1
|
Reuben RC, Torres C. Integrating the milk microbiome signatures in mastitis: milk-omics and functional implications. World J Microbiol Biotechnol 2025; 41:41. [PMID: 39826029 PMCID: PMC11742929 DOI: 10.1007/s11274-024-04242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/26/2024] [Indexed: 01/20/2025]
Abstract
Mammalian milk contains a variety of complex bioactive and nutritional components and microorganisms. These microorganisms have diverse compositions and functional roles that impact host health and disease pathophysiology, especially mastitis. The advent and use of high throughput omics technologies, including metagenomics, metatranscriptomics, metaproteomics, metametabolomics, as well as culturomics in milk microbiome studies suggest strong relationships between host phenotype and milk microbiome signatures in mastitis. While single omics studies have undoubtedly contributed to our current understanding of milk microbiome and mastitis, they often provide limited information, targeting only a single biological viewpoint which is insufficient to provide system-wide information necessary for elucidating the biological footprints and molecular mechanisms driving mastitis and milk microbiome dysbiosis. Therefore, integrating a multi-omics approach in milk microbiome research could generate new knowledge, improve the current understanding of the functional and structural signatures of the milk ecosystem, and provide insights for sustainable mastitis control and microbiome management.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Biology Department, King's College, 133 North River Street, Wilkes-Barre, PA, 18711, USA.
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
2
|
Du C, Zhao X, Zhang S, Chu C, Zhang X, Teng Z. Milk metabolite profiling of dairy cows as influenced by mastitis. Front Vet Sci 2024; 11:1475397. [PMID: 39606657 PMCID: PMC11598933 DOI: 10.3389/fvets.2024.1475397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Mastitis is a disease with frequent incidence in dairy cows, causing huge financial losses to the dairy industry globally. The identification of certain biomarkers is crucial for the early diagnosis and management of mastitis. Metabolomics technology is a useful tool to accurately and efficiently analyze the changes of metabolites in biofluids in response to internal and external stimulations. Milk is the secreted by udder, and milk metabolites can directly reflect whether the udder are in the healthy or diseased state. The milk metabolomics analysis of mastitis can reveal the physiological and pathological changes of mammary gland and screen the related biomarkers, so as to offer useful reference for the prediction, diagnosis, and management of mastitis. Therefore, the aim of the present study was to comprehensively summarize milk metabolic change caused by naturally occurring or experimentally induced mastitis in dairy cows. In addition, comparative analysis and enrichment analysis were conducted to further discover potential biomarkers of mastitis and to identify the relevant pathways differentiating the healthy and mastitic cows. Multiple milk metabolites were identified to be altered during mastitis based on different metabolomics platforms. It was noteworthy that there were 28 metabolites not only identified by at least two different studies, but also showed consistent change tendency among the different studies. By comparison with literature, we further identified 12 milk metabolites, including acetate, arginine, β-hydroxybutyrate, carnitine, citrate, isoleucine, lactate, leucine, phenylalanine, proline, riboflavin, and valine that were linked with the occurrence of mastitis, which suggested that these 12 milk metabolites could be potential biomarkers of mastitis in dairy cows. Several pathways were revealed to explain the mechanisms of the variation of milk metabolites caused by mastitis, such as phenylalanine, tyrosine and tryptophan biosynthesis, arginine and proline metabolism, riboflavin metabolism, and tricarboxylic acid (TCA) cycle. These results offer a further understanding for the alteration of milk metabolites caused by mastitis, which have a potential significance in the development of more reliable biomarkers for mastitic diagnosis in dairy cows.
Collapse
Affiliation(s)
- Chao Du
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xuehan Zhao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Shujun Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Chu Chu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xiaojian Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhanwei Teng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
3
|
Urrutia-Angulo L, Ocejo M, Oporto B, Aduriz G, Lavín JL, Hurtado A. Unravelling the complexity of bovine milk microbiome: insights into mastitis through enterotyping using full-length 16S-metabarcoding. Anim Microbiome 2024; 6:58. [PMID: 39438939 PMCID: PMC11515664 DOI: 10.1186/s42523-024-00345-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Mastitis, inflammation of the mammary gland, is a major disease of dairy cattle and the main cause for antimicrobial use. Although mainly caused by bacterial infections, the aetiological agent often remains unidentified by conventional microbiological culture methods. The aim of this study was to test whether shifts in the bovine mammary gland microbiota can result in initiation or progression of mastitis. METHODS Oxford-Nanopore long-read sequencing was used to generate full-length 16S rRNA gene reads (16S-metabarcoding) to characterise the microbial population of milk from healthy and diseased udder of cows classified into five groups based on their mastitis history and parity. RESULTS Samples were classified into six enterotypes, each characterised by a marker genus and several differentially-abundant genera. Two enterotypes were exclusively composed of clinical mastitis samples and displayed a marked dysbiosis, with a single pathogenic genus predominating and displacing the endogenous bacterial population. Other mastitis samples (all subclinical and half of the clinical) clustered with those from healthy animals into three enterotypes, probably reflecting intermediate states between health and disease. After an episode of clinical mastitis, clinical recovery and microbiome reconstitution do not always occur in parallel, indicating that the clinical definition of the udder health status does not consistently reflect the microbial profile. CONCLUSIONS These results show that mastitis is a dynamic process in which the udder microbiota constantly changes, highlighting the complexity of defining a unique microbiota profile indicative of mastitis.
Collapse
Affiliation(s)
- Leire Urrutia-Angulo
- Animal Health Department, NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, 48160, Derio, Bizkaia, Spain
| | - Medelin Ocejo
- Animal Health Department, NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, 48160, Derio, Bizkaia, Spain
| | - Beatriz Oporto
- Animal Health Department, NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, 48160, Derio, Bizkaia, Spain
| | - Gorka Aduriz
- Animal Health Department, NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, 48160, Derio, Bizkaia, Spain
| | - José Luís Lavín
- Applied Mathematics Department, NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, 48160, Derio, Bizkaia, Spain
| | - Ana Hurtado
- Animal Health Department, NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, 48160, Derio, Bizkaia, Spain.
| |
Collapse
|
4
|
Li M, Li Z, Deng M, Liu D, Sun B, Liu J, Guo J, Guo Y. Overview of Bovine Mastitis: Application of Metabolomics in Screening Its Predictive and Diagnostic Biomarkers. Animals (Basel) 2024; 14:2264. [PMID: 39123790 PMCID: PMC11311089 DOI: 10.3390/ani14152264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Bovine mastitis is an inflammatory disease of the mammary glands, and its pathogenesis and diagnosis are complicated. Through qualitative and quantitative analysis of small-molecule metabolites, the metabolomics technique plays an important role in finding biomarkers and studying the metabolic mechanism of bovine mastitis. Therefore, this paper reviews the predictive and diagnostic biomarkers of bovine mastitis that have been identified using metabolomics techniques and that are present in samples such as milk, blood, urine, rumen fluid, feces, and mammary tissue. In addition, the metabolic pathways of mastitis-related biomarkers in milk and blood were analyzed; it was found that the tricarboxylic acid (TCA) cycle was the most significant (FDR = 0.0015767) pathway in milk fluid, and glyoxylate and dicarboxylate metabolism was the most significant (FDR = 0.0081994) pathway in blood. The purpose of this review is to provide useful information for the prediction and early diagnosis of bovine mastitis.
Collapse
Affiliation(s)
- Muyang Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Z.L.); (M.D.); (D.L.); (B.S.)
| | - Zhongjie Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Z.L.); (M.D.); (D.L.); (B.S.)
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Z.L.); (M.D.); (D.L.); (B.S.)
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Z.L.); (M.D.); (D.L.); (B.S.)
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Z.L.); (M.D.); (D.L.); (B.S.)
| | - Jianying Liu
- Agro-Tech Center of Guangdong Province, Guangzhou 510500, China;
| | - Jianchao Guo
- Agro-Tech Center of Guangdong Province, Guangzhou 510500, China;
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Z.L.); (M.D.); (D.L.); (B.S.)
| |
Collapse
|
5
|
Zhu C, Zhao Y, Yang F, Zhang Q, Zhao X, Yang Z, Dao X, Laghi L. Microbiome and metabolome analyses of milk and feces from dairy cows with healthy, subclinical, and clinical mastitis. Front Microbiol 2024; 15:1374911. [PMID: 38912351 PMCID: PMC11191547 DOI: 10.3389/fmicb.2024.1374911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Mastitis is commonly recognized as a localized inflammatory udder disease induced by the infiltration of exogenous pathogens. In the present study, our objective was to discern fecal and milk variations in both microbiota composition and metabolite profiles among three distinct groups of cows: healthy cows, cows with subclinical mastitis and cows with clinical mastitis. The fecal microbial community of cows with clinical mastitis was significantly less rich and diverse than the one harbored by healthy cows. In parallel, mastitis caused a strong disturbance in milk microbiota. Metabolomic profiles showed that eleven and twenty-eight molecules exhibited significant differences among the three groups in feces and milk, respectively. Similarly, to microbiota profile, milk metabolome was affected by mastitis more extensively than fecal metabolome, with particular reference to amino acids and sugars. Pathway analysis revealed that amino acids metabolism and energy metabolism could be considered as the main pathways altered by mastitis. These findings underscore the notable distinctions of fecal and milk samples among groups, from microbiome and metabolomic points of view. This observation stands to enhance our comprehension of mastitis in dairy cows.
Collapse
Affiliation(s)
- Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu, China
| | - Yuxuan Zhao
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Falong Yang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Qian Zhang
- College of Food Science and Technology, Southwest Minzu University, Chengdu, China
| | - Xin Zhao
- College of Food Science and Technology, Southwest Minzu University, Chengdu, China
| | - Zhibo Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu, China
| | - Xiaofang Dao
- College of Food Science and Technology, Southwest Minzu University, Chengdu, China
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| |
Collapse
|
6
|
Wang Y, Zhao Y, Tang X, Nan X, Jiang L, Wang H, Liu J, Yang L, Yao J, Xiong B. Nutrition, gastrointestinal microorganisms and metabolites in mastitis occurrence and control. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:220-231. [PMID: 38800734 PMCID: PMC11126769 DOI: 10.1016/j.aninu.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 05/29/2024]
Abstract
Mastitis affects almost all mammals including humans and dairy cows. In the dairy industry, bovine mastitis is a disease with a persistently high incidence, causing serious losses to the health of cows, the quality of dairy products, and the economy of dairy farms. Although local udder infection caused by the invasion of exogenous pathogens into the mammary gland was considered the main cause of mastitis, evidence has been established and continues to grow, showing that nutrition factors and gastrointestinal microbiome (GM) as well as their metabolites are also involved in the development of mammary inflammatory response. Suboptimal nutrition is recognized as a risk factor for increased susceptibility to mastitis in cattle, in particular the negative energy balance. The majority of data regarding nutrition and bovine mastitis involves micronutrients. In addition, the dysbiotic GM can directly trigger or aggravate mastitis through entero-mammary gland pathway. The decreased beneficial commensal bacteria, lowered bacterial diversity, and increased pathogens as well as proinflammatory metabolites are found in both the milk and gastrointestinal tract of mastitic dairy cows. This review discussed the relationship between the nutrition (energy and micronutrient levels) and mastitis, summarized the role of GM and metabolites in regulating mastitis. Meanwhile, several non-antibiotics strategies were provided for the prevention and alleviation of mastitis, including micronutrients, probiotics, short-chain fatty acids, high-fiber diet, inulin, and aryl hydrocarbon receptor.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, China
| | - Hui Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jun Liu
- Langfang Academy of Agriculture and Forestry, Langfang 065000, China
| | - Liang Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
7
|
Zhang J, Liu X, Usman T, Tang Y, Mi S, Li W, Yang M, Yu Y. Integrated analysis of transcriptome and milk metagenome in subclinical mastitic and healthy cows. Anim Biosci 2024; 37:709-717. [PMID: 35073659 PMCID: PMC10915226 DOI: 10.5713/ab.21.0495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/14/2021] [Accepted: 01/18/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Abnormally increased somatic cell counts (SCCs) in milk is usually a sign of bovine subclinical mastitis. Mutual interaction between the host and its associated microbiota plays an important role in developing such diseases. The main objective of this study was to explore the difference between cows with elevated SCCs and healthy cattle from the perspective of host-microbe interplay. METHODS A total of 31 milk samples and 23 bovine peripheral blood samples were collected from Holstein dairy cattle to conduct an integrated analysis of transcriptomic and metagenomics. RESULTS The results showed that Ralstonia and Sphingomonas were enriched in cows with subclinical mastitis. The relative abundance of the two bacteria was positively correlated with the expression level of bovine transcobalamin 1 and uridine phosphorylase 1 encoding gene. Moreover, functional analysis revealed a distinct alternation in some important microbial biological processes. CONCLUSION These results reveal the relative abundance of Ralstonia and Sphingomonas other than common mastitis-causing pathogens varied from healthy cows to those with subclinical mastitis and might be associated with elevated SCCs. Potential association was observed between bovine milk microbiota composition and the transcriptional pattern of some genes, thus providing new insights to understand homeostasis of bovine udder.
Collapse
Affiliation(s)
- Jinning Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193
China
| | - Xueqin Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193
China
| | - Tahir Usman
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, 23200,
Pakistan
| | - Yongjie Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193
China
| | - Siyuan Mi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193
China
| | - Wenlong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193
China
| | - Mengyou Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193
China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193
China
| |
Collapse
|
8
|
Lisuzzo A, Laghi L, Fiore E, Cecchinato A, Bisutti V, Pegolo S, Giannuzzi D, Tessari R, Barberio A, Schiavon E, Mazzotta E, Tommasoni C, Gianesella M. Serum metabolome differences associated with subclinical intramammary infection caused by Streptococcus agalactiae and Prototheca spp. in multiparous dairy cows. J Dairy Sci 2024; 107:1656-1668. [PMID: 37806625 DOI: 10.3168/jds.2023-23851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
Mastitis is one of the most significant diseases in dairy cows and causes several economic losses. Somatic cell count (SCC) is often used as an indirect diagnostic tool for mastitis, especially for subclinical mastitis (SCM) where no symptoms or signs can be detected. Streptococcus agalactiae is one of the main causes of contagious mastitis, and Prototheca spp. is an alga-inducing environmental mastitis that is not always correlated with increased milk SCC. The aim of this study was to evaluate the changes in the metabolomic profile of blood in relation to subclinical intramammary infection (IMI) in dairy cows. In addition, differences resulting from the etiologic agent causing mastitis were also considered. Forty Holstein-Friesian dairy cows in mid and late lactation were enrolled in this cross-sectional design study. Based on the bacteriological examination of milk, the animals were divided into 3 groups: group CTR (control group; n = 16), group A (affected by SCM with IMI caused by Strep. agalactiae; n = 17), and group P (affected by SCM with IMI caused by Prototheca spp.; n = 7). Blood samples from the jugular vein were collected in tubes containing clot activator; the serum aliquot was stored until metabolomic analysis by 1H-nuclear magnetic resonance spectroscopy. Statistical analysis was conducted by fitting a linear model with the group as the fixed effect and SCC as the covariate. Forty-two metabolites were identified, and among them 10 were significantly different among groups. Groups A and P showed greater levels of His and lactose and lower levels of acetate, Asn, and dimethylamine compared with group CTR. Group A showed high levels of Val, and group P showed high levels of Cit and methylguanidine, as well as lower levels of 3-hydroxybutyrate, acetone, allantoin, carnitine, citrate, and ethanol. These metabolites were related to ruminal fermentations, energy metabolism, urea synthesis and metabolism, immune and inflammatory response, and mammary gland permeability. These results suggest systemic involvement with subclinical IMI and that the metabolic profile of animals with SCM undergoes changes related to the etiological agent of mastitis.
Collapse
Affiliation(s)
- A Lisuzzo
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro, Italy
| | - L Laghi
- Department of Agricultural and Food Science, University of Bologna, 47521 Cesena, Italy
| | - E Fiore
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro, Italy.
| | - A Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, 35020 Legnaro, Italy
| | - V Bisutti
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, 35020 Legnaro, Italy
| | - S Pegolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, 35020 Legnaro, Italy
| | - D Giannuzzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, 35020 Legnaro, Italy
| | - R Tessari
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro, Italy
| | - A Barberio
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - E Schiavon
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - E Mazzotta
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - C Tommasoni
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro, Italy
| | - M Gianesella
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro, Italy
| |
Collapse
|
9
|
Alessandri G, Sangalli E, Facchi M, Fontana F, Mancabelli L, Donofrio G, Ventura M. Metataxonomic analysis of milk microbiota in the bovine subclinical mastitis. FEMS Microbiol Ecol 2023; 99:fiad136. [PMID: 37880979 DOI: 10.1093/femsec/fiad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/04/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
Subclinical mastitis is one of the most widespread diseases affecting dairy herds with detrimental effects on animal health, milk productivity, and quality. Despite its multifactorial nature, the presence of pathogenic bacteria is regarded one of the main drivers of subclinical mastitis, causing a disruption of the homeostasis of the bovine milk microbial community. However, bovine milk microbiota alterations associated with subclinical mastitis still represents a largely unexplored research area. Therefore, the species-level milk microbiota of a total of 75 milk samples, collected from both healthy and subclinical mastitis-affected cows from two different stables, was deeply profiled through an ITS, rather than a traditional, and less informative, 16S rRNA gene microbial profiling. Surprisingly, the present pilot study not only revealed that subclinical mastitis is characterized by a reduced biodiversity of the bovine milk microbiota, but also that this disease does not induce standard alterations of the milk microbial community across stables. In addition, a flow cytometry-based total bacterial cell enumeration highlighted that subclinical mastitis is accompanied by a significant increment in the number of milk microbial cells. Furthermore, the combination of the metagenomic and flow cytometry approaches allowed to identify different potential microbial marker strictly correlated with subclinical mastitis across stables.
Collapse
Affiliation(s)
- Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Elena Sangalli
- Department of Medical-Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - Mario Facchi
- DVM Bovine Practitioner "Bergamo Veterinari" Group, 24124 Bergamo, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
- GenProbio srl, Via Nazario Sauro 3, 43121 Parma, Italy
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| |
Collapse
|
10
|
Yu W, Nan X, Schroyen M, Wang Y, Xiong B. Inulin-induced differences on serum extracellular vesicles derived miRNAs in dairy cows suffering from subclinical mastitis. Animal 2023; 17:100954. [PMID: 37690274 DOI: 10.1016/j.animal.2023.100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023] Open
Abstract
MicroRNA (miRNA) profiles vary with the nutritional and pathological conditions of cattle. In this study, we aimed to investigate the effects of inulin supplement on miRNA profiles derived from serum extracellular vesicles (EVs). Our goal was to determine the differences in miRNA expressions and analyse the pathways in which they are involved. Based on the results of California mastitis test and milk somatic cell counts, ten lactating cows with subclinical mastitis were randomly divided into two groups: an inulin group and a control group (n = 5 in each group). The inulin group received a daily supplement of 300 g of inulin while the control group did not receive any supplementation. After a 5-week treatment period, serum-derived EV-miRNAs from each cow were isolated. High-throughput sequencing was conducted to identify differentially expressed miRNAs. GO and KEGG bioinformatics analysis was performed to examine the target genes of these differentially expressed miRNAs. The EV-RNA concentration and small RNA content were not affected by the inulin treatment. A total of 162 known miRNAs and 180 novel miRNAs were identified from 10 samples in the two groups. Among the known miRNAs, 23 miRNAs were found to be differentially expressed between the two groups, with 18 upregulated and five downregulated in the inulin group compared to the control group. Pathway analysis revealed the involvement of these differentially expressed miRNAs in the regulation of cell structure and function, lipid oxidation and metabolism, immunity and inflammation, as well as digestion and absorption of nutrients. Overall, our study provides a molecular-level explanation for the reported beneficial health effects of inulin supplementation in cows with subclinical mastitis.
Collapse
Affiliation(s)
- W Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - X Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - M Schroyen
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Y Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - B Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
11
|
Lemas DJ, Du X, Dado-Senn B, Xu K, Dobrowolski A, Magalhães M, Aristizabal-Henao JJ, Young BE, Francois M, Thompson LA, Parker LA, Neu J, Laporta J, Misra BB, Wane I, Samaan S, Garrett TJ. Untargeted Metabolomic Analysis of Lactation-Stage-Matched Human and Bovine Milk Samples at 2 Weeks Postnatal. Nutrients 2023; 15:3768. [PMID: 37686800 PMCID: PMC10490210 DOI: 10.3390/nu15173768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Epidemiological data demonstrate that bovine whole milk is often substituted for human milk during the first 12 months of life and may be associated with adverse infant outcomes. The objective of this study is to interrogate the human and bovine milk metabolome at 2 weeks of life to identify unique metabolites that may impact infant health outcomes. Human milk (n = 10) was collected at 2 weeks postpartum from normal-weight mothers (pre-pregnant BMI < 25 kg/m2) that vaginally delivered term infants and were exclusively breastfeeding their infant for at least 2 months. Similarly, bovine milk (n = 10) was collected 2 weeks postpartum from normal-weight primiparous Holstein dairy cows. Untargeted data were acquired on all milk samples using high-resolution liquid chromatography-high-resolution tandem mass spectrometry (HR LC-MS/MS). MS data pre-processing from feature calling to metabolite annotation was performed using MS-DIAL and MS-FLO. Our results revealed that more than 80% of the milk metabolome is shared between human and bovine milk samples during early lactation. Unbiased analysis of identified metabolites revealed that nearly 80% of milk metabolites may contribute to microbial metabolism and microbe-host interactions. Collectively, these results highlight untargeted metabolomics as a potential strategy to identify unique and shared metabolites in bovine and human milk that may relate to and impact infant health outcomes.
Collapse
Affiliation(s)
- Dominick J. Lemas
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
- Department of Obstetrics and Gynecology, College of Medicine, University of Florida, Gainesville, FL 32608, USA;
- Center for Perinatal Outcomes Research, College of Medicine, University of Florida, Gainesville, FL 32608, USA;
| | - Xinsong Du
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
| | - Bethany Dado-Senn
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Ke Xu
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
| | - Amanda Dobrowolski
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
| | - Marina Magalhães
- Department of Behavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL 32603, USA;
| | - Juan J. Aristizabal-Henao
- Department of Physiological Science, Center for Environmental and Human Toxicology, College of Veterinary Science, University of Florida, Gainesville, FL 32608, USA;
| | - Bridget E. Young
- Division of Breastfeeding and Lactation Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Magda Francois
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
| | - Lindsay A. Thompson
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
| | - Leslie A. Parker
- Center for Perinatal Outcomes Research, College of Medicine, University of Florida, Gainesville, FL 32608, USA;
| | - Josef Neu
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32608, USA;
| | - Jimena Laporta
- Department of Obstetrics and Gynecology, College of Medicine, University of Florida, Gainesville, FL 32608, USA;
| | | | - Ismael Wane
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
| | - Samih Samaan
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
| | - Timothy J. Garrett
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32608, USA;
| |
Collapse
|
12
|
Ma H, Zhao W, Song T, Baijiu Z, Zhang Z. Comparative Analysis of the Pre-Parturition and Post-Parturition Genital Tract Microbiota in Plateau Bangor Sewa Sheep. Vet Sci 2023; 10:523. [PMID: 37624310 PMCID: PMC10459245 DOI: 10.3390/vetsci10080523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
(1) Background: Bangor Sewa sheep are an economically significant livestock species on the plateau. The roles of microbiota in reproduction are complex and critical for animal health. But little is known currently about the microbiome of plateau Bangor Sewa sheep. The purpose of this study was to discover the changes in the genital tract microbiota of pre- and post-partum Bangor Sewa sheep. (2) Methods: Samples from the birth canal were obtained for 16S rRNA sequencing, three days before and after delivery, respectively. (3) Results: The results showed that there was a noticeable difference in three phyla and 74 genera between the pre- and post-parturition groups in the microbiota of Bangor Sewa sheep. The changes included a decrease in the abundance of genera related to health (unclassified_Cellulomonadaceae, Cellulomonas, Fibrobacti, Flavobacterium, Eubacterium_ventriosum_group, Acetitomaculum, Aeromicrobium, Dietzia, Romboutsia, Ruminococcus, etc.) and an increased abundance of negatively related genera (Nocardioides, unclassified_Clostridia, Sphingobacteriaceae, unclassified_Ruminococcaceae, Prevotellaceae_UCG_004, Micromonospora, Streptococcus, Facklamia, Bosea, etc.) spp. (4) Conclusions: Microbes can serve as indicators of the physical state of Bangor Sewa sheep. These findings laid the foundation for deciphering the effects of microbial changes during birth on the reproductive health of plateau Bangor Sewa sheep.
Collapse
Affiliation(s)
- Hongcai Ma
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Autonomous Region Academy of Agriculture and Animal Science, Lhasa 850009, China; (H.M.); (T.S.)
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Tianzeng Song
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Autonomous Region Academy of Agriculture and Animal Science, Lhasa 850009, China; (H.M.); (T.S.)
| | - Zhaxi Baijiu
- Cultural Service Center of Maqian Township, Nagqu 852599, China;
| | - Zhenzhen Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| |
Collapse
|
13
|
She Y, Liu J, Su M, Li Y, Guo Y, Liu G, Deng M, Qin H, Sun B, Guo J, Liu D. A Study on Differential Biomarkers in the Milk of Holstein Cows with Different Somatic Cells Count Levels. Animals (Basel) 2023; 13:2446. [PMID: 37570255 PMCID: PMC10417570 DOI: 10.3390/ani13152446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Dairy cow mastitis is one of the common diseases of dairy cows, which will not only endanger the health of dairy cows but also affect the quality of milk. Dairy cow mastitis is an inflammatory reaction caused by pathogenic microorganisms and physical and chemical factors in dairy cow mammary glands. The number of SCC in the milk of dairy cows with different degrees of mastitis will increase in varying degrees. The rapid diagnosis of dairy cow mastitis is of great significance for dairy cow health and farm economy. Based on the results of many studies on the relationship between mastitis and somatic cell count in dairy cows, microflora, and metabolites in the milk of Holstein cows with low somatic cell level (SCC less than 200,000), medium somatic cell level (SCC up to 200,000 but less than 500,000) and high somatic cell level (SCC up to 5000,00) were analyzed by microbiome and metabolic group techniques. The results showed that there were significant differences in milk microbiota and metabolites among the three groups (p < 0.05), and there was a significant correlation between microbiota and metabolites. Meanwhile, in this experiment, 75 differential metabolites were identified in the H group and L group, 40 differential metabolites were identified in the M group and L group, and six differential microorganisms with LDA scores more than four were found in the H group and L group. These differential metabolites and differential microorganisms may become new biomarkers for the diagnosis, prevention, and treatment of cow mastitis in the future.
Collapse
Affiliation(s)
- Yuanhang She
- College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (M.S.)
| | - Jianying Liu
- Agro-Tech Extension Center of Guangdong Province, Guangzhou 510500, China; (J.L.)
- Guangdong Provincial Animal Husbandry Technology Promotion Station, Guangzhou 510500, China
| | - Minqiang Su
- College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (M.S.)
| | - Yaokun Li
- College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (M.S.)
| | - Yongqing Guo
- College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (M.S.)
| | - Guangbin Liu
- College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (M.S.)
| | - Ming Deng
- College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (M.S.)
| | - Hongxian Qin
- Agro-Tech Extension Center of Guangdong Province, Guangzhou 510500, China; (J.L.)
- Guangdong Provincial Animal Husbandry Technology Promotion Station, Guangzhou 510500, China
| | - Baoli Sun
- College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (M.S.)
| | - Jianchao Guo
- Agro-Tech Extension Center of Guangdong Province, Guangzhou 510500, China; (J.L.)
- Guangdong Provincial Animal Husbandry Technology Promotion Station, Guangzhou 510500, China
| | - Dewu Liu
- College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (M.S.)
- Collaborative Innovation Center for Healthy Sheep Breeding and Zoonoses Prevention and Control, Shihezi University, Shihezi 832000, China
| |
Collapse
|
14
|
Zhu C, Zhang Q, Zhao X, Yang Z, Yang F, Yang Y, Tang J, Laghi L. Metabolomic Analysis of Multiple Biological Specimens (Feces, Serum, and Urine) by 1H-NMR Spectroscopy from Dairy Cows with Clinical Mastitis. Animals (Basel) 2023; 13:ani13040741. [PMID: 36830529 PMCID: PMC9952568 DOI: 10.3390/ani13040741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Due to huge economic losses to the dairy industry worldwide, mastitis can be considered as one of the most common diseases in dairy cows. This work aimed to study this disease by comparing multiple biological specimens (feces, serum, and urine) from individuals with or without clinical mastitis. This was performed by a single analytical platform, namely 1H-NMR, through a multi-matrix strategy. Thanks to the high reproducibility of 1H-NMR, we could characterize 120 molecules across dairy cow feces, serum, and urine. Among them, 23 molecules were in common across the three biofluids. By integrating the results of multi-matrix metabolomics, several pathways pertaining to energy metabolism and amino acid metabolism appeared to be affected by clinical mastitis. The present work wished to deepen the understanding of dairy cow mastitis in its clinical form. Simultaneous analysis of metabolome changes across several key biofluids could facilitate knowledge discovery and the reliable identification of potential biomarkers, which could be, in turn, used to shed light on the early diagnosis of dairy cow mastitis in its subclinical form.
Collapse
Affiliation(s)
- Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Qian Zhang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Xin Zhao
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Zhibo Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Falong Yang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yang Yang
- Farming and Animal Husbandry Bureau of Ganzi County, Ganzi 626700, China
| | - Junni Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
- Correspondence: (J.T.); (L.L.); Tel.: +86-028-85928243 (J.T.); +39-0547-338106 (L.L.)
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy
- Correspondence: (J.T.); (L.L.); Tel.: +86-028-85928243 (J.T.); +39-0547-338106 (L.L.)
| |
Collapse
|
15
|
Poole RK, Soffa DR, McAnally BE, Smith MS, Hickman-Brown KJ, Stockland EL. Reproductive Microbiomes in Domestic Livestock: Insights Utilizing 16S rRNA Gene Amplicon Community Sequencing. Animals (Basel) 2023; 13:485. [PMID: 36766374 PMCID: PMC9913168 DOI: 10.3390/ani13030485] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Advancements in 16S rRNA gene amplicon community sequencing have vastly expanded our understanding of the reproductive microbiome and its role in fertility. In humans, Lactobacillus is the overwhelmingly dominant bacteria within reproductive tissues and is known to be commensal and an indicator of fertility in women and men. It is also known that Lactobacillus is not as largely abundant in the reproductive tissues of domestic livestock species. Thus, the objective of this review is to summarize the research to date on both female and male reproductive microbiomes in domestic livestock species (i.e., dairy cattle, beef cattle, swine, small ruminants, and horses). Having a comprehensive understanding of reproductive microbiota and its role in modulating physiological functions will aid in the development of management and therapeutic strategies to improve reproductive efficiency.
Collapse
Affiliation(s)
- Rebecca K. Poole
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | | | | | | | | | | |
Collapse
|
16
|
Yu W, Nan X, Schroyen M, Wang Y, Zhou M, Tang X, Xiong B. Effect of inulin on small extracellular vesicles microRNAs in milk from dairy cows with subclinical mastitis. J Anim Sci 2023; 101:skae366. [PMID: 39656780 DOI: 10.1093/jas/skae366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
Milk contains microRNAs (miRNA) that are shielded by small extracellular vesicles (sEVs). Beyond variations among individuals, many factors including nutrition play a role in shaping miRNA expression profiles. This study is to explore milk-derived sEVs-miRNA variations induced by inulin supplementation in subclinical mastitis-suffering cows. Fourteen lactating cows diagnosed with subclinical mastitis were equally assigned to either an inulin or a control group. Apart from total mixed rations, cows in the inulin group were provided with 300 g/d inulin during the morning feeding, while the control group did not receive any supplement. Following 1 wk of adaptation and 5 wk of treatment, sEVs-miRNA were isolated from the milk of each cow. RNA is subjected to high-throughput sequencing and differentially expressed (DE) miRNA (P < 0.05 and ∣ log2FC∣> 1) were detected through bioinformatics analysis. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to examine the target genes of DE miRNA. A sum of 350 miRNA was discovered, including 332 in the control group and 249 in the inulin group. Among these, 9 miRNA showed differential expression within the 2 groups, including 3 upregulated and 6 downregulated in the inulin group. The DE miRNA participates in regulating organismal systems, cellular processes, and signal transduction, which may affect inflammatory response and milk production. Overall, our study provides insight into the micromolecular-level mechanism of inulin in alleviating subclinical mastitis in dairy cows.
Collapse
Affiliation(s)
- Wanjie Yu
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Martine Schroyen
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Yue Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Mengting Zhou
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| |
Collapse
|
17
|
Williamson JR, Callaway TR, Lourenco JM, Ryman VE. Characterization of rumen, fecal, and milk microbiota in lactating dairy cows. Front Microbiol 2022; 13:984119. [PMID: 36225385 PMCID: PMC9549371 DOI: 10.3389/fmicb.2022.984119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Targeting the gastrointestinal microbiome for improvement of feed efficiency and reduction of production costs is a potential promising strategy. However little progress has been made in manipulation of the gut microbiomes in dairy cattle to improve milk yield and milk quality. Even less understood is the milk microbiome. Understanding the milk microbiome may provide insight into how the microbiota correlate with milk yield and milk quality. The objective of this study was to characterize similarities between rumen, fecal, and milk microbiota simultaneously, and to investigate associations between microbiota, milk somatic cell count (SCC), and milk yield. A total of 51 mid-lactation, multiparous Holstein dairy cattle were chosen for sampling of ruminal, fecal, and milk contents that were processed for microbial DNA extraction and sequencing. Cows were categorized based on low, medium, and high SCC; as well as low, medium, and high milk yield. Beta diversity indicated that ruminal, fecal, and milk populations were distinct (p < 0.001). Additionally, the Shannon index demonstrated that ruminal microbial populations were more diverse (p < 0.05) than were fecal and milk populations, and milk microbiota was the least diverse of all sample types (p < 0.001). While diversity indices were not linked (p > 0.1) with milk yield, milk microbial populations from cows with low SCC demonstrated a more evenly distributed microbiome in comparison to cows with high SCC values (p = 0.053). These data demonstrate the complexity of host microbiomes both in the gut and mammary gland. Further, we conclude that there is a significant relationship between mammary health (i.e., SCC) and the milk microbiome. Whether this microbiome could be utilized in efforts to protect the mammary gland remains unclear, but should be explored in future studies.
Collapse
|
18
|
Wang Y, Nan X, Zhao Y, Jiang L, Wang H, Zhang F, Hua D, Liu J, Yang L, Yao J, Xiong B. Discrepancies among healthy, subclinical mastitic, and clinical mastitic cows in fecal microbiome and metabolome and serum metabolome. J Dairy Sci 2022; 105:7668-7688. [PMID: 35931488 DOI: 10.3168/jds.2021-21654] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/06/2022] [Indexed: 11/19/2022]
Abstract
Mastitis is generally considered a local inflammatory disease caused by the invasion of exogenous pathogens and resulting in the dysbiosis of microbiota and metabolites in milk. However, the entero-mammary pathway theory may establish a possible link between some endogenous gut bacteria and the occurrence and development of mastitis. In the current study, we attempted to investigate differences in the gut microbiota profile and metabolite composition in gut and serum from healthy cows and those with subclinical mastitis and clinical mastitis. Compared with those of healthy cows, the microbial community diversities in the feces of cows with subclinical mastitis (SM) and clinical mastitis (CM) were lower. Lower abundance of Bifidobacterium, Romboutsia, Lachnospiraceae_NK3A20_group, Coprococcus, Prevotellaceae_UCG-003, Ruminococcus, and Alistipes, and higher abundance of the phylum Proteobacteria and the genera Escherichia-Shigella and Streptococcus were observed in CM cows. Klebsiella and Paeniclostridium were significantly enriched in the feces of SM cows. Several similarities were observed in feces and serum metabolites in mastitic cows. Higher levels of proinflammatory lipid products (20-trihydroxy-leukotriene-B4, 13,14-dihydro-15-keto-PGE2, and 9,10-dihydroxylinoleic acids) and lower levels of metabolites involved in secondary bile acids (deoxycholic acid, 12-ketolithocholic acid), energy (citric acid and 3-hydroxyisovalerylcarnitine), and purine metabolism (uric acid and inosine) were identified in both SM and CM cows. In addition, elevated concentrations of IL-1β, IL-6, tumor necrosis factor-α and decreased concentrations of glutathione peroxidase and superoxide dismutase were detected in the serum of SM and CM cows. Higher serum concentrations of triglyceride and total cholesterol and lower concentrations of high-density lipoproteins in mastitic cows might be related to changes in the gut microbiota and metabolites. These findings suggested a significant difference in the profile of feces microbiota and metabolites in cows with different udder health status, which might increase our understanding of bovine mastitis.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, 102206, China
| | - Hui Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dengke Hua
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jun Liu
- Langfang Academy of Agriculture and Forestry, Langfang, 065000, China
| | - Liang Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
19
|
Zhang J, Li W, Tang Y, Liu X, Zhang H, Zhou Y, Wang Y, Xiao W, Yu Y. Testing Two Somatic Cell Count Cutoff Values for Bovine Subclinical Mastitis Detection Based on Milk Microbiota and Peripheral Blood Leukocyte Transcriptome Profile. Animals (Basel) 2022; 12:ani12131694. [PMID: 35804592 PMCID: PMC9264859 DOI: 10.3390/ani12131694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Somatic cell count (SCC) is an important indicator of the health state of bovine udders. However, the exact cut-off value used for differentiating the cows with healthy quarters from the cows with subclinical mastitis remains controversial. Here, we collected composite milk (milk from four udder quarters) and peripheral blood samples from individual cows in two different dairy farms and used 16S rRNA gene sequencing combined with RNA-seq to explore the differences in the milk microbial composition and transcriptome of cows with three different SCC levels (LSCC: <100,000 cells/mL, MSCC: 100,000−200,000 cells/mL, HSCC: >200,000 cells/mL). Results showed that the milk microbial profiles and gene expression profiles of samples derived from cows in the MSCC group were indeed relatively easily discriminated from those from cows in the LSCC group. Discriminative analysis also uncovered some differentially abundant microbiota at the genus level, such as Bifidobacterium and Lachnospiraceae_AC2044_group, which were more abundant in milk samples from cows with SCC below 100,000 cells/mL. As for the transcriptome profiling, 79 differentially expressed genes (DEGs) were found to have the same direction of regulation in two sites, and functional analyses also showed that biological processes involved in inflammatory responses were more active in MSCC and HSCC cows. Overall, these results showed a similarity between the milk microbiota and gene expression profiles of MSCC and HSCC cows, which presented further evidence that 100,000 cells/ml is a more optimal cut-off value than 200,000 cells/mL for intramammary infection detection at the cow level.
Collapse
Affiliation(s)
- Jinning Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.Z.); (W.L.); (Y.T.); (X.L.); (H.Z.); (Y.Z.); (Y.W.)
| | - Wenlong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.Z.); (W.L.); (Y.T.); (X.L.); (H.Z.); (Y.Z.); (Y.W.)
| | - Yongjie Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.Z.); (W.L.); (Y.T.); (X.L.); (H.Z.); (Y.Z.); (Y.W.)
| | - Xueqin Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.Z.); (W.L.); (Y.T.); (X.L.); (H.Z.); (Y.Z.); (Y.W.)
| | - Hailiang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.Z.); (W.L.); (Y.T.); (X.L.); (H.Z.); (Y.Z.); (Y.W.)
| | - Yueling Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.Z.); (W.L.); (Y.T.); (X.L.); (H.Z.); (Y.Z.); (Y.W.)
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.Z.); (W.L.); (Y.T.); (X.L.); (H.Z.); (Y.Z.); (Y.W.)
| | - Wei Xiao
- Beijing Animal Husbandry Station, Beijing 100029, China
- Correspondence: (W.X.); (Y.Y.)
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.Z.); (W.L.); (Y.T.); (X.L.); (H.Z.); (Y.Z.); (Y.W.)
- Correspondence: (W.X.); (Y.Y.)
| |
Collapse
|
20
|
Li Y, Ma N, Ren L, Wang M, Hu L, Shen Y, Cao Y, Li Q, Li J, Gao Y. Microbiome-Metabolome Responses in Ruminal Content and Feces of Lactating Dairy Cows With N-Carbamylglutamate Supplementation Under Heat Stress. Front Vet Sci 2022; 9:902001. [PMID: 35812889 PMCID: PMC9260145 DOI: 10.3389/fvets.2022.902001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/30/2022] [Indexed: 12/17/2022] Open
Abstract
The objective of the present study was to investigate the effects of N-carbamylglutamate (NCG) supplementation on metabolic profile and microbiota in ruminal content and feces of lactating dairy cows under heat stress (HS). Forty-eight lactating Holstein cows (154 ± 13.6 days in milk) were assigned randomly to four treatments (n = 12), to receive 0, 15, 20, or 25 g/day of commercial NCG (proportion: 97.7%) for the period of 60 days. The recorded ambient temperature–humidity index (THI) suggested that the cows were exposed to HS for almost the entire experimental period (average THI: 80.6). Samples of ruminal content and feces were collected at the end of the trial (day 60) to determine the biological effects of NCG supplementation on metabolome and microbiota using mass spectrometry-based metabolomics and 16S rRNA gene sequencing techniques, respectively. Results showed that NCG supplementation enhanced the levels of ruminal microbial protein, total volatile fatty acids (VFAs), and the molar proportion of propionate in the rumen, but lowered the ruminal pH, ammonia nitrogen (NH3-N), and the ratio of acetate to propionate. NCG at doses of 20 and 25 g/day reduced the community richness and diversity of ruminal microbiota with the decrease of Shannon and Simpson diversity. Compositions of ruminal and fecal microbiotas were altered by NCG, and the PICRUSt results revealed that metabolic pathways of the bacteria, such as amino acid metabolism, energy metabolism, and pyruvate metabolism, were enriched in NCG groups. Distinct changes in the metabolomic profile of ruminal fluid were observed between the control and NCG groups. Changes of 26 metabolites mainly involved in arginine metabolism, glutamate metabolism, and nitrogen metabolism were observed associated with NCG supplementation. These results provided new insights into the effects of NCG on metabolomic profile and microbiota in ruminal content and feces, and the optimal dose of NCG supplemented to dairy cows was 20 g/hd/day, which contributed to understanding the effects of NCG on HS in lactating dairy cows.
Collapse
Affiliation(s)
- Yan Li
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Ning Ma
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Liyuan Ren
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Meimei Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Linqi Hu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yizhao Shen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yufeng Cao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding, China
| | - Qiufeng Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding, China
| | - Jianguo Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding, China
- Hebei Research Institute of Dairy Industry Technology, Shijiazhuang, China
- *Correspondence: Jianguo Li
| | - Yanxia Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding, China
- Hebei Research Institute of Dairy Industry Technology, Shijiazhuang, China
- Yanxia Gao
| |
Collapse
|
21
|
Li P, Fu T, Cai A, Descovich K, Lian H, Gao T, Phillips CJC. Effect of Peanut Shell and Rice Husk Bedding for Dairy Cows: An Analysis of Material Properties and Colostrum Microbiota. Animals (Basel) 2022; 12:ani12050603. [PMID: 35268172 PMCID: PMC8909170 DOI: 10.3390/ani12050603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary The provision of appropriate bedding is important for the welfare of dairy cows. Before bedding can be selected, it is critical to understand the properties of the bedding, including its impact on milk microbiota. The objective of this article was to evaluate the influence of three materials for use as bedding on physicochemical properties, bacterial counts and colostrum microbiota of cows. Our results demonstrate that peanut shells appear to be a suitable bedding material for cows. These experiments provide empirical support for the use of peanut shells and rice husks as bedding material for dairy cows and illustrates the effects of bedding types on the colostrum microbiota of dairy cows. Abstract The aim of this study was to evaluate peanut shells and rice husks as bedding for dairy cows. We analyzed material properties including dry matter, water holding capacity, pH level and bacterial counts. Bedding treatments were compared with a one-way ANOVA using twelve cows split into three groups. Colostrum microbiota was analyzed by sequencing of the V3–V4 region of the 16S rRNA gene. Dry matter content was higher in rice husks compared with peanut shells. No treatment effects were found for water holding capacity and pH level. Streptococcus agalactia counts in peanut shell bedding were lower than in rice husk bedding, and Pseudomonas aeruginosa counts were not different between beddings. A significant enrichment for Enhydrobacter and Pantoea were detected in the colostrum of cows that used peanut shells compared with other beddings. Colostrum of cows housed on a peanut–rice combination had a greater relative abundance of Pseudomonas and Corynebacterium than those housed on peanut shells or rice husks. Higher numbers of Bacteroides, Akkermansia, Alistipes, Ruminococcaceae_UCG-014, Coriobacteriaceae_UCG-002 and Intestinimona were found in the colostrum of cows housed on rice husk bedding over other bedding types. These results suggest that bedding types were associated with the growth and diversity of colostrum bacterial loads. In addition, dry matter in peanut shells was lower than found in rice husks, but there was also a lower risk of mastitis for peanut shell bedding than other beddings.
Collapse
Affiliation(s)
- Pengtao Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (P.L.); (T.F.); (A.C.); (H.L.)
| | - Tong Fu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (P.L.); (T.F.); (A.C.); (H.L.)
| | - Amin Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (P.L.); (T.F.); (A.C.); (H.L.)
| | - Kris Descovich
- Center for Animal Welfare and Ethics, School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia;
| | - Hongxia Lian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (P.L.); (T.F.); (A.C.); (H.L.)
| | - Tengyun Gao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (P.L.); (T.F.); (A.C.); (H.L.)
- Correspondence: (T.G.); (C.J.C.P.)
| | - Clive J. C. Phillips
- Center for Animal Welfare and Ethics, School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia;
- Sustainable Policy (CUSP) Institute, Curtin University, Bentley, WA 6102, Australia
- Correspondence: (T.G.); (C.J.C.P.)
| |
Collapse
|
22
|
Wang Y, Nan X, Zhao Y, Jiang L, Wang H, Zhang F, Hua D, Liu J, Yao J, Yang L, Xiong B. Consumption of Supplementary Inulin Modulates Milk Microbiota and Metabolites in Dairy Cows with Subclinical Mastitis. Appl Environ Microbiol 2022; 88:e0205921. [PMID: 34936838 PMCID: PMC8942464 DOI: 10.1128/aem.02059-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/13/2021] [Indexed: 11/20/2022] Open
Abstract
The milk microbiota and mediated metabolites directly affect the health of the udder in dairy cows. Inulin, a dietary prebiotic, can modulate the profile of gastrointestinal microbiota. However, whether the inulin intake affects the milk microbial population and metabolites remains unknown. In this study, 40 subclinical mastitis (SCM) cows were randomly divided into 5 groups. Five inulin addition doses, 0, 100, 200, 300, and 400 g/day per cow, based on the same basal diet, were supplemented. The experiments lasted for 8 weeks. The results showed lower relative abundance of mastitis-causing and proinflammation microbes in milk (i.e., Escherichia-Shigella, Pseudomonas, Rhodococcus, Burkholderia-Caballeronia-Paraburkholderia, etc.) and higher abundances of probiotics and commensal bacteria, such as Lactobacillus, Bifidobacterium, etc., in the cows fed 300 g/day inulin compared to that in the control group. Meanwhile, the levels of arachidonic acid proinflammatory mediators (leukotriene E3, 20-carboxy-leukotriene B4, and 12-Oxo-c-LTB3) and phospholipid metabolites were reduced, and the levels of compounds with antibacterial and anti-inflammatory potential (prostaglandin A1, 8-iso-15-keto-prostaglandin E2 [PGE2], etc.) and participating energy metabolism (citric acid, l-carnitine, etc.) were elevated. These data suggested that inulin intake might modulate the microflora and metabolite level in extraintestinal tissue, such as mammary gland, which provided an alternative for the regulation and mitigation of SCM. IMPORTANCE The profile of the microbial community and metabolic activity in milk are the main determinants of udder health status and milk quality. Recent studies have demonstrated that diet could directly modulate the mammary gland microbiome. Inulin is a probiotic dietary fiber which can improve the microbiota population in the gastrointestinal tract. However, whether inulin intake can further regulate the profile of the microbiota and metabolic activities in milk remains unclear. In subclinical mastitic cows, we found that inulin supplementation could reduce the abundance of Escherichia-Shigella, Pseudomonas, Rhodococcus, and Burkholderia-Caballeronia-Paraburkholderia and the levels of (±)12, 13-DiHOME, leukotriene E3 and 20-carboxy-leukotriene B4 etc., while it elevated the abundance of Lactobacillus, Bifidobacterium, and Muribaculaceae, as well as the levels of prostaglandin A1 (PGA1), 8-iso-15-keto-PGE2, benzoic acid, etc. in milk. These data suggest that inulin intake affects the profile of microorganisms and metabolites in milk, which provides an alternative for the regulation of mastitis.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Hui Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengke Hua
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Liu
- Langfang Academy of Agriculture and Forestry, Langfang, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Liang Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
23
|
Hyuk Suh J. Critical review: metabolomics in dairy science - evaluation of milk and milk product quality. Food Res Int 2022; 154:110984. [DOI: 10.1016/j.foodres.2022.110984] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
|
24
|
Dietary Supplementation of Inulin Ameliorates Subclinical Mastitis via Regulation of Rumen Microbial Community and Metabolites in Dairy Cows. Microbiol Spectr 2021; 9:e0010521. [PMID: 34494854 PMCID: PMC8557905 DOI: 10.1128/spectrum.00105-21] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Subclinical mastitis (SCM) is one of the highly infectious diseases in dairy cows with the characteristics of high incidence and nonvisible clinical symptoms. The gastrointestinal microbiota is closely related to mastitis. Inulin is a prebiotic fiber with functions in improving intestinal microbial communities and enhancing the host’s immunity. However, the impact of dietary inulin on the rumen inner environment remains unknown. The current study investigated whether inulin could relieve SCM by affecting the profiles of ruminal bacterial and metabolites in dairy cows. Inulin inclusion rates were 0, 100, 200, 300, and 400 g/day per cow, respectively. Inulin increased milk yield, milk protein, and lactose and reduced the somatic cell counts (SCC) in milk. In serum, the concentration of proinflammatory cytokines, such as interleukin-6 (IL-6), IL-8, tumor necrosis factor α (TNF-α), and malondialdehyde (MDA) were decreased, and IL-4 and superoxide dismutase (SOD) were increased. Meanwhile, inulin increased the concentration of propionate, butyrate, and lactic acid (LA), while it decreased NH3-N in rumen. The propionate- and butyrate-producing bacteria (e.g., Prevotella and Butyrivibrio) and several beneficial commensal bacteria (e.g., Muribaculaceae and Bifidobacterium) as well as metabolites related to energy and amino acid metabolism (e.g., melibiose and l-glutamate) were increased. However, several proinflammatory bacteria (e.g., Clostridia UCG-014, Streptococcus, and Escherichia-Shigella) were decreased, accompanied by the downregulation of lipid proinflammatory metabolites, for example, ceramide(d18:0/15:0) [Cer(d18:0/15:0)] and 17-phenyl-18,19,20-trinor-prostaglandin E2. In the current study, the above indicators showed the best response in the 300 g/day inulin group. Overall, dietary supplementation of inulin could alleviate inflammatory responses in cows with SCM through improving the rumen inner environment. IMPORTANCE The correlation between mastitis and the gastrointestinal microbiome in dairy cows has been demonstrated. Regulating the profile of rumen microorganisms may contribute to remission of subclinical mastitis (SCM). Supplementation of inulin in the diets of cows with SCM could increase the abundance of short-chain fatty acid (SCFA)-producing bacteria and beneficial commensal bacteria in rumen and meanwhile the levels of amino acids and energy metabolism. Conversely, the abundance of ruminal bacteria and metabolites with proinflammatory effects were decreased. Our study suggests that the improvement of the rumen internal environment by inulin supplementation could ameliorate inflammatory responses during SCM in dairy cows and thus improve lactation performance and milk quality. Our results provide a theoretical basis for regulation measures of SCM in dairy cows.
Collapse
|
25
|
Hu H, Fang Z, Mu T, Wang Z, Ma Y, Ma Y. Application of Metabolomics in Diagnosis of Cow Mastitis: A Review. Front Vet Sci 2021; 8:747519. [PMID: 34692813 PMCID: PMC8531087 DOI: 10.3389/fvets.2021.747519] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022] Open
Abstract
Cow mastitis, with high incidence rate and complex cause of disease, is one of the main diseases that affect the development of dairy industry in the world. Clinical mastitis and subclinical mastitis caused by Staphylococcus aureus, Escherichia coli, Streptococcus, and other pathogens have a huge potential safety hazard to food safety and the rapid development of animal husbandry. The economic loss caused by cow mastitis is billions of dollars every year in the world. In recent years, the omics technology has been widely used in animal husbandry with the continuous breakthrough of sequencing technology and the continuous reduction of sequencing cost. For dairy cow mastitis, the traditional diagnostic technique, such as histopathological screening, somatic cell count, milk pH test, milk conductivity test, enzyme activity test, and infrared thermography, are difficult to fully and comprehensively clarify its pathogenesis due to their own limitations. Metabolomics technology is an important part of system biology, which can simultaneously analyze all low molecular weight metabolites such as amino acids, lipids, carbohydrates under the action of complex factors including internal and external environment and in a specific physiological period accurately and efficiently, and then clarify the related metabolic pathways. Metabolomics, as the most downstream of gene expression, can amplify the small changes of gene and protein expression at the level of metabolites, which can more fully reflect the cell function. The application of metabolomics technology in cow mastitis can analyze the hetero metabolites, identify the related biomarkers, and reveal the physiological and pathological changes of cow mammary gland, so as to provide valuable reference for the prediction, diagnosis, and treatment of mastitis. The research progress of metabolomics technology in cow mastitis in recent years was reviewed, in order to provide guidance for the development of cow health and dairy industry safety in this manuscript.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanfen Ma
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
26
|
Gu F, Liang S, Zhu S, Liu J, Sun HZ. Multi-omics revealed the effects of rumen-protected methionine on the nutrient profile of milk in dairy cows. Food Res Int 2021; 149:110682. [PMID: 34600684 DOI: 10.1016/j.foodres.2021.110682] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 11/28/2022]
Abstract
Cow's milk is a highly-nutritious dairy product part of human diet worldwide. Rumen-protected methionine (RPM) is widely used to improve lactation performance of dairy cows, but understanding of the effects of RPM on milk nutrients composition are still limited. In this study, twenty mid-lactating dairy cows were supplemented with 20 gm/day RPM for 8 weeks to investigate the responses of milk nutritional composition to RPM. Metabolomics was applied for analyzing milk metabolites and 16S rRNA gene sequencing was used for analysis of rumen microbial composition. Milk fat content and yield were significantly increased after RPM supplementation. Totally 443 compounds belonging to 15 classes were identified, among which 15 metabolites were significantly changed. The functional nutrient α-ketoglutaric acid were significantly increased in the milk after RPM supplementation. We found 48 significantly differing bacterial genera in the rumen after supplementing RPM. Multi-omics integrated analysis revealed the higher abundance of Acetobacter, unclassified_f_Lachnospiraceae and Saccharofermentan contributed to the improved milk fat. In addition, the enriched abundance of Thermoactinomyces, Asteroleplasma, and Saccharofermentan showed positive correlations with higher α-ketoglutaric acid of milk. Our results uncover the metabolomic fingerprint and the key functional metabolites in the milk after supplementing RPM in dairy cows, as well as the key rumen bacteria associated with them. These findings provide novel insights into the development of functional dairy products that enriched the functional nutrient α-ketoglutaric acid or high milk fat.
Collapse
Affiliation(s)
- Fengfei Gu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Shuling Liang
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Senlin Zhu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jianxin Liu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Hui-Zeng Sun
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
27
|
Zhu C, Tang K, Lu X, Tang J, Laghi L. An Untargeted Metabolomics Investigation of Milk from Dairy Cows with Clinical Mastitis by 1H-NMR. Foods 2021; 10:foods10081707. [PMID: 34441485 PMCID: PMC8394248 DOI: 10.3390/foods10081707] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 01/21/2023] Open
Abstract
Mastitis is one of the diseases with the highest incidence in dairy cows, causing huge economic losses to the dairy industry all over the world. The aim of the study was to characterize mastitic milk metabolome through untargeted nuclear magnetic resonance spectroscopy (1H-NMR). Taking advantage of the high reproducibility of 1H-NMR, we had the opportunity to provide quantitative information for all the metabolites identified. Fifty-four molecules were characterized, sorted mainly into the chemical groups, namely amino acids, peptides and analogues, carbohydrates and derivates, organic acids and derivates, nucleosides, nucleotides and analogues. Combined with serum metabolomic investigations, several pathways were addressed to explain the mechanisms of milk metabolome variation affected by clinical mastitis, such as tricarboxylic acid cycle (TCA cycle) and phenylalanine, tyrosine and tryptophan biosynthesis. These results provide a further understanding of milk metabolome altered by clinical mastitis, which can be used as a reference for the further milk metabolome investigations.
Collapse
Affiliation(s)
- Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (C.Z.); (K.T.); (X.L.)
| | - Kaiwei Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (C.Z.); (K.T.); (X.L.)
| | - Xuan Lu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (C.Z.); (K.T.); (X.L.)
| | - Junni Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (C.Z.); (K.T.); (X.L.)
- Correspondence: ; Tel.: +86-028-8592-8243
| | - Luca Laghi
- Department of Agro-Food Science and Technology, University of Bologna, 47521 Cesena, Italy;
| |
Collapse
|