1
|
Im H, Nguyen DA, Jun DG, Jang S, Jang A. Efficiently enhanced short-chain fatty acids (SCFAs) recovery from food waste condensate: Real-time wettability monitoring with supported liquid membrane contactor. WATER RESEARCH 2025; 274:123093. [PMID: 39793159 DOI: 10.1016/j.watres.2025.123093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Food waste condensate (FWC) is a valuable source for recovering short-chain fatty acids (SCFAs) through methods such as supported liquid membrane contactors. Containing organic compounds like acetate, propionate, and butyrate, FWC offers a rich substrate for efficient SCFA extraction. Recovering SCFAs from FWC provides notable environmental advantages, including reducing waste and generating high-value products for industries such as bioenergy and chemical production. This process not only contributes to carbon neutrality by recycling waste streams but also establishes a sustainable method for producing bio-based products from FWC. This study investigated the recovery efficiency and transport mechanisms of SCFAs from SCFA-rich wastewater (e.g., FWC) using both virgin hydrophobic PVDF membranes and membranes filled with organic extractants like tertiary amines (trihexhylamine and trioctylamine) and tertiary phosphines (trihexylphosphine and trioctylphosphine). Recovery efficiency for butyric acid was significantly improved when TOA (trioctylamine) was used, achieving 71.96 %, while acetic acid showed a lower recovery of 0.95 %, highlighting TOA's strong affinity for butyric acid due to ion-amine complex formation. The study also utilized real-time optical coherence tomography (OCT)-based monitoring to observe membrane wetting, finding that the virgin PVDF membrane was more prone to wetting and fouling, with a significant reduction in contact angle and surface energy. In contrast, the PVDF-TOA membrane demonstrated better resistance to wetting, showing minimal changes in contact angle and porosity, underscoring its potential for long-term applications in membrane contactors.
Collapse
Affiliation(s)
- Hongrae Im
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Duc Anh Nguyen
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Dong-Gun Jun
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Sojeong Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
2
|
Ndima L, Hosten EC, Betz R. Tri-phenyl-phospho-nium tri-chlorido-(tri-phenyl-phosphane-κ P)cobaltate(II) benzene disolvate. IUCRDATA 2024; 9:x241121. [PMID: 39649091 PMCID: PMC11618865 DOI: 10.1107/s2414314624011210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 12/10/2024] Open
Abstract
The solvated title compound, (C18H16P)[CoCl3(C18H15P)]·2C6H6, is the tri-phenyl-phospho-nium salt of an anionic CoII chlorido coordination compound; the asymmetric unit features an ion-pair and two benzene solvent molecules. One of the solvent mol-ecules shows rotational disorder. C-H⋯Cl and P-H⋯Cl contacts connect the individual constituents into infinite chains extending parallel to [010].
Collapse
Affiliation(s)
- Lubabalo Ndima
- Nelson Mandela University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
| | - Eric Cyriel Hosten
- Nelson Mandela University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
| | - Richard Betz
- Nelson Mandela University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
| |
Collapse
|
3
|
O'Donnell F, Wetmore SD, Gerken M. Fluoride-Ion Donor Properties of AsF 5. Inorg Chem 2024; 63:7619-7630. [PMID: 38629175 DOI: 10.1021/acs.inorgchem.3c04143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024]
Abstract
Arsenic pentafluoride undergoes ligand-induced autoionization in the presence of 1,10-phenanthroline (phen) in a SO2ClF solution to form the donor-stabilized [AsF4(phen)][AsF6] salt. Reacting [AsF4(phen)][AsF6] with the strong Lewis acid SbF5·SO2 yields the mixed arsenic-antimony salt [AsF4(phen)][Sb2F11]. These salts are the first examples of crystallographically characterized donor-stabilized [AsF4]+ cations. The analogous reaction of AsF5 and 2,2'-bipyridine (bipy) does not result in autoionization but leads to the formation of the neutral 2:1 adduct (AsF5)2·bipy. The gas-phase and solution fluoride-ion affinities of [AsF4]+ and [SbF4]+ were calculated, revealing them to be incredibly strong Lewis acids. Density functional theory calculations and natural bond orbital analysis show that significant electron-pair donation from phen to the As center in [AsF4(phen)]+ occurs and quenches the extreme electrophilicity of the [AsF4]+ cation.
Collapse
Affiliation(s)
- Felix O'Donnell
- Canadian Centre for Research in Advanced Fluorine Technologies and Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge T1K 3M4, Canada
| | - Stacey D Wetmore
- Canadian Centre for Research in Advanced Fluorine Technologies and Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge T1K 3M4, Canada
| | - Michael Gerken
- Canadian Centre for Research in Advanced Fluorine Technologies and Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge T1K 3M4, Canada
| |
Collapse
|
4
|
Hu X, Tao M, Gong K, Feng Q, Hu X, Li Y, Sun S, Liang D. Electrochemical or Photoelectrochemical Alkenylpolyfluoroalkylation of 3-Aza-1,5-dienes: Regioselective Entry to Polyfluoroalkylated 4-Pyrrolin-2-ones. J Org Chem 2023; 88:12935-12948. [PMID: 37673796 DOI: 10.1021/acs.joc.3c00790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
An electrochemical or photoelectrochemical regioselective polyfluoroalkylation/cyclization cascade of 3-aza-1,5-dienes with sodium fluoroalkanesulfinates is presented. This protocol proceeds with a broad substrate scope and good functional group tolerance under mild, oxidant-free, transition-metal-free, and electrolyte-free conditions to provide 3-polyfluoroalkylated 4-pyrrolin-2-ones in one step from readily available N-vinylacrylamides, and it is readily scalable to the Gram scale.
Collapse
Affiliation(s)
- Xi Hu
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Minglin Tao
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Kaixing Gong
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Qin Feng
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Xiao Hu
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Yanni Li
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Shaoguang Sun
- Medical College, Panzhihua University, Panzhihua 617000, China
| | - Deqiang Liang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| |
Collapse
|
5
|
O'Donnell F, Turnbull D, Wetmore SD, Gerken M. Donor-Stabilised [SbF 4 ] + : SbF 5 as a Fluoride-Ion Donor. Chemistry 2021; 27:16334-16337. [PMID: 34559930 DOI: 10.1002/chem.202103221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Indexed: 11/06/2022]
Abstract
Antimony pentafluoride is a strong Lewis acid and fluoride-ion acceptor that has not previously demonstrated any discreet fluoride-ion donor properties. The first donor-stabilised [SbF4 ]+ cations were prepared from the autoionisation of SbF5 in the presence of bidentate N-donor ligands 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen) as their [SbF6 ]- salts. The [SbF4 (N-N)][Sb2 F11 ] (N-N=bipy, phen) salts were synthesised by the addition of one equivalent of SbF5 ⋅SO2 to [SbF4 (N-N)][SbF6 ] in liquid SO2. The salts show remarkable stability and were characterised by Raman spectroscopy and multinuclear NMR spectroscopy. The crystal structures of [SbF4 (phen)][SbF6 ] ⋅ 3CH3 CN and [SbF4 (phen)][SbF6 ] ⋅ 2SO2 were determined, showing distorted octahedral cations. DFT calculations and NBO analyses reveal that significant degree of electron-pair donation from N to Sb stabilizes [SbF4 ]+ with the Sb-N bond strength being approximately two thirds of that of the Sb-F bonds in these cations and the cationic charge being primarily ligand-centred.
Collapse
Affiliation(s)
- Felix O'Donnell
- Canadian Centre for Research in Advanced Fluorine Technologies, and Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Douglas Turnbull
- Canadian Centre for Research in Advanced Fluorine Technologies, and Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Stacey D Wetmore
- Canadian Centre for Research in Advanced Fluorine Technologies, and Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Michael Gerken
- Canadian Centre for Research in Advanced Fluorine Technologies, and Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
6
|
Föhrenbacher SA, Zeh V, Krahfuss MJ, Ignat'ev NV, Finze M, Radius U. Tris(pentafluoroethyl)difluorophosphorane and
N
‐Heterocyclic Carbenes: Adduct Formation and Frustrated
Lewis
Pair Reactivity. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Steffen A. Föhrenbacher
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Vivien Zeh
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Mirjam J. Krahfuss
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Nikolai V. Ignat'ev
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Consultant Merck KGaA Frankfurter Straße 250 64293 Darmstadt Germany
| | - Maik Finze
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Udo Radius
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|