1
|
Yao Y, Wang J, Zhang G, Li Z, Yu H, Zhao J, Huang M, Yao C, Wang Y, Luo H. Exploring the quality marker of Curcumae kwangsiensis radix from different production regions using the spectrum-effect relationship, serum metabolism, and molecular docking integrated with chemometrics. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119652. [PMID: 40118195 DOI: 10.1016/j.jep.2025.119652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/27/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcuma kwangsiensis radix (CKR) is one of the most important herbs in traditional Chinese medicine. It effectively enhances blood circulation and eliminates stasis, which is highly associated with thrombosis. Furthermore, CKR is primarily produced in the Guangxi and Yunnan provinces of China. However, the quality control indicators of CKR in different production regions remain controversial. AIM To explore the quality marker (Q-Marker) of CKR in different production regions. MATERIALS AND METHODS First, we determined the UPLC fingerprints of CKR from different production regions. Second, in vitro, antiplatelet aggregation biopotency (AAB) was measured using a parallel-line assay based on the quantitative response method of the bioassay. We identified CKR components and their serum metabolism using UPLC-Q-TOF-MSE. Subsequently, molecular docking technology was used for Q-Marker analysis. Finally, we established a method for the quantitative analysis of Q-Marker. RESULTS We observed significant differences of CKR between the Guangxi and Yunnan provinces according to the UPLC fingerprint and AAB results. Eight quality control-relevant components were screened using orthogonal partial least squares based on the spectrum-effect relationship. UPLC-Q-TOF-MSE identified 57 CKR components, and 10 prototype components and 11 metabolites, respectively, were detected during serum metabolism. Ultimately, curcumenone was screened as a Q-Marker using the spectrum-effect relationship integrated with serum metabolism, which positively correlated with the quality. The AAB results of the Q-Marker indicated that curcumenone exhibited significant anti-platelet aggregation activity. The results of the Q-Marker molecular docking revealed the strongest binding effect between curcumenone and the GP-IIb/IIIa receptor, whereas that between the P2Y12 receptor and the P2Y1 receptor was the weakest. In addition, quantitative analysis of the Q-Marker indicated that there were significant differences in the contents of the Q-Marker from different production regions. CONCLUSIONS We identified a Q-Marker for CKR that can provide a foundation for quality evaluation research from different production regions.
Collapse
Affiliation(s)
- Yixin Yao
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, China
| | - Jingqi Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, China
| | - Guohui Zhang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, China
| | - Zhiyan Li
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, China
| | - Hua Yu
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, China
| | - Jinmin Zhao
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Mingqing Huang
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | - Chun Yao
- Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, China; College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China.
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, China; College of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
2
|
Zheng X, Zhan Y, Peng M, Xu W, Deng G. Metabolite Profiling Analysis of the Tongmai Sini Decoction in Rats after Oral Administration through UHPLC-Q-Exactive-MS/MS. Metabolites 2024; 14:333. [PMID: 38921468 PMCID: PMC11205536 DOI: 10.3390/metabo14060333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
Tongmai Sini decoction (TSD), the classical prescriptions of traditional Chinese medicine, consisting of three commonly used herbal medicines, has been widely applied for the treatment of myocardial infarction and heart failure. However, the absorbed components and their metabolism in vivo of TSD still remain unknown. In this study, a reliable and effective method using ultra-performance liquid chromatography coupled with hybrid quadrupole-Orbitrap mass spectrometry (UHPLC-Q-Exactive-MS/MS) was employed to identify prototype components and metabolites in vivo (rat plasma and urine). Combined with mass defect filtering (MDF), dynamic background subtraction (DBS), and neutral loss filtering (NLF) data-mining tools, a total of thirty-two major compounds were selected and investigated for their metabolism in vivo. As a result, a total of 82 prototype compounds were identified or tentatively characterized in vivo, including 41 alkaloids, 35 phenolic compounds, 6 saponins. Meanwhile, A total of 65 metabolites (40 alkaloids and 25 phenolic compounds) were tentatively identified. The metabolic reactions were mainly hydrogenation, demethylation, hydroxylation, hydration, methylation, deoxylation, and sulfation. These findings will be beneficial for an in-depth understanding of the pharmacological mechanism and pharmacodynamic substance basis of TSD.
Collapse
Affiliation(s)
- Xianhui Zheng
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (X.Z.); (Y.Z.); (M.P.); (W.X.)
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Yingying Zhan
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (X.Z.); (Y.Z.); (M.P.); (W.X.)
| | - Mengling Peng
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (X.Z.); (Y.Z.); (M.P.); (W.X.)
| | - Wen Xu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (X.Z.); (Y.Z.); (M.P.); (W.X.)
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Guanghai Deng
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (X.Z.); (Y.Z.); (M.P.); (W.X.)
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| |
Collapse
|
3
|
Su Y, Hu K, Li D, Guo H, Sun L, Xie Z. Microbial-Transferred Metabolites and Improvement of Biological Activities of Green Tea Catechins by Human Gut Microbiota. Foods 2024; 13:792. [PMID: 38472905 DOI: 10.3390/foods13050792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Green tea catechins (GTCs) are dietary polyphenols with broad bioactivities that undergo extensive microbial metabolism in the human gut. However, microbial-transferred metabolites and their health benefits are not fully understood. Herein, the microbial metabolism of GTCs by human fecal microbiota and dynamic alteration of the microbiota were integrally investigated via in vitro anaerobic fermentation. The results showed that the human gut microbiota exhibited a strong metabolic effect on GTCs via UHPLC-MS/MS analysis. A total of 35 microbial-transferred metabolites were identified, far more than were identified in previous studies. Among them, five metabolites, namely EGCG quinone, EGC quinone, ECG quinone, EC quinone, and mono-oxygenated EGCG, were identified for the first time in fermented GTCs with the human gut microbiota. Consequently, corresponding metabolic pathways were proposed. Notably, the antioxidant, α-amylase, and α-glucosidase inhibitory activities of the GTCs sample increased after fermentation compared to those of the initial unfermented sample. The results of the 16S rRNA gene sequence analysis showed that the GTCs significantly altered gut microbial diversity and enriched the abundancy of Eubacterium, Flavonifractor, etc., which may be further involved in the metabolisms of GTCs. Thus, these findings contribute to a better understanding of the interactions between GTCs and gut microbiota, as well as the health benefits of green tea consumption.
Collapse
Affiliation(s)
- You Su
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Kaiyin Hu
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Huimin Guo
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China
- Center for Biotechnology, Anhui Agricultural University, Hefei 230036, China
| | - Li Sun
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
4
|
Huang AX, Li JM, Yang L, Chen L, Zhou ZH, Li P, Gao W. A mass defect filtering combined background subtraction strategy for rapid screening and identification of metabolites in rat plasma after oral administration of Yindan Xinnaotong soft capsule. J Pharm Biomed Anal 2023; 231:115400. [PMID: 37099978 DOI: 10.1016/j.jpba.2023.115400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/07/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023]
Abstract
The absorbed prototypes and metabolites of traditional Chinese medicines (TCMs) serves an important part in pharmacological action and clinical effects. However, the comprehensive characterization of which is facing actual or possible rigorous challenges due to the lack of data mining methods and the complexity of metabolite samples. Yindan Xinnaotong soft capsule (YDXNT), a typical traditional Chinese medicine prescription consisting of extracts from 8 herbal medicines, is widely used for the treatment of angina pectoris and ischemic stroke in the clinic. This study established a systematic data mining strategy based on ultra-high performance liquid chromatography tandem quadrupole-time-of-fight mass spectrometry (UHPLC-Q-TOF MS) for comprehensive metabolite profiling of YDXNT in rat plasma after oral administration. The multi-level feature ion filtration strategy was primarily conducted through the full scan MS data of plasma samples. All potential metabolites were rapidly fileted out from the endogenous background interference based on the background subtract and the chemical type specifically mass defect filter (MDF) windows including flavonoids, ginkgolides, phenolic acids, saponins, and tanshinones. As the MDF windows of certain types were overlapped, the screened-out potential metabolites were deeply characterized and identified according to their retention times (RT), integrating neutral loss filtering (NLF), diagnostic fragment ions filtering (DFIF), and further confirmed by reference standards. Thus, a total of 122 compounds, consisting of 29 prototype components (16 confirmed with reference standards) and 93 metabolites had been identified. This study provides a rapid and robust metabolite profiling method for researching complicated traditional Chinese medicine prescriptions.
Collapse
Affiliation(s)
- An-Xian Huang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Jun-Ming Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Liu Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ling Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Zi-Han Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| |
Collapse
|
5
|
Tuli HS, Joshi H, Vashishth K, Ramniwas S, Varol M, Kumar M, Rani I, Rani V, Sak K. Chemopreventive mechanisms of amentoflavone: recent trends and advancements. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:865-876. [PMID: 36773053 DOI: 10.1007/s00210-023-02416-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
In parallel to the continuous rise of new cancer cases all over the world, the interest of scientific community in natural anticancer agents has steadily been increased. In the past decades, numerous phytochemicals have been shown to possess a strong anticancer potential in preclinical conditions. One of such interesting compounds, derived from different plants such as ginkgo, hinoki, and St. John`s wort, is amentoflavone. In this review article, a wide range of anticancer properties of this natural biflavone are described, revealing its ability to suppress the malignant growth and lead tumor cells to apoptotic death, besides impeding also angiogenic and metastatic processes. Therefore, amentoflavone can be considered a potential lead compound for the development of novel anticancer drug candidates, definitely deserving further in vivo studies and also initiation of clinical trials. It is expected that this plant biflavone might be important, either alone or in combination with the current standard chemotherapeutics, in providing some alleviation for the continuous rise of global cancer burden.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Ambala, Mullana, 133207, India
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kanupriya Vashishth
- Advance Cardiac Centre Department of Cardiology, Post Graduate Institute of Medical Education and Research (PGIMER) Chandigarh, Chandigarh, 160012, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali, 140413, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University Sadopur, Ambala, 134007, India
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar College of Medical Sciences and Research (MMCMSR), Sadopur, 134007, Ambala, India
| | - Vibha Rani
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, 201307, Uttar Pradesh, India
| | | |
Collapse
|
6
|
Peng W, Li Z, Cai D, Yi X, Yue Jeff Zhang J, Zhong G, Ouyang H, Feng Y, Yang S. Gender differences pharmacokinetics, bioavailability, hepatic metabolism and metabolism studies of Pinnatifolone A, a sesquiterpenoid compound, in rats by LC-MS/MS and UHPLC-Q-TOF-MS/MS. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154544. [PMID: 36610155 DOI: 10.1016/j.phymed.2022.154544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Pinnatifolone A is a typical sesquiterpenoid and the primary active ingredient of Syringa oblata Lindl., has potent anti-inflammatory activity. However, Pinnatifolone A pharmacokinetic and metabolites analysis investigations in male and female rats, as well as its in vitro stability in male and female rat liver microsomes, have not been evaluated and compared. PURPOSE To investigate preclinical pharmacokinetic and metabolite in both genders, confirm gender differences, and provide usable information for the development of clinical applications. METHODS A quick, precise, and sensitive LC-MS/MS method was created and effectively used to determine the pharmacokinetics of oral (140 mg/kg) and intravenous (6.3 mg/kg) Pinnatifolone A in male and female rats, in vitro Pinnatifolone A elimination studies in male and female rat liver microsomes. Following that, a UHPLC-Q-TOF-MS/MS technique was established to identify the metabolic profiles of Pinnatifolone A obtained from rat plasma and excreta. RESULTS In the current study, we established for the first time an LC-MS/MS method for the quantitation of Pinnatifolone A with acceptable linearity and selectivity, recovery and matrix effect, accuracy and precision. The absolute oral bioavailability of Pinnatifolone A was approximately 30.36% in female rats, the clearance (CL) was 20.99±3.33 l/h/kg in female rats and 472.37±437.31 l/h/kg in male rats. This difference in rat genders may pertain to the sex-specific expression of hepatic enzymes as demonstrated in the metabolic stability evaluation in the present research; the male rats exhibited higher CLint(mic) (158.83±9.57 μl/min/mg protein) than female rats (76.47±7.90 μl/min/mg protein) liver microsomes, indicating higher Pinnatifolone A clearance in male rats. Twenty-four metabolites were detected and identified in female and male rats; N-acetylcysteine conjugation metabolite was the most abundant metabolites in both rat feces and urine. Furthermore, male and female rats had significantly different levels of the N-acetylcysteine conjugation metabolite. Hydrogenation metabolite was particular to female rats both in rat fecal and urine. Glucuronide conjugation metabolite was the predominant metabolite in rat plasma, and its amount in female rats was double that of male rats. CONCLUSIONS The present research is the first to report the preclinical pharmacokinetics and metabolites of Pinnatifolone A in male and female rats, confirming the gender-based differences. The findings provide a comprehensive overview for further understanding of the pharmacokinetic and metabolic characteristics of Pinnatifolone A and serve as a guide for its future development and utilization.
Collapse
Affiliation(s)
- Wanqian Peng
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China
| | - Zhiqiang Li
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China
| | - Dingji Cai
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China
| | - Xiaocui Yi
- Nanchang Aubrak Therapeutis Co., Ltd, No. 688 North Aixihu Road, Nanchang 330096, PR China
| | - Ji Yue Jeff Zhang
- Nanchang Aubrak Therapeutis Co., Ltd, No. 688 North Aixihu Road, Nanchang 330096, PR China
| | - Guoyue Zhong
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, No. 56 Yangming Road, Nanchang 330006, PR China
| | - Hui Ouyang
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, No. 56 Yangming Road, Nanchang 330006, PR China.
| | - Yulin Feng
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, No. 56 Yangming Road, Nanchang 330006, PR China.
| | - Shilin Yang
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China
| |
Collapse
|
7
|
Lee H, Kim SY, Lee SW, Kwak S, Li H, Piao R, Park HY, Choi S, Jeong TS. Amentoflavone-Enriched Selaginella rossii Protects against Ultraviolet- and Oxidative Stress-Induced Aging in Skin Cells. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122106. [PMID: 36556471 PMCID: PMC9787533 DOI: 10.3390/life12122106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Selaginellaceae plants are used in cosmetics to limit skin aging. This study is the first to investigate the anti-aging effects of Selaginella rossii (SR) on ultraviolet B (UVB)- and oxidative stress-induced skin cells. The 95% ethanol extract of Selaginella rossii (SR95E) contained much higher amounts of amentoflavone (AMF), an active compound, than other Selaginellaceae plants and was more effective in inhibiting matrix metalloproteinase (MMP)-1 expression in CCD-986sk fibroblasts. SR95E significantly decreased UVB-induced MMP-1, MMP-2, MMP-3 and MMP-9 expression and enhanced procollagen type I C-peptide content and mRNA expression of collagen type I alpha (COL1A)1 and COL1A2 in CCD-986sk fibroblasts. In HaCaT keratinocytes, SR95E treatment also dose-dependently decreased UVB-induced MMP-1 concentration and MMP-1, MMP-2, MMP-3 and MMP-9 mRNA expression. Moreover, SR95E treatment markedly inhibited UVB-induced c-Jun N-terminal kinase and p38 mitogen-activated protein kinase signaling and nuclear factor kappa-B signaling in HaCaT cells. Furthermore, SR95E and AMF markedly regulated the 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced expression of cellular senescence-related markers, including p16, p21 and LMNB1, in HaCaT cells. Overall, this study indicates that SR may have potential as a functional material on preventing UVB- and AAPH-induced skin aging and wrinkles.
Collapse
Affiliation(s)
- Hwa Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Soo-Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sang Woo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sehan Kwak
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Hulin Li
- Department of Agronomy, Yanbian University Agriculture College, Yanji 133000, China
| | - Renzhe Piao
- Department of Agronomy, Yanbian University Agriculture College, Yanji 133000, China
| | - Ho-Yong Park
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Correspondence: (S.C.); (T.-S.J.); Tel.: +82-42-879-8340 (S.C.); +82-42-860-4558 (T.-S.J.); Fax: +82-42-861-8349 (S.C.); +82-42-861-2675 (T.-S.J.)
| | - Tae-Sook Jeong
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Correspondence: (S.C.); (T.-S.J.); Tel.: +82-42-879-8340 (S.C.); +82-42-860-4558 (T.-S.J.); Fax: +82-42-861-8349 (S.C.); +82-42-861-2675 (T.-S.J.)
| |
Collapse
|
8
|
Huang J, Huang S, Zhang J, Liang Y, Bai J, Xu W, Gong L, Su H, Huang Z, Qiu X. A Systematic Strategy for the Characterization of 2,3,5,4'-Tetrahydroxystilbene-2- O-β-d-glucoside Metabolites In Vivo by Ultrahigh Performance Liquid Chromatography Coupled with a Q Exactive-Orbitrap Mass System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7773-7785. [PMID: 35713646 DOI: 10.1021/acs.jafc.2c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
2,3,5,4'-Tetrahydroxystilbene-2-O-β-d-glucoside (THSG), a polyphenol stilbene compound, is the main active constituent in Polygonum multiflorum. In this study, a comprehensive analytical strategy was developed for the characterization of THSG metabolites in vivo (rat plasma, bile, urine, heart, liver, spleen, lung, kidney, and stomach) utilizing ultrahigh performance liquid chromatography coupled with Q Exactive hybrid quadrupole-Orbitrap mass spectrometry (UHPLC-Q Exactive-Orbitrap MS) based on multiple data-processing techniques. As a result, a total of 75 metabolites were characterized in bio-samples, and calculated Clog P values were further employed to assign the chemical structures of some isomers. Glucoside hydrolysis, hydrogenation, hydroxylation, glucuronide conjugation, and sulfate conjugation would be the major metabolic pathways of THSG. It appeared that most metabolites would generally undergo phase I reactions followed by phase II reactions. These results provided valuable information for in-depth understanding of the safety and efficacy of THSG and showed a valuable methodology for metabolic characterization.
Collapse
Affiliation(s)
- Juan Huang
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Shuyi Huang
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jing Zhang
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Youling Liang
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Junqi Bai
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wen Xu
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lu Gong
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - He Su
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhihai Huang
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaohui Qiu
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
9
|
Shao S, Cheng X, Zheng R, Zhang S, Yu Z, Wang H, Wang W, Ye Q. Sex-related deposition and metabolism of vanisulfane, a novel vanillin-derived pesticide, in rats and its hepatotoxic and gonadal effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152545. [PMID: 34952065 DOI: 10.1016/j.scitotenv.2021.152545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
A series of vanillin derivatives have recently been synthesized as effective candidate antiviral agents, with vanisulfane exhibiting pronounced curative and protective activities against cucumber mosaic virus and potato virus Y. However, research on some new pesticides usually ignores their various metabolites and sex-related toxicity. Assisted by 14C labeling, a trial was conducted to investigate the tissue distribution, excretion, and metabolism of vanisulfane in male and female rats for the first time. The results showed that 83.30-87.51% of applied 14C activity was excreted in urine and feces within 24 h of oral administration, and 14C was most abundant in the liver and kidney in both sexes. Interestingly, sex differences were observed in the experiment, with lower body clearance in males than in females 24 h after treatment and preferences for biliary and renal excretion of the pesticide in male and female rats, respectively. A high degradation rate was found for vanisulfane in the plasma; thus, the metabolites of vanisulfane were investigated using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) combined with 14C labeling. One glucuronic acid conjugate and two oxidation metabolites were detected, supporting the monitoring of vanisulfane in vivo. Additionally, rats exposed to vanisulfane exhibited hepatic steatosis in both sexes, along with mild gonadal effects in males. This research offers an effective method for conducting environmental behavioral research and provides new insights for evaluating the potential risks of novel pesticides in mammals from a sex perspective.
Collapse
Affiliation(s)
- Siyao Shao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Xi Cheng
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Ruonan Zheng
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Sufen Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Zhiyang Yu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Haiyan Wang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Wei Wang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
An K, Jialu J, Qin L, Xianjie S, Yan C, Jiani T, Liu L, Weixing S, DongXin T, Haibo C, Dongdong S. Characterization of the chemical constituents and in vivo metabolic profile of Scutellaria barbata D. Don by ultra-high performance liquid chromatography-high resolution mass spectrometry. J Sep Sci 2022; 45:1600-1609. [PMID: 35192736 DOI: 10.1002/jssc.202100852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/06/2022]
Abstract
Scutellaria barbata D. Don (S. barbata) is one of the most frequently used anticancer herb medicine in China. Mechanistic understanding of the biological activities of S. barbata is hindered by limited knowledge regarding its components and metabolic profile. In this study, ultra-high-performance liquid chromatography coupled with high resolution mass spectrometry (quadrupole time-of-flight mass spectrometry,) was used to identify the chemical constituents in S. barbata and their metabolic profiles in rats. By applying cleavage rules and comparison with reference substances, 89 components were identified, which included 45 flavonoids, 28 diterpenoids, 10 phenolics, and 6 others. A total of 110 compounds, including 32 prototype compounds and 78 metabolites, were identified or tentatively characterized in vivo. Methylation, sulfonation, and glucuronidation were the main metabolic pathways, which could be attributed to the fact that several of the compounds in S. barbata have phenolic hydroxyl groups. This is the first systematic study on the chemical constituents and in vivo metabolic profile of S. barbata. The analytical method features a quick and comprehensive dissection of the chemical composition and metabolic profile of S. barbata and provides a basis for exploring its various biological activates. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kang An
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiang Jialu
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li Qin
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sheng Xianjie
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chen Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tan Jiani
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li Liu
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shen Weixing
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tang DongXin
- The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Cheng Haibo
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Research Center for Pathogenesis Theory of Cancerous Toxin and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sun Dongdong
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Research Center for Pathogenesis Theory of Cancerous Toxin and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
11
|
Evaluation of amentoflavone metabolites on PARP-1 inhibition and the potentiation on anti-proliferative effects of carboplatin in A549 cells. Bioorg Med Chem Lett 2022; 56:128480. [PMID: 34843914 DOI: 10.1016/j.bmcl.2021.128480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/10/2021] [Accepted: 11/20/2021] [Indexed: 11/23/2022]
Abstract
The present study aims to determine the major metabolites of amentoflavone (AMF) and further evaluate their inhibitory effects on PARP-1. First, different fractions (Frs. 1-9), which were collected according to retention time of AMF metabolites based on UHPLC-QTOF-MS/MS qualitative analysis, were evaluated on their inhibitory effects against PARP-1. Then, two mono-sulfate metabolites in the fractions with potent PARP-1 inhibitory effect were targetedly semi-synthesized. Moreover, three mono-sulfate conjugates (compound 8, 9 and 10), including one disulfate conjugate (compound 10), were isolated and their structures were fully elucidated by UHPLC-QTOF-MS/MS and NMR. Finally, the binding mode of compound 8 (amentoflavone-4‴-O-sulfate) toward PARP-1 and its potentiation on carboplatin (CBP) in A549 cells were investigated. This study was the first report on bioactivity evaluation of AMF metabolites in rat bile on PARP-1 and the potentiation of compound 8 on carboplatin (CBP) in A549 cells in vitro. This paper also provided scientific basis for the AMF metabolites on PARP-1 inhibition and chemosensitization.
Collapse
|
12
|
Ultrahigh-performance liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry for separation and identification of hawthorn fruits by multivariate analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Qiu H, Guo Z, Xu Q, Mao S, Wu W. Evaluation on absorption risks of amentoflavone after oral administration in rats. Biopharm Drug Dispos 2021; 42:435-443. [PMID: 34655436 DOI: 10.1002/bdd.2304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/05/2021] [Indexed: 11/06/2022]
Abstract
The present study was aimed to systemically assess the absorption risks of amentoflavone (AMF). Physicochemical properties of AMF were evaluated using in vitro assays including water solubility and stability in both simulated gastric and intestinal fluids, as well as logD, pka and permeability studies in a monolayer Caco-2 model. The results together suggested that AMF was a compound with moderate intestinal absorption and the poor solubility was the key rate-limiting step for the oral absorption of AMF, and PVP-K30 were thus used as a solubilizer to improve its solubility and oral bioavailability. Furthermore, studies on pharmacokinetics and biliary excretion of AMF with tween 80 or PVP-K30 were performed after oral administration, and the results showed that the percentage of AMF conjugates in bile was determined up to be 96.73% and no AMF conjugates were detected in rat plasma. The above results revealed that the poor oral absorption of AMF may probably be attributed to the low solubility, high level of metabolism and hepatic first-pass effects. The relative bioavailability of AMF solubilized by PVP-K30 was about 2-fold than that of AMF suspended in 1% tween 80. The present study may help provide scientific insights to guide the rational design of AMF into more efficient formulation systems.
Collapse
Affiliation(s)
- Hui Qiu
- Department of Pharmaceutics, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhengbing Guo
- Department of Pharmaceutics, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Qian Xu
- Department of Pharmaceutics, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Shengfang Mao
- Department of Pharmaceutics, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Wenming Wu
- Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
14
|
Xia H. Extensive metabolism of flavonoids relevant to their potential efficacy on Alzheimer's disease. Drug Metab Rev 2021; 53:563-591. [PMID: 34491868 DOI: 10.1080/03602532.2021.1977316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder, the incidence of which is climbing with ever-growing aged population, but no cure is hitherto available. The epidemiological studies unveiled that chronic intake of flavonoids was negatively associated with AD risk. Flavonoids, a family of natural polyphenols widely distributed in human daily diets, were readily conjugated by phase II drug metabolizing enzymes after absorption in vivo, and glucuronidation could occur in 1 min following intravenous administration. Recently, as many as 191 metabolites were obtained after intragastric administration of a single flavonoid, indicating that other bioactive metabolites, besides conjugates, might be formed and account for the contradiction between efficacy of flavonoids in human or animal models and low systematic exposure of flavonoid glycosides or aglycones. In this review, metabolism of complete 68 flavonoid monomers potential for AD treatment, grouped in flavonoid O-glycosides, flavonoid aglycones, flavonoid C-glycosides, flavonoid dimers, flavonolignans and prenylated flavonoids according to their common structural elements, respectively, has been systematically retrospected, summarized and discussed, including their unequivocally identified metabolites, metabolic interconversions, metabolic locations, metabolic sites (regio- or stereo-selectivity), primarily involved metabolic enzymes or intestinal bacteria, and interspecies correlations or differences in metabolism, and their bioactive metabolites and the underlying mechanism to reverse AD pathology were also reviewed, providing whole perspective about advances on extensive metabolism of diverse potent flavonoids in vivo and in vitro up to date and aiming at elucidation of mechanism of actions of flavonoids on AD or other central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Hongjun Xia
- Medical College, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
15
|
Long H, Hu X, Wang B, Wang Q, Wang R, Liu S, Xiong F, Jiang Z, Zhang XQ, Ye WC, Wang H. Discovery of Novel Apigenin-Piperazine Hybrids as Potent and Selective Poly (ADP-Ribose) Polymerase-1 (PARP-1) Inhibitors for the Treatment of Cancer. J Med Chem 2021; 64:12089-12108. [PMID: 34404206 DOI: 10.1021/acs.jmedchem.1c00735] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) is a potential target for the discovery of chemosensitizers and anticancer drugs. Amentoflavone (AMF) is reported to be a selective PARP-1 inhibitor. Here, structural modifications and trimming of AMF have led to a series of AMF derivatives (9a-h) and apigenin-piperazine/piperidine hybrids (14a-p, 15a-p, 17a-h, and 19a-f), respectively. Among these compounds, 15l exhibited a potent PARP-1 inhibitory effect (IC50 = 14.7 nM) and possessed high selectivity to PARP-1 over PARP-2 (61.2-fold). Molecular dynamics simulation and the cellular thermal shift assay revealed that 15l directly bound to the PARP-1 structure. In in vitro and in vivo studies, 15l showed a potent chemotherapy sensitizing effect against A549 cells and a selective cytotoxic effect toward SK-OV-3 cells through PARP-1 inhibition. 15l·2HCl also displayed good ADME characteristics, pharmacokinetic parameters, and a desirable safety margin. These findings demonstrated that 15l·2HCl may serve as a lead compound for chemosensitizers and the (BRCA-1)-deficient cancer therapy.
Collapse
Affiliation(s)
- Huan Long
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiaolong Hu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Baolin Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Quan Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Rong Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shumeng Liu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, People's Republic of China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiao-Qi Zhang
- Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
16
|
Jia W, Zhang M, Du A, Zhang R, Xu M, Shi L. Accurate Quantification of Sulfonamide Metabolites in Goat Meat: A New Strategy for Minimizing Interaction between Sheep Serum Albumin and Sulfonamide Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6556-6568. [PMID: 34080416 DOI: 10.1021/acs.jafc.1c02496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To date, the determination of sulfonamide metabolites in animal-derived food has universal disadvantages of low throughput and no integrated metabolites involved. In this study, a powerful and reliable strategy for high-throughput screening of sulfonamide metabolites in goat meat was proposed based on an aqueous two-phase separation procedure (ATPS) combined with ultrahigh-performance liquid chromatography quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap). Noncovalent interactions including van der Waals force, hydrogen bonding, and hydrophobic effect were determined to be staple interactions between the sulfonamide metabolites and sheep serum albumin by fluorescence spectroscopy and molecular docking technology, and an 80% acetonitrile-water solution/(NH4)2SO4 was used as ATPS in order to release combined sulfonamide metabolites and minimize the influence of sheep serum albumin. Sulfonamide metabolites in the matrix were screened based on a mechanism of mass natural loss and core structure followed by identification combined with the pharmacokinetic. The developed strategy was validated according to EU standard 2002/657/EC with CCα ranging from 0.07 to 0.98 μg kg-1, accuracy recovery with 84-107%, and RSDs lower than 8.9%. Eighty seven goat meat samples were used for determination of 26 sulfonamides and 8 potential metabolites. On the basis of the established innovative process, this study has successfully implemented the comprehensive detection of sulfonamide metabolites, including N4-acetylated substitution, N4-hydroxylation, 4-nitroso, azo dimers, oxidized nitro, N4 monoglucose conjugation, β-d-glucuronide, and N-4-aminobenzenesulfonyl metabolites, which were shown to undergo oxidation, hydrogenation, sulfation, glucuronidation, glucosylation, and O-aminomethylation.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Min Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - An Du
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Mudan Xu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|