1
|
Niu Z, Yuan D, Zhao M, Zhou F. Hydrolyzed soy protein nanoparticles designed for VD 3 delivery: VD 3 incorporation and remodeling behavior during digestion matters. Food Chem 2025; 475:143370. [PMID: 39952174 DOI: 10.1016/j.foodchem.2025.143370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/25/2024] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
In this study, delivery efficiency of hydrolyzed soy protein nanoparticles (SNPs) with different loading patterns towards VD3 was investigated. Specifically, SNPs with hydrophobic regions feasible for VD3 loading (Pro1 and Pro2, Pattern1) showed better stabilization ability. While those co-assembled with VD3 (Pro3, Pattern2) showed weaker protection due to loosen structures. Remodeling behavior during digestion generally improved cellular uptake. Herein, Pro1 and Pro2 tended to form hydrophobic aggregates during gastric digestion and later their degradations facilitated sustained release of VD3 and formation of mixed micelles, enhancing absorption at smaller size. The co-assembled nanoparticles (Pro3) easily underwent electrostatic-induced aggregation at gastric phase and immediately disassociated upon bile salts, leading to rapid release of VD3, and typical peptides in digests that promote VD3 absorption require further study. These findings suggest that VD3 loading and digestion would alter carrier structures and affect cellular uptake. VD3 incorporation and remodeling behavior of the carrier warrants attention.
Collapse
Affiliation(s)
- Zhicheng Niu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Dan Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Feibai Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China.
| |
Collapse
|
2
|
Dong L, Jiang S, Lou W, Xu C, Wang J. Cationic Lipid-Assisted PEG-b-PLA Nanoparticles Achieve Long-Lasting Targeted Delivery of Natural Hydrophobic Antioxidants. Mol Nutr Food Res 2025:e202400703. [PMID: 39981785 DOI: 10.1002/mnfr.202400703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/23/2024] [Accepted: 01/23/2025] [Indexed: 02/22/2025]
Abstract
Natural hydrophobic antioxidants (e.g., β-carotene and naringenin) are severely limited in their application due to their low solubility and high sensitivity properties. In this study, cationic lipid-assisted nanoparticles loaded with β-carotene (NP-BC) and naringenin (NP-NAR), respectively, were fabricated and characterized, and their digestive and metabolic behaviors were evaluated using static digestion models and in vivo imaging. The particle size and potential of cationic polymer nanoparticles changed during digestion but retained their structural integrity, which was conducive to targeted drug delivery to the liver and prolonged the in vivo circulation of the drug. It is noteworthy that whereas NP-BC was more advantageous in lowering hepatic fat deposition, NP-NAR successfully limited weight gain. This study proved that cationic polymer nanoparticles are promising carriers for transporting natural hydrophobic antioxidants and may be beneficial for improving nutrition absorption and targeted delivery to alleviate metabolic dysfunction-associated steatotic liver disease (MASLD) symptoms.
Collapse
Affiliation(s)
- Lu Dong
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Shuiqing Jiang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Wenyong Lou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Congfei Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Juan Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Deng L, Wang R, Xu X, Jiang H, Han J, Liu W. Characterization, in vitro elderly digestion, and organoids cell uptake of curcumin-loaded nanoparticles. Food Chem 2024; 458:140292. [PMID: 38959794 DOI: 10.1016/j.foodchem.2024.140292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/17/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Curcumin, a bioactive compound, showed versatile in anti-inflammatory and anti-cancer ability, while their biological fate in elderly is unclear. In this study, curcumin-loaded nanoparticles based on octyl succinate hydrate (OSA) starch and sodium caseinate were prepared and the in vitro elderly digestion and absorption fate was investigated. The loading capacity of curcumin-loaded nanoparticles prepared from OSA starch (HI), sodium caseinate (SC) and OSA starch‑sodium caseinate (HS) were all higher than 15%. Curcumin release behavior of the three nanoparticles during in vitro digestion conformed to first-order kinetics. Meanwhile, the transport efficiency of curcumin for HI, SC, and HS increased significantly than the free curcumin (near 1-fold), and the permeability were 1.9, 2.0, and 2.0 times, respectively. The gene expressions of TNF-α, SREBP2 and NPC1L1 in the organoids were enhanced than control group. This study provided scientific reference and guidance for encapsulation of curcumin and digestion and absorption properties in elderly.
Collapse
Affiliation(s)
- Leiyu Deng
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Ruijie Wang
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiankang Xu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hanyun Jiang
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jianzhong Han
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weilin Liu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
4
|
Zhong L, Xu J, Hu Q, Zhan Q, Ma N, Zhao M, Zhao L. Improved bioavailability and antioxidation of β-carotene-loaded biopolymeric nanoparticles stabilized by glycosylated oat protein isolate. Int J Biol Macromol 2024; 263:130298. [PMID: 38382783 DOI: 10.1016/j.ijbiomac.2024.130298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/03/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
The limited bioavailability of β-carotene hinders its potential application in functional foods, despite its excellent antioxidant properties. Protein-based nanoparticles have been widely used for the delivery of β-carotene to overcome this limitation. However, these nanoparticles are susceptible to environmental stress. In this study, we utilized glycosylated oat protein isolate to prepare nanoparticles loaded with β-carotene through the emulsification-evaporation method, aiming to address this challenge. The results showed that β-carotene was embedded into the spherical nanoparticles, exhibiting relatively high encapsulation efficiency (86.21 %) and loading capacity (5.43 %). The stability of the nanoparticles loaded with β-carotene was enhanced in acidic environments and under high ionic strength. The nanoparticles offered protection to β-carotene against gastric digestion and facilitated its controlled release (95.76 % within 6 h) in the small intestine, thereby leading to an improved in vitro bioavailability (65.06 %) of β-carotene. This improvement conferred the benefits on β-carotene nanoparticles to alleviate tert-butyl hydroperoxide-induced oxidative stress through the upregulation of heme oxygenase-1 and NAD(P)H quinone dehydrogenase 1 expression, as well as the promotion of nuclear translocation of nuclear factor-erythroid 2-related factor 2. Our study suggests the potential for the industry application of nanoparticles based on glycosylated proteins to effectively deliver hydrophobic nutrients and enhance their application.
Collapse
Affiliation(s)
- Lei Zhong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Xu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ning Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Mingwen Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Zhong L, Hu Q, Zhan Q, Zhao M, Zhao L. Oat protein isolate- Pleurotus ostreatus β-glucan conjugate nanoparticles bound to β-carotene effectively alleviate immunosuppression by regulating gut microbiota. Food Funct 2024; 15:1867-1883. [PMID: 38236028 DOI: 10.1039/d3fo05158g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Individuals with immune disorders cannot establish an adequate defense to pathogens, leading to gut microbiota dysbiosis. β-Carotene can regulate immune response, but its bioavailability in vivo is very low. Herein, we developed a glycosylated oat protein-based nanoparticle to improve the application of β-carotene for mitigating cyclophosphamide-induced immunosuppression and gut microbiota imbalance in mice. The results showed that the nanoparticles facilitated a conversion of β-carotene to retinol or retinyl palmitate into the systemic circulation, leading to an increased bioavailability of β-carotene. The encapsulated β-carotene bolstered humoral immunity by elevating immunoglobulin levels, augmenting splenic T lymphocyte subpopulations, and increasing splenic cytokine concentrations in immunosuppressed mice. This effect was accompanied by the alleviation of pathological features observed in the spleen. In addition, the encapsulated β-carotene restored the abnormal gut microbiota associated with immunosuppression, including Erysipelotrichaceae, Akkermansia, Bifidobacterium and Roseburia. This study suggested that nanoparticles loaded with β-carotene have great potential for therapeutic intervention in human immune disorders by specifically targeting the gut microbiota.
Collapse
Affiliation(s)
- Lei Zhong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, P.R. China.
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| |
Collapse
|
6
|
Zarif B, Shabbir S, Shahid R, Noor T, Imran M. Proteosomes based on milk phospholipids and proteins to enhance the stability and bioaccessibility of β-carotene. Food Chem 2023; 429:136841. [PMID: 37459709 DOI: 10.1016/j.foodchem.2023.136841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 08/24/2023]
Abstract
Proteosomes (P) based on milk fat globule membrane's phospholipids (MPs), whey protein isolate (WPI) and sodium caseinate (CasNa) were developed by ultrasonication to encapsulate β-carotene. Entirely milk-ingredients based proteosomes (WPI-MPs-P and CasNa-MPs-P) revealed homogenous distribution with size diameters < 250 nm. WPI-MPs-P depicted positive ζ-potential values (+15.7 ± 0.5 mV), while CasNa-MPs-P demonstrated negative (-32.5 ± 3.4 mV) values of surface charge, respectively and hydrophilic nature of proteosomes was observed by measuring contact-angle (θ). AFM and SEM exhibited spherical to oval and slightly irregular morphology of nanocarriers. For various concentrations of β-carotene, the highest encapsulation efficiency of β-carotene was 90 ± 0.2% and 92 ± 0.8% in WPI-MPs-P and CasNa-MPs-P respectively. FTIR analyses confirmed the hydrophobic and electrostatic interactions-based encapsulation of β-carotene. Beneficial antioxidant-potential of β-carotene was retained after its encapsulation in the proteosomes. Proteosomes increased the digestive-stability (>50%) and bioaccessibility (>85%) of β-carotene. Thus, milk-ingredients based proteosomes offer a novel-strategy to develop functional dairy products to overcome widespread vitamin-A-deficiency.
Collapse
Affiliation(s)
- Bina Zarif
- Department of Biosciences, Faculty of Science, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Saima Shabbir
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - Ramla Shahid
- Department of Biosciences, Faculty of Science, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Imran
- Department of Biosciences, Faculty of Science, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan.
| |
Collapse
|
7
|
Li Z, Huang Y, Zhong Y, Liang B, Yang X, Wang Q, Sui H, Huang Z. Impact of food matrices on the characteristics and cellular toxicities of ingested nanoplastics in a simulated digestive tract. Food Chem Toxicol 2023; 179:113984. [PMID: 37567356 DOI: 10.1016/j.fct.2023.113984] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Microplastic and nanoplastic (MNP) pollution has become a major global food safety concern. MNPs can interact with food matrices, and their passage through the gastrointestinal tract can modify their properties. To explore whether and how food matrices influence MNP toxicity, we investigated the interactions between polystyrene nanoplastics (PS-NPs) and food matrices, using an in vitro gastrointestinal digestion model. Then, we tested cell viability, particle uptake and cellular toxicities induced by PS-NPs with food matrices in Caco-2 cells. The results showed that PS-NPs were aggregated, both with and without food matrices, after in vitro gastrointestinal digestion. Glyceryl trioleate exerted greater ability to stabilize digestas and to disperse PS-NPs than starch and bovine serum albumin. The protein corona's protein composition on PS-NPs varied when it interacted with different food matrices. Moreover, when combined with food matrices, the PS-NPs' uptake was enhanced, thus aggravating cellular inflammation, stress, and apoptosis levels. Finally, through co-exposure to a mixture of food matrices, we found a combined negative effect of PS-NPs and cadmium on cellular inflammation, stress, and apoptosis levels. This is the first study to compare the impact of various food matrices on the characteristics and cellular toxicities of ingested NPs in a simulated digestive tract.
Collapse
Affiliation(s)
- Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yizhou Zhong
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xingfen Yang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haixia Sui
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100022, China.
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
8
|
Wei T, Wu Y, Sun Y, Deng Z, Li J. Human milk phospholipid analog improved the digestion and absorption of 1,3-dioleoyl-2-palmitoyl-glycerol. Food Funct 2023. [PMID: 37326107 DOI: 10.1039/d2fo03759a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The present study investigated the effects of a human milk phospholipid analog (HPLA) on the digestion and absorption of 1,3-dioleoyl-2-palmitoyl-glycerol (OPO). The HPLA contained 26.48% phosphatidylethanolamine (PE), 24.64% phosphatidylcholine (PC), 36.19% sphingomyelin (SM), 6.35% phosphatidylinositol (PI), and 6.32% phosphatidylserine (PS), with 40.51% C16:0, 17.02% C18:0, 29.19% C18:1, and 13.26% C18:2. The HPLA prevented OPO from hydrolysis during the in vitro gastric phase, while it facilitated the digestion of OPO during the in vitro intestinal stage, resulting in the production of large amounts of diglycerides (DAGs) and monoglycerides (MAGs). In vivo experimental results showed that the HPLA might increase the gastric emptying rate of OPO and increase the hydrolysis and absorption of OPO at an early stage of intestinal digestion. Notably, fatty acids in the serum of the OPO group decreased to their initial value at 5 h, while the serum of the OPO + HPLA (OPOH) group still contained a high level of fatty acids indicating that the HPLA was helpful in maintaining serum lipid at a high level, which might be beneficial for sustainably providing energy for babies. The present study provides data support for the potential application of Chinese human milk phospholipid analogs in infant formulas.
Collapse
Affiliation(s)
- Teng Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Yanping Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Jing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| |
Collapse
|
9
|
Jin Z, Emiezi Agarry I, Li Y, Ding D, Cai T, Chen K. In vitro bioaccessibility evaluation of pheophytins in gelatin/polysaccharides carrier. Food Chem 2023; 408:135252. [PMID: 36566541 DOI: 10.1016/j.foodchem.2022.135252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/07/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
The type of carrier agent could impact pheophytin stability and bioaccessibility. Hence, it is important to have an elaborate understanding on the extent and type of pheophytin transformation during in vitro digestion of microcapsules. Four kinds of protein/polysaccharides complex were used to fabricate pheophytin microcapsules and investigated for pigments bioaccessibility. With different carriers, pheophytin pigments showed new characteristics influencing particle size and zeta potential during in vitro digestion. Pheophytin b was widely transformed to pheophorbide b, confirming pheophorbidation of the b series in proper condition. No 151-hydroxy lactone chlorophyll or pheophytin derivatives were detected, indicating some protective effect of microencapsulation. Pheophytins loaded in gelatin-pectin complex exhibited a relatively higher recovery rate, micellarization rate, and bioaccessibility index. The result presented in this study shows that the type of carrier agent could initiate the removal of phytyl groups in pheophytins and also inhibit or mediate their bioaccessibility.
Collapse
Affiliation(s)
- Zihan Jin
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, PR China
| | - Israel Emiezi Agarry
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing, 400715, PR China
| | - Yunchang Li
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing, 400715, PR China
| | - Desheng Ding
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing, 400715, PR China
| | - Tian Cai
- School of Chemistry and Chemical Engineering, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, PR China.
| | - Kewei Chen
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing, 400715, PR China.
| |
Collapse
|
10
|
Zarif B, Shabbir S, Rahman A, Sherazi TA, Shahid R, Noor T, Imran M. Milk phospholipids and buttermilk based composite nanosystems for enhanced stability and bioaccessibility of β-carotene. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
11
|
Xia C, Han L, Zhang C, Xu M, Liu Z, Chen Y, Zhu Y, Yu M, Wu W, Yin S, Huang J, Zheng Z, Zhang R. Preparation and optimization of Pickering emulsion stabilized by alginate-lysozyme nanoparticles for β-carotene encapsulation. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-05024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Jalali-Jivan M, Rostamabadi H, Assadpour E, Tomas M, Capanoglu E, Alizadeh-Sani M, Kharazmi MS, Jafari SM. Recent progresses in the delivery of β-carotene: From nano/microencapsulation to bioaccessibility. Adv Colloid Interface Sci 2022; 307:102750. [PMID: 35987014 DOI: 10.1016/j.cis.2022.102750] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
Beta-carotene (BC) as an efficient pro-vitamin is effective in improving vision, immune system and cognitive function as well as preventing coronary diseases and cancer. However, besides its poor chemical stability, the high lipophilic nature of BC reduces its dispersibility and consequently bioavailability which limits its application into food, pharmaceutical and nutraceuticals. Different carriers with vesicular or particulate structures have been studied and utilized for promoting BC solubility, dispersibility, and protection against diverse operational or environmental stresses and also controlling BC release and subsequent bioaccessibility. The current study, therefore reviews different micro/nanocarriers reported on BC encapsulation with special focusing on its bioavailability. Liposomal structures have been successfully used for enhancing BC stability and bioavailability. Besides, emulsion-based carriers including Pickering emulsions, nanoemulsions and microemulsions have been widely evaluated for BC encapsulation and protection. In addition, lipid-based nanoparticles and nanostructural carriers have also been applied successfully for this context. Moreover, gel structures including emulgels, hydrogels and oleogels are studied in some researches. Most of these delivery systems led to higher hydro-solubility and dispersibility of BC which consequently increased its bioavailability; thereupon could promote its application into food, cosmetic and nutraceutical products. However, for remarkable incorporation of BC and other bioactive compounds into edible products, the safety and toxicological aspects of these delivery system especially those designed in nano scale should be addressed in the further researches.
Collapse
Affiliation(s)
- Mehdi Jalali-Jivan
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Elham Assadpour
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| | - Merve Tomas
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, 34303, Halkali, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Mahmood Alizadeh-Sani
- Division of Food Safety and Hygiene, Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
13
|
The structural characterization, physicochemical properties, and stability of gardenia yellow pigment microcapsules. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Lee SY, Lee DY, Kang JH, Jeong JW, Kim JH, Kim HW, Oh DH, Kim JM, Rhim SJ, Kim GD, Kim HS, Jang YD, Park Y, Hur SJ. Alternative experimental approaches to reduce animal use in biomedical studies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Chen L, Yokoyama W, Alves P, Tan Y, Pan J, Zhong F. Effect of encapsulation on β-carotene absorption and metabolism in mice. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Chen L, Yokoyama W, Tam C, Tan Y, Alves P, Bartley G, Zhong F. Evaluation of Cellular Absorption and Metabolism of β-Carotene Loaded in Nanocarriers after In Vitro Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9383-9394. [PMID: 34347475 DOI: 10.1021/acs.jafc.1c02431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Three protein emulsifiers encapsulating β-carotene (BC) with accompanying lipids into nanoemulsions (NEs) or without lipids into nanoparticles (NPs) were fabricated to study the effect of the type of interfacial protein on carrier design and the structure remodeling during digestion on the overall uptake and metabolism of BC in Caco-2 cells. BC-loaded micelles and micellar-like aggregates were collected after in vitro digestion and applied to Caco-2 cell monolayers. The digestion process significantly enhanced the cellular uptake of BC by 1.2-2.2 times and 4.1-8.2 times loaded in NEs and NPs, respectively. Whey protein isolate-based carriers improved the absorption but decreased the metabolism of BC to retinyl palmitate. The presence of lipids was found to improve metabolism and aid the transport of retinoids to the basolateral side of Caco-2 monolayers. Understanding the transportation behavior of the protein-based nanocarries after digestion may contribute to the design of biosafe carriers with higher bioavailability to deliver lipophilic nutrients.
Collapse
Affiliation(s)
- Ling Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wallace Yokoyama
- Western Regional Research Center, ARS, USDA, Albany, California 94710, United States
| | - Christina Tam
- Western Regional Research Center, ARS, USDA, Albany, California 94710, United States
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Pricilla Alves
- Western Regional Research Center, ARS, USDA, Albany, California 94710, United States
| | - Glenn Bartley
- Western Regional Research Center, ARS, USDA, Albany, California 94710, United States
| | - Fang Zhong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
17
|
Jiang X, Pan D, Tao M, Zhang T, Zeng X, Wu Z, Guo Y. New Nanocarrier System for Liposomes Coated with Lactobacillus acidophilus S-Layer Protein to Improve Leu-Gln-Pro-Glu Absorption through the Intestinal Epithelium. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7593-7602. [PMID: 34190554 DOI: 10.1021/acs.jafc.1c01498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The present study describes the development of a novel liposome nanocarrier system. The liposome was coated with Lactobacillus acidophilus CICC 6074 S-layer protein (SLP) to improve the intestinal absorption of the cholesterol-lowering peptide Leu-Gln-Pro-Glu (LQPE). The SLP-coated liposomes were prepared and characterized with morphology, particle size, zeta potential, membrane stability, Fourier transform infrared spectroscopy, and dual-channel surface plasma resonance. The results showed that SLP could successfully self-assemble on liposomes. Then, LQPE liposomes and SLP-coated LQPE liposomes (SLP-L-LQPE) were prepared. SLP-L-LQPE not only showed better sustained release properties and gastrointestinal tolerance in vitro but also increased the retention time in mice intestine. Transepithelial transport experiment indicates that the transshipment of LQPE increased significantly after being embedded by liposomes and coated with SLP. The research provides a theoretical basis for the study of SLP-coated liposomes and a potential drug delivery system for improving the intestinal absorption of peptides.
Collapse
Affiliation(s)
- Xiaoxiao Jiang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Daodong Pan
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Mingxuan Tao
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Tao Zhang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Xiaoqun Zeng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Zhen Wu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Yuxing Guo
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| |
Collapse
|