1
|
Tan L, Miao Z, Zhao Y, Liang Y, Xu N, Chen X, Tu Y, He C. Dual regulation of phaseol on osteoclast formation and osteoblast differentiation by targeting TAK1 kinase for osteoporosis treatment. J Adv Res 2024:S2090-1232(24)00565-4. [PMID: 39662728 DOI: 10.1016/j.jare.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024] Open
Abstract
INTRODUCTION Osteoporosis is an osteolytic disorder resulting from an inequilibrium between osteoblast-mediated osteogenesis and osteoclast-driven bone absorption. Safe and effective approaches for osteoporosis management are still highly demanded. PURPOSE This study aimed to examine the osteoprotective effect and the mechanisms of phaseol (PHA) in vitro and in vivo. METHODS Virtual screening identified the potential inhibitors of transforming growth factor-beta-activated kinase 1 (TAK1) from coumestans. The interaction between PHA and TAK1 was investigated by molecular simulation, pronase and thermal resistance assays. The maturation and function of osteoclasts were determined using tartrate-resistant acid phosphatase staining, bone absorption and F-actin ring formation assays. The differentiation and calcification of osteoblasts were assessed by alkaline phosphatase staining and Alizarin Red S staining. The activity of related targets and pathways were detected using immunoblotting, immunofluorescence and co-immunoprecipitation assays. The in vivo osteoprotective effect of PHA was evaluated using a lipopolysaccharide (LPS)-induced mouse osteoporosis model. RESULTS Firstly, we confirmed that TAK1 was essential in controlling bone remodeling by regulating osteogenesis and osteoclastogenesis. Moreover, PHA, a coumestan compound predominantly present in leguminous plants, was identified as a potent TAK1 inhibitor through virtual and real experiments. Subsequently, PHA was observed to enhance osteoblast differentiation and calcification, while suppress osteoclast maturation and bone resorptive function in vitro. Mechanistically, PHA remarkably inhibited the TRAF6-TAK1 complex formation, and inhibited the activation of TAK1, MAPK and NF-κB pathways by targeting TAK1. In the in vivo study, PHA strongly attenuated bone loss, inflammatory responses, and osteoclast over-activation in lipopolysaccharide-induced osteoporosis mice. CONCLUSION PHA had a dual-functional regulatory impact on osteogenesis and osteoclastogenesis by targeting TAK1, suppressing TRAF6-TAK1 complex generation, and modulating its associated signaling pathways, ultimately leading to mitigating osteoporosis. This study offered compelling evidence in favor of using PHA for preventing and managing osteoporosis as both a bone anabolic and anti-resorptive agent.
Collapse
Affiliation(s)
- Lihua Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Zhimin Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yuxin Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yongkai Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Nan Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yanbei Tu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China.
| |
Collapse
|
2
|
Selepe MA. Isoflavone Derivatives as Potential Anticancer Agents: Synthesis and Bioactivity Studies. ChemMedChem 2024; 19:e202400420. [PMID: 39091268 PMCID: PMC11617652 DOI: 10.1002/cmdc.202400420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024]
Abstract
Isoflavones are phenolic natural compounds with a C6C3C6 framework. They possess a plethora of biological activities that are associated with putative benefits to human health. In particular, the cancer chemopreventive and chemotherapeutic potential of isoflavones has attracted the interest of researchers. Several isoflavone derivatives have been synthesised and probed for their anticancer activities. The isoflavone analogues are mainly synthesised by molecular hybridisation and other strategies that enable diversification through early or late-stage functionalisation of A-, B- and C-rings of the isoflavones. This has resulted in the discovery of isoflavone analogues with improved antiproliferative activities against several cancer cells and different mechanisms of action. In this review, the synthesis of isoflavone derivatives and their anticancer activity studies are discussed.
Collapse
Affiliation(s)
- Mamoalosi A. Selepe
- Department of Chemistry, Faculty of Natural and Agricultural SciencesUniversity of PretoriaPrivate bag X 20Hatfield0028South Africa
| |
Collapse
|
3
|
Hussain MK, Khatoon S, Khan MF, Akhtar MS, Ahamad S, Saquib M. Coumarins as versatile therapeutic phytomolecules: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155972. [PMID: 39265442 DOI: 10.1016/j.phymed.2024.155972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Coumarins, abundantly distributed in a plethora of biologically active compounds, serve as a fundamental motif in numerous natural products, drugs, and therapeutic leads. Despite their small size, they exhibit a diverse range of biological activities, intriguing researchers with their immense pharmacological potential. PURPOSE This study consolidates the evidence regarding the essential role of coumarins in modern drug discovery, exploring their broad-spectrum pharmaceutical effects, structural versatility, and mechanisms of action across various domains. METHODS For literature search, we utilized PubMed, Google scholar, and SciFinder databases. Keyword and keyword combinations such as "coumarins", "natural coumarins", "specific natural coumarins for particular diseases", and "therapeutic effects" were employed to retrieve relevant studies. The search encompassed articles published between 2005 and 2023. Selection criteria included studies reporting on the pharmacological activities of natural coumarins against various diseases. RESULTS The results highlight the therapeutic potential of natural coumarins against various diseases, demonstrating anti-cancer, anti-oxidant, and anti-inflammatory activities. They also act as monoamine oxidase inhibitors and phosphodiesterase inhibitors, and as anti-thrombotic, anti-diabetic, and hepatoprotective agents. They also show efficacy against diabetic nephropathy, neurodegenerative diseases, microbial infections and many other diseases. CONCLUSION This review underscores the significant role of natural coumarins in medicinal chemistry and drug discovery. Their diverse biological activities and structural versatility make them promising therapeutic agents. This study serves as a catalyst for further research in the field, aiming to address emerging challenges and opportunities in drug development.
Collapse
Affiliation(s)
- Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza P.G. College, Rampur 244901, M.J.P Rohil Khand University, Bareilly, India.
| | | | - Mohammad Faheem Khan
- Department of Biotechnology, Era's Lucknow Medical College, Era University, Lucknow 226003, India
| | - Mohd Sayeed Akhtar
- Department of Botany, Gandhi Faiz-e-Aam College, Shahjahanpur 242001, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad) 211002, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad) 211010, India.
| |
Collapse
|
4
|
Shi Y, Sun XQ, Zhang JX, Zhang RH, Hong K, Xue YX, Qiu H, Liu L. New Cytotoxic γ-Lactam Alkaloids from the Mangrove-Derived Fungus Talaromyces hainanensis sp. nov. Guided by Molecular Networking Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17431-17443. [PMID: 39021257 DOI: 10.1021/acs.jafc.4c03959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The fungus Talaromyces hainanensis, isolated from the mangrove soil, was characterized as a novel species by morphology observation and phylogenetic analyses. Four new γ-lactam alkaloids talaroilactams A-D (1-4) and two reported compounds harzianic acid (5) and isoharzianic acid (6) were identified from the fungus T. hainanensis WHUF0341, assisted by OSMAC along with molecular networking approaches. Their structures were determined through ECD calculations and spectroscopic analyses. Moreover, the biosynthetic route of 1-4 was also proposed. Compound 1 displayed potent cytotoxicity against HepG2 cell lines, with an IC50 value of 10.75 ± 1.11 μM. In addition, network pharmacology was employed to dissect the probable mechanisms contributing to the antihepatocellular carcinoma effects of compound 1, revealing that cytotoxicity was mainly associated with proteolysis, negative regulation of autophagy, inflammatory response, and the renin-angiotensin system. These results not only expanded the chemical space of natural products from the mangrove associated fungi but also afforded promising lead compounds for developing the antihepatocellular carcinoma agents.
Collapse
Affiliation(s)
- Ying Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Qi Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Xin Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruo-Han Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Department of Radiation and Medical Oncology, Zhongnan Hospital, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Ya-Xin Xue
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Department of Radiation and Medical Oncology, Zhongnan Hospital, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Hui Qiu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Department of Radiation and Medical Oncology, Zhongnan Hospital, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Wang X, Kong Y, Li Z. Advantages of Chinese herbal medicine in treating rheumatoid arthritis: a focus on its anti-inflammatory and anti-oxidative effects. Front Med (Lausanne) 2024; 11:1371461. [PMID: 38515982 PMCID: PMC10954842 DOI: 10.3389/fmed.2024.1371461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
Oxidative stress is a condition characterized by an imbalance between the oxidative and antioxidant processes within the human body. Rheumatoid arthritis (RA) is significantly influenced by the presence of oxidative stress, which acts as a pivotal factor in its pathogenesis. Elevated levels of mitochondrial reactive oxygen species (ROS) and inflammation have been found to be closely associated in the plasma of patients with RA. The clinical treatment strategies for this disease are mainly chemical drugs, such as nonsteroidal anti-inflammatory drugs (NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs), glucocorticoids (GCs) and biological agents, but it is difficult for patients to accept long-term drug treatment and its side effects. In the theory of traditional Chinese medicine (TCM), RA is thought to be caused by the attack of "wind, cold, damp humor," and herbs with the effect of removing wind and dampness are used to relieve pain. Chinese herbal medicine boasts a rich heritage in effectively attenuating the symptoms of RA, and its global recognition continues to ascend. In particular, RA-relevant anti-inflammatory/anti-oxidative effects of TCM herbs/herbal compounds. The main aim of this review is to make a valuable contribution to the expanding pool of evidence that advocates for the incorporation of Chinese herbal medicine in conventional treatment plans for RA.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Youqian Kong
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zeguang Li
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Chen HW, Jiang CX, Ma GL, Wu XY, Jiang W, Li J, Zang Y, Li J, Xiong J, Hu JF. Unprecedented spirodioxynaphthalenes from the endophytic fungus Phyllosticta ligustricola HDF-L-2 derived from the endangered conifer Pseudotsuga gaussenii. PHYTOCHEMISTRY 2023; 211:113687. [PMID: 37105348 DOI: 10.1016/j.phytochem.2023.113687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
Four undescribed palmarumycin-type spirodioxynaphthalenes (phyligustricins A-D) and a known biogenetic precursor (palmarumycin BG1) were isolated from a solid fermentation of Phyllosticta ligustricola HDF-L-2, an endophyte associated with the endangered Chinese conifer Pseudotsuga gaussenii. The structures were elucidated by spectroscopic methods, single-crystal X-ray diffraction analyses, and electronic circular dichroism calculations. Both phyligustricins A and B have an unprecedented spirodioxynaphthalene-derived skeleton containing an extra 4H-furo [3,2-c]pyran-4-one moiety, while phyligustricins C and D are p-hydroxy-phenethyl substituted spirodioxynaphthalenes. The plausible biosynthetic relationships of the isolates were briefly proposed. Phyligustricins C and D and palmarumycin BG1 showed considerable antibacterial activity against Staphylococcus aureus, each with an MIC value of 16 μg/mL. Palmarumycin BG1 displayed significant inhibitory effects against ACL and ACC1, with IC50 values of 1.60 and 8.00 μM, respectively.
Collapse
Affiliation(s)
- Hao-Wei Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Chun-Xiao Jiang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, PR China; School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, PR China
| | - Guang-Lei Ma
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Xi-Ying Wu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Wei Jiang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Jiyang Li
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, PR China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, PR China
| | - Juan Xiong
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, PR China.
| | - Jin-Feng Hu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, PR China; School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, PR China.
| |
Collapse
|
7
|
Wang X, Dong L, Dong Y, Bao Z, Lin S. Corn Silk Flavonoids Ameliorate Hyperuricemia via PI3K/AKT/NF-κB Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37294890 DOI: 10.1021/acs.jafc.3c03422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hyperuricemia (HUA) is a widespread metabolic disease marked by an elevated level of uric acid, and is a risk factor for premature death. The protective effect of corn silk flavonoids (CSF) against HUA and its potential mechanisms were explored. Five important apoptosis and inflammation-related signaling pathways were identified by network pharmacological analysis. The CSF exhibited significant uric acid (UA)-lowering activity in vitro by decreasing xanthine oxidase (XOD) and increasing hypoxanthine-guanine phosphoribosyl transferase levels. In a potassium oxonate-induced HUA in vivo, CSF treatment effectively inhibited XOD activity and promoted UA excretion. Furthermore, it decreased the levels of TNF-α and IL-6 and restored pathological damage. In summary, CSF is a functional food component to improve HUA by reducing inflammation and apoptosis through the down-regulating PI3K/AKT/NF-κB pathway.
Collapse
Affiliation(s)
- Xizhu Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian polytechnic University, Dalian 116034, P. R. China
| | - Liu Dong
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian polytechnic University, Dalian 116034, P. R. China
| | - Yifei Dong
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian polytechnic University, Dalian 116034, P. R. China
| | - Zhijie Bao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian polytechnic University, Dalian 116034, P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
8
|
Yang Y, Liu Y, Yu H, Xie Q, Wang B, Jiang S, Su W, Mao Y, Li B, Peng C, Jian Y, Wang W. Sesquiterpenes from Kadsura coccinea attenuate rheumatoid arthritis-related inflammation by inhibiting the NF-κB and JAK2/STAT3 signal pathways. PHYTOCHEMISTRY 2022; 194:113018. [PMID: 34837762 DOI: 10.1016/j.phytochem.2021.113018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
The roots of Kadsura coccinea is commonly used in Tujia ethnomedicine, named "heilaohu", having the effect of treating rheumatic arthritis (RA). Chemical investigation on the ethanol extract of heilaohu led to the isolation of one undescribed cuparane sesquiterpenoid, heilaohusesquiterpenoid A, one undescribed carotane sesquiterpenoids, heilaohusesquiterpenoid B, and eighteen sesquiterpene derivatives. Their structures were subsequently determined based on their 1D and 2D-NMR, HR-ESI-MS, and ECD spectroscopic data. Gaultheriadiolide was the most cytotoxic compound against the proliferation of rheumatoid arthritis-fibroblastoid synovial (RA-FLS) cells with an IC50 value of 9.37 μM. In the same line, nine compounds exhibited significant inhibition effects against TNF-α and IL-6 release in the LPS-induced RAW264.7 cells with IC50 values ranging between 1.03 and 10.99 μM. The potential molecular mechanisms of the active compounds against RA were established through pharmacological network analysis based on the initial screening results. Experimental validation showed that gaultheriadiolide suppressed inflammation by inhibiting the NF-kB and JAK2/STAT3 pathways. This study enriches the structural diversity of sesquiterpenes in K. coccinea and lays a foundation for further anti-RA and anti-inflammatory studies.
Collapse
Affiliation(s)
- Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Yongbei Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Huanghe Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Qingling Xie
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Bin Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Sai Jiang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Wei Su
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Yu Mao
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Yuqing Jian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
9
|
Glytabastan B, a coumestan isolated from Glycine tabacina, alleviated synovial inflammation, osteoclastogenesis and collagen-induced arthritis through inhibiting MAPK and PI3K/AKT pathways. Biochem Pharmacol 2022; 197:114912. [PMID: 35032460 DOI: 10.1016/j.bcp.2022.114912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/12/2022]
Abstract
The roots of Glycine tabacina are used to treat rheumatoid arthritis (RA) and joint infection in folk medicine. Glytabastan B (GlyB), a newly reported coumestan isolated from this species, was found to significantly attenuate IL-1β-induced inflammation in SW982 human synovial cells at 3 and 6 μM, as evidenced by the decreased levels of pro-inflammatory mediators and matrix metalloproteinases (MMPs). GlyB also suppressed RANKL-induced osteoclastogenesis, decreased the expression of osteoclastogenic markers (NFATc1, CTSK, MMP-9) and osteoclast-mediated bone resorption. Further, GlyB administration (12.5 and 25 mg/kg) significantly inhibited inflammation, osteoclast formation and disease progression in collagen-induced arthritis (CIA) mice. Integration of network pharmacology, quantitative phosphoproteomic and experimental pharmacology results revealed that these beneficial actions were closely associated with the blockade of GlyB on the activation of MAPK, PI3K/AKT and their downstream signals including NF-κB and GSK3β/NFATc1. Drug affinity responsive target stability (DARTS) assay, cellular thermal shift (CETSA) assay and molecular docking analysis confirmed that there were direct interactions between GlyB and its target proteins ERK2, JNK1 and class Ⅰ PI3K catalytic subunit p110 (α, β, δ and γ), which significantly contributed to the inhibition of activation of MAPK and PI3K/AKT pathways. In conclusion, these results strongly suggest GlyB is a promising multiple-target candidate for the development of agents for the prevention and treatment of RA.
Collapse
|
10
|
Wang Q, Wang Y, Wang YJ, Ma N, Zhou YJ, Zhuang H, Zhang XH, Li C, Pei YH, Liu SL. Dissection of the Functional Mechanism of Human Gut Bacterial Strain AD16 by Secondary Metabolites' Identification, Network Pharmacology, and Experimental Validation. Front Pharmacol 2021; 12:706220. [PMID: 34803669 PMCID: PMC8602878 DOI: 10.3389/fphar.2021.706220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Gut microbiota plays important roles in several metabolic processes, such as appetite and food intake and absorption of nutrients from the gut. It is also of great importance in the maintenance of the health of the host. However, much remains unknown about the functional mechanisms of human gut microbiota itself. Here, we report the identification of one anticancer gut bacterial strain AD16, which exhibited potent suppressive effects on a broad range of solid and blood malignancies. The secondary metabolites of the strain were isolated and characterized by a bioactivity-guided isolation strategy. Five new compounds, streptonaphthalenes A and B (1-2), pestaloficins F and G (3-4), and eudesmanetetraiol A (5), together with nine previously known compounds, were isolated from the effective fractions of AD16. Structures of the new compounds were established by 1D and 2D NMR and MS analysis, and the absolute configurations were determined by the CD method. The analysis of network pharmacology suggested that 3, 2, and 13 could be the key components for the anti-NSCLC activity of AD16. In addition to the PI3K–Akt signaling pathway, the proteoglycans in cancer pathway could be involved in the anti-NSCLC action of AD16.
Collapse
Affiliation(s)
- Qin Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yao Wang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ya-Jing Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Nan Ma
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yu-Jie Zhou
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China
| | - He Zhuang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xing-Hua Zhang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chang Li
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yue-Hu Pei
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shu-Lin Liu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
11
|
Davidones F and G, Two Novel Flavonoids from Sophora davidii (Franch.) Skeels. Molecules 2021; 26:molecules26144182. [PMID: 34299455 PMCID: PMC8306354 DOI: 10.3390/molecules26144182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
An unprecedented novel flavanone davidone F (1) with a seven-membered ring side chain, and a novel flavanonol davidone G (2), along with 11 known flavonoids, were isolated from the ethyl acetate fraction of Sophora davidii (Franch.) Skeels. Their planar structures were established by UV, IR, HRESIMS, 1D and 2D NMR data. The relative configurations of 1 and 2 were determined by calculation of NMR chemical shift values, the absolute configuration of 1 and 2 were assigned by comparing their experimental and calculated electronic circular dichroism (ECD) spectra. Moreover, compounds 1–13 were screened for the translocation activity of glucose transporter 4 (GLUT-4), and the fluorescence intensity was increased to the range of 1.56 and 2.79 folds. Compounds 1 and 2 showed moderate GLUT-4 translocation activity with 1.64 and 1.79 folds enhancement, respectively, at a concentration of 20 μg/mL.
Collapse
|
12
|
Tu Y, Yang Y, Li Y, He C. Naturally occurring coumestans from plants, their biological activities and therapeutic effects on human diseases. Pharmacol Res 2021; 169:105615. [PMID: 33872808 DOI: 10.1016/j.phrs.2021.105615] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Naturally occurring coumestans are known as a collection of plant-derived polycyclic aromatic secondary metabolites which are characterized by the presence of an oxygen heterocyclic four-ring system comprising a coumarin moiety and a benzofuran moiety sharing a C˭C bond. Recently, there is an increasing attention in excavating the medicinal potential of coumestans, particularly coumestrol, wedelolactone, psoralidin and glycyrol, in a variety of diseases. This review is a comprehensive inventory of the chemical structures of coumestans isolated from various plant sources during the period of 1956-2020, together with their reported biological activities. 120 molecules were collected and further classified as coumestans containing core skeleton, dimethylpyranocoumestans, furanocoumestans, O-glycosylated coumestans and others, which showed a wide range of pharmacological activities including estrogenic, anti-cancer, anti-inflammatory, anti-osteoporotic, organ protective, neuroprotective, anti-diabetic and anti-obesity, antimicrobial, immunosuppressive, antioxidant and skin-protective activities. Furthermore, this review focuses on the counteraction of coumestans against bone diseases and organ damages, and the involved molecular mechanisms, which could provide important information to better understand the medicinal values of these compounds. This review is intended to be instructive for the rational design and development of less toxic and more effective drugs with a coumestan scaffold.
Collapse
Affiliation(s)
- Yanbei Tu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Ying Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yanfang Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China.
| |
Collapse
|