1
|
Wei L, Wu H, Wang X, Wen L, Cui B, Cheng Y. Comprehensive review of plant-derived anti-hyperlipidemia peptides: Production, anti-hyperlipidemia mechanism, and structure-activity relationship study. Food Chem 2024; 461:140715. [PMID: 39178542 DOI: 10.1016/j.foodchem.2024.140715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/26/2024] [Accepted: 07/28/2024] [Indexed: 08/26/2024]
Abstract
Hyperlipidemia, an elevated level of cholesterol and/or triglycerides, has become a major public health problem worldwide. Although drugs intervention is effective in treating hyperlipidemia, most of them have adverse side effects. Peptides from natural plants with high anti-hyperlipidemic activity and a strong safety profile have emerged as promising candidates to prevent and ameliorate hyperlipidemia. This review summarizes the recent advances in plant-derived anti-hyperlipidemic peptides in terms of their sources, production, purification, identification, and activity evaluation. The focus is extended to their potential anti-hyperlipidemic mechanisms and structure-function relationships. Bioactive peptides derived from various plant sources, especially peptides containing hydrophobic and/or acidic amino acids, have shown remarkable effects in hyperlipidemic treatment. Their anti-hyperlipidemic effects are mediated by various mechanisms, including regulation of cholesterol metabolism and triglyceride metabolism, inhibition of inflammation-related metabolic syndrome, and modulation of the gut microbiota. Further evaluation of the stability, bioavailability, and clinical efficacy of these peptides is recommended.
Collapse
Affiliation(s)
- Liuyi Wei
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Hao Wu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Xufeng Wang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Bo Cui
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China; School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China.
| |
Collapse
|
2
|
Zhu M, Li F, Zhang Y, Yu J, Wei Y, Gao X. Preparation, bioactivities, and food industry applications of tuber and tuberous roots peptides: A review. Food Chem 2024; 456:140027. [PMID: 38870819 DOI: 10.1016/j.foodchem.2024.140027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Tuber and tuberous roots proteins are important sources for producing bioactive peptides. The objective of this review is to present the current research status of tubers and tuberous roots bioactive peptides (TTRBP), including its preparation methods, purification techniques, structure identification approaches, biological functions, and applications in the food industry. Moreover, the current challenges and future development trends of TTRBP are elucidated. Currently, TTRBP are mainly produced by enzymatic hydrolysis and fermentation. Pretreatment like high static pressure, ultrasound and microwave can assist enzymatic hydrolysis and facilitate TTRBP production. In addition, TTRBP are structurally diverse, which is related to the molecular weight, amino acids composition, and linkage mode. Accordingly, they have various biological activities (such as antioxidant, antihypertensive, hypoglycemic) and have been utilized in the food industry as functional ingredients and food additives. This review will provide valuable insights for the optimal utilization of tuber and tuberous roots.
Collapse
Affiliation(s)
- Mengjia Zhu
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Fei Li
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Yuling Zhang
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Jia Yu
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Yuxi Wei
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Xiang Gao
- College of Life Sciences, Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Ye H, Xu Y, Sun Y, Liu B, Chen B, Liu G, Cao Y, Miao J. Purification, identification and hypolipidemic activities of three novel hypolipidemic peptides from tea protein. Food Res Int 2023; 165:112450. [PMID: 36869471 DOI: 10.1016/j.foodres.2022.112450] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
In this study, hypolipidemic peptides were obtained from tea protein by enzymatic hydrolysis, ultrafiltration and high-performance liquid chromatography. Subsequently, the hypolipidemic peptides were identified by mass spectrometry and screened through molecular docking technology, and the hypolipidemic activities and mechanisms of the active peptides were explored. The results showed that the hydrolysate of hypolipidemic peptides obtained by pepsin hydrolysis for 3 h had good bile salt binding ability. After purification, identification and molecular docking screening, three novel hypolipidemic peptides FLF, IYF and QIF were obtained. FLF, IYF and QIF can interact with the receptor proteins 1LPB and 1F6W through hydrogen bonds, π-π bonds, hydrophobic interactions and van der Waals forces, thus exerting hypolipidemic activities. Activity studies showed that, compared with the positive controls, FLF, IYF and QIF had excellent sodium taurocholate binding abilities, pancreatic lipase inhibitory activities and cholesterol esterase inhibitory activities. Moreover, FLF, IYF and QIF can effectively inhibit lipogenic differentiation of 3T3-L1 preadipocytes, reduce intracellular lipid and low-density lipoprotein content and increase high-density lipoprotein content. These results indicated that the three novel hypolipidemic peptides screened in this study had excellent hypolipidemic activities and were expected to be used as natural-derived hypolipidemic active ingredients for the development and application in functional foods.
Collapse
Affiliation(s)
- Haoduo Ye
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou 510642, China
| | - Yan Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Yunnan Sun
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Tea Science, Menghai 666201, China
| | - Benying Liu
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Tea Science, Menghai 666201, China
| | - Bingbing Chen
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou 510642, China
| | - Guo Liu
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou 510642, China
| | - Yong Cao
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou 510642, China
| | - Jianyin Miao
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang 438000, China.
| |
Collapse
|
4
|
A comparative analysis of anti-lipidemic potential of soybean (Glycine max) protein hydrolysates obtained from different ripening stages: Identification, and molecular interaction mechanisms of novel bioactive peptides. Food Chem 2023; 402:134192. [DOI: 10.1016/j.foodchem.2022.134192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022]
|
5
|
Ferreira M, Garzón A, Oliva M, Cian R, Drago S, D'Alessandro M. Lipid-lowering effect of microencapsulated peptides from brewer's spent grain in high-sucrose diet-fed rats. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Emerging proteins as precursors of bioactive peptides/hydrolysates with health benefits. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Singh BP, Aluko RE, Hati S, Solanki D. Bioactive peptides in the management of lifestyle-related diseases: Current trends and future perspectives. Crit Rev Food Sci Nutr 2021; 62:4593-4606. [PMID: 33506720 DOI: 10.1080/10408398.2021.1877109] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lifestyle-related diseases constitute a major concern in the twenty-first century, with millions dying worldwide each year due to chosen lifestyles and associated complications such as obesity, type 2 diabetes, hypertension, and hypercholesterolemia. Although synthetic drugs have been shown to be quite effective in the treatment of these conditions, safety of these compounds remains a concern. Natural alternatives to drugs include food-derived peptides are now being explored for the prevention and treatment of lifestyle-related complications. Peptides are fragments nascent in the primary protein sequences and could impart health benefits beyond basic nutritional advantages. Evidence suggests that by controlling adipocyte differentiation and lipase activities, bioactive peptides may be able to prevent obesity. Bioactive peptides act as agents against type 2 diabetes because of their ability to inhibit enzymatic activities of DPP-IV, α-amylase, and α-glucosidase. Moreover, bioactive peptides can act as competitive inhibitors of angiotensin-converting enzyme, thus eliciting an antihypertensive effect. Bioactive peptides may have a hypocholesterolemic effect by inhibiting cholesterol metabolism pathways and cholesterol synthesis. This review addresses current knowledge of the impact of food-derived bioactive peptides on lifestyle diseases. In addition, future insights on the clinical trials, allergenicity, cytotoxicity, gastrointestinal stability, and regulatory approvals have also been considered.
Collapse
Affiliation(s)
- Brij Pal Singh
- Department of Microbiology, School of Science, RK University, Rajkot, Gujarat, India
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Subrota Hati
- SMC College of Dairy Science, Anand Agricultural University, Anand, Gujarat, India
| | - Divyang Solanki
- SMC College of Dairy Science, Anand Agricultural University, Anand, Gujarat, India
| |
Collapse
|
8
|
Hou H, Wang J, Wang J, Tang W, Shaikh AS, Li Y, Fu J, Lu L, Wang F, Sun F, Tan H. A Review of Bioactive Peptides: Chemical Modification, Structural Characterization and Therapeutic Applications. J Biomed Nanotechnol 2021; 16:1687-1718. [PMID: 33485398 DOI: 10.1166/jbn.2020.3001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, the development and applications of protein drugs have attracted extensive attention from researchers. However, the shortcomings of protein drugs also limit their further development. Therefore, bioactive peptides isolated or simulated from protein polymers have broad application prospects in food, medicine, biotechnology, and other industries. Such peptides have a molecular weight distribution between 180 and 1000 Da. As a small molecule substance, bioactive peptide is usually degraded by various enzymes in the organism and have a short half-life. At the same time, such substances have poor stability and are difficult to produce and store. Therefore, these active peptides may be modified through phosphorylation, glycosylation, and acylation. Compared with other protein drugs, the modified active peptides are more easily absorbed by the body, have longer half-life, stronger targeting, and fewer side effects in addition to higher bioavailability. In the light of their functions, bioactive peptide can be divided into antimicrobial, anti-tumour, anti-angiogenic, antioxidant, anti-fatigue, and anti-hypertensive peptides. This article mainly focuses on the introduction of several promising biologically active peptides functioning as antimicrobial, anti-tumour, antiangiogenic, and antioxidant peptides from the three aspects modification, structural characteristics and mechanism of action.
Collapse
|
9
|
Hypolipidemic effects and mechanisms of Val-Phe-Val-Arg-Asn in C57BL/6J mice and 3T3-L1 cell models. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
10
|
Prados IM, Plaza M, Marina ML, García MC. Evaluation of the relationship between the peptide profiles and the lipid-lowering properties of olive seed hydrolysates as a tool for tuning hypocholesterolemic functionality. Food Funct 2020; 11:4973-4981. [PMID: 32510528 DOI: 10.1039/d0fo00576b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Olive processing generates large amounts of stones with high protein contents. Previous studies have demonstrated that Manzanilla variety olive seed proteins release peptides with lipid-lowering capacity. However, no work has demonstrated their roles in the overall hypolipidemic activity. Moreover, further studies using different olive varieties are required to propose a solid method for the exploitation of olive seeds. Twenty different olive varieties were employed in this work. Proteins were extracted using high-intensity focused ultrasound and digested with Alcalase. The released peptides were identified using proteomic techniques, and their capabilities to reduce the absorption of dietary cholesterol (by inhibiting cholesterol esterase enzyme, binding bile acids, and reducing micellar cholesterol solubility) or the biosynthesis of endogenous cholesterol were evaluated. Peptides with different lipid lowering capacities were obtained from all varieties although the genotype significantly affected the hypolipidemic characteristics. Univariate and multivariate statistical analyses showed strong correlations, positive and negative, between the presence of certain peptides in the hydrolysates and their capacity to reduce exogenous cholesterol absorption and endogenous cholesterol synthesis. Therefore, the selection of the olive seed genotype can direct its lipid-lowering properties, e.g., by promoting the reduction of dietary cholesterol absorption or the inhibition of cholesterol biosynthesis.
Collapse
Affiliation(s)
- Isabel M Prados
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain.
| | - Merichel Plaza
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain. and Instituto de Investigación Química "Andrés M. del Rio" (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain
| | - M Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain. and Instituto de Investigación Química "Andrés M. del Rio" (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain
| | - M Concepción García
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain. and Instituto de Investigación Química "Andrés M. del Rio" (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain
| |
Collapse
|