defenses preventing the current state-of-the-art AHCNs from even reaching the targeted tumor cells. Fortunately, in recent years, some studies are beginning to intentionally focus on overcoming physiological barriers to alleviate hypoxia. In this Review, the limitations behind the traditional AHCN delivery mindset are addressed and the key barriers that need to be surmounted before delivery to cancer cells and some good ways to improve cell membrane attachment, internalization, and intracellular retention are summarized. It is aimed to contribute to Review literature on this emerging topic through refreshing perspectives based on this work and what is also learnt from others. This Review would therefore assist AHCNs researchers to have a quick overview of the essential information and glean thought-provoking ideas to advance this sub-field in cancer nanomedicine.
Collapse
Affiliation(s)
- Xiao Sun
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Nengyi Ni
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yanling Ma
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yan Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
46
|
Enhancement of the Peroxidase-Like Activity of Iodine-Capped Gold Nanoparticles for the Colorimetric Detection of Biothiols. BIOSENSORS-BASEL 2020; 10:bios10090113. [PMID: 32882936 PMCID: PMC7558680 DOI: 10.3390/bios10090113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 12/11/2022]
Abstract
A colorimetric assay was developed for the detection of biothiols, based on the peroxidase-like activity of iodine-capped gold nanoparticles (AuNPs). These AuNPs show a synergetic effect in the form of peroxidase-mimicking activity at the interface of AuNPs, while free AuNPs and iodine alone have weak catalytic properties. Thus, iodine-capped AuNPs possess good intrinsic enzymatic activity and trigger the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), leading to a change in color from colorless to yellow. When added to solution, biothiols, such as cysteine, strongly bind to the interface of AuNPs via gold-thiol bonds, inhibiting the catalytic activity of AuNPs, resulting in a decrease in oxidized TMB. Using this strategy, cysteine could be linearly determined, at a wide range of concentrations (0.5 to 20 μM), with a detection limit of 0.5 μM using UV-Vis spectroscopy. This method was applied for the detection of cysteine in diluted human urine.
Collapse
|
47
|
Dong L, Li W, Sun L, Yu L, Chen Y, Hong G. Energy-converting biomaterials for cancer therapy: Category, efficiency, and biosafety. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1663. [PMID: 32808464 DOI: 10.1002/wnan.1663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022]
Abstract
Energy-converting biomaterials (ECBs)-mediated cancer-therapeutic modalities have been extensively explored, which have achieved remarkable benefits to overwhelm the obstacles of traditional cancer-treatment modalities. Energy-driven cancer-therapeutic modalities feature their distinctive merits, including noninvasiveness, low mammalian toxicity, adequate therapeutic outcome, and optimistical synergistic therapeutics. In this advanced review, the prevailing mainstream ECBs can be divided into two sections: Reactive oxygen species (ROS)-associated energy-converting biomaterials (ROS-ECBs) and hyperthermia-related energy-converting biomaterials (H-ECBs). On the one hand, ROS-ECBs can transfer exogenous or endogenous energy (such as light, radiation, ultrasound, or chemical) to generate and release highly toxic ROS for inducing tumor cell apoptosis/necrosis, including photo-driven ROS-ECBs for photodynamic therapy, radiation-driven ROS-ECBs for radiotherapy, ultrasound-driven ROS-ECBs for sonodynamic therapy, and chemical-driven ROS-ECBs for chemodynamic therapy. On the other hand, H-ECBs could translate the external energy (such as light and magnetic) into heat for killing tumor cells, including photo-converted H-ECBs for photothermal therapy and magnetic-converted H-ECBs for magnetic hyperthermia therapy. Additionally, the biosafety issues of ECBs are expounded preliminarily, guaranteeing the ever-stringent requirements of clinical translation. Finally, we discussed the prospects and facing challenges for constructing the new-generation ECBs for establishing intriguing energy-driven cancer-therapeutic modalities. This article is categorized under: Nanotechnology Approaches to Biology >Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Lile Dong
- Department of Radiology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Wenjuan Li
- Department of Radiology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Lining Sun
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, China
| | - Luodan Yu
- School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Guobin Hong
- Department of Radiology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| |
Collapse
|