1
|
Zhou W, Xiao RY, Yang YX, Wang X, Wang DH, Wang ZZ. Clock protein LHY targets SNAT1 and negatively regulates the biosynthesis of melatonin in Hypericum perforatum. SCIENCE ADVANCES 2024; 10:eadq6505. [PMID: 39292789 PMCID: PMC11409971 DOI: 10.1126/sciadv.adq6505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
Hypericum perforatum, also known as "natural fluoxetine," is a commonly used herbal remedy for treating depression. It is unclear whether melatonin in plants regulated by the endogenous circadian clock system is like in vertebrates. In this work, we found that the melatonin signal and melatonin biosynthesis gene, serotonin N-acetyltransferase HpSNAT1, oscillates in a 24-hour cycle in H. perforatum. First, we constructed a yeast complementary DNA library of H. perforatum and found a clock protein HpLHY that can directly bind to the HpSNAT1 promoter. Second, it was confirmed that HpLHY inhibits the expression of HpSNAT1 by targeting the Evening Element. Last, it indicated that HpLHY-overexpressing plants had reduced levels of melatonin in 12-hour light/12-hour dark cycle photoperiod, while loss-of-function mutants exhibited high levels, but this rhythm seems to disappear as well. The results revealed the regulatory role of LHY in melatonin biosynthesis, which may make an important contribution to the field of melatonin synthesis regulation.
Collapse
Affiliation(s)
- Wen Zhou
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’ an 710062, China
| | - Ru-Yi Xiao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’ an 710062, China
| | - Yi-Xiao Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’ an 710062, China
| | - Xue Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’ an 710062, China
| | - Dong-hao Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’ an 710062, China
| | - Zhe-zhi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’ an 710062, China
| |
Collapse
|
2
|
Li T, Li Y, Chen J, Nan M, Zhou X, Yang L, Xu W, Zhang C, Kong L. Hyperibone J exerts antidepressant effects by targeting ADK to inhibit microglial P2X7R/TLR4-mediated neuroinflammation. J Adv Res 2024:S2090-1232(24)00298-4. [PMID: 39019111 DOI: 10.1016/j.jare.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/20/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024] Open
Abstract
INTRODUCTION The antidepressant properties of Hypericum species are known. Hyperibone J, a principal component found in the flowers of Hypericum bellum, exhibited in vitro anti-inflammatory effects. However, the antidepressant effects and mechanisms of Hyperibone J remain to be elucidated. Adenosine kinase (ADK) is upregulated in epilepsy and depression and has been implicated in promoting neuroinflammation. OBJECTIVES This study aimed to explore the impact of Hyperibone J on neuroinflammation-mediated depression and the mechanism underlying this impact. METHODS This study employed acute and chronic in vivo depression models and an in vitro LPS-induced depression model using BV-2 microglia. The in vivo antidepressant efficacy of Hyperibone J was assessed through behavioral assays. Techniques such as RNA-seq, western blot, qPCR and ELISA were utilized to elucidate the direct target and mechanism of action of Hyperibone J. RESULTS Compared with the model group, depression-like behaviors were significantly alleviated in the Hyperibone J group. Furthermore, Hyperibone J mitigated hippocampal neuroinflammation and neuronal damage. RNA-seq suggested that Hyperibone J predominantly influenced inflammation-related pathways. In vitro experiments revealed that Hyperibone J reversed the LPS-induced overexpression and release of inflammatory factors. Network pharmacology and various molecular biology experiments revealed that the potential binding of Hyperibone J at the ASN-312 site of ADK diminished the stability and protein expression of ADK. Mechanistic studies revealed that Hyperibone J attenuated the ADK/ATP/P2X7R/Caspase-1-mediated maturation and release of IL-1β. The study also revealed a significant correlation between Tlr4 expression and depression-like behaviors in mice. Hyperibone J downregulated ADK, inhibiting Tlr4 transcription, which in turn reduced the phosphorylation of NF-κB and the subsequent transcription of Nlrp3, Il-1b, Tnf, and Il-6. CONCLUSION Hyperibone J exerted antineuroinflammatory and antidepressant effects by binding to ADK in microglia, reducing its expression and thereby inhibiting the ATP/P2X7R/Caspase-1 and TLR4/NF-κB pathways. This study provides experimental evidence for the therapeutic potential of Hypericum bellum.
Collapse
Affiliation(s)
- Ting Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yawei Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jinhu Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Miaomiao Nan
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xin Zhou
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lifang Yang
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, China
| | - Wenjun Xu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
3
|
Hu RD, Lin WY, Feng Q, Liu J, Chen Y, Ji A, Wang C, Cao L, Zhang R, Liu Z, Cui H, Liang Q, Zhang RR. New α-Glucosidase Inhibitors from the Whole Plant of Hypericum beanii Based on Ligand Fishing and Molecular Networking Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11452-11464. [PMID: 38736181 DOI: 10.1021/acs.jafc.4c00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
In this work, a new rapid and targeted method for screening α-glucosidase inhibitors from Hypericum beanii was developed and verified. Ten new polycyclic polyprenylated acylphloroglucinols (PPAPs), hyperlagarol A-J (1-10), and nine known PPAPs (11-19) were obtained from H. beanii. Their structures were identified by using comprehensive analyses involving mass spectrometry, ultraviolet spectroscopy, infrared spectroscopy, nuclear magnetic resonance spectroscopy, and electron capture dissociation calculations. 1 and 2 are two new rare 2,3-seco-spirocyclic PPAPs, 3 and 4 are two novel 12,13-seco-spirocyclic PPAPs, 5 and 6 are two novel spirocyclic PPAPs, 7 and 8 are two new unusual spirocyclic PPAPs with complex bridged ring systems, and 9 and 10 are two novel nonspirocyclic PPAPs. α-GC inhibitory activities of all isolated compounds were tested. Most of them displayed inhibitory activities against α-glucosidase, with the IC50 values ranging from 6.85 ± 0.65 to 112.5 ± 9.03 μM. Moreover, the inhibitory type and mechanism of the active compounds were further analyzed using kinetic studies and molecular docking.
Collapse
Affiliation(s)
- Rui-Dan Hu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Wei-Yao Lin
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Qian Feng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Jinru Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Yidi Chen
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Aijia Ji
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Caiyan Wang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Liping Cao
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518100, People's Republic of China
| | - Rong Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Hui Cui
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Qi Liang
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518100, People's Republic of China
| | - Rong-Rong Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| |
Collapse
|
4
|
Zhang H, Gao B, Zheng G, Feng Y, Liu Z, Yao G. Dauresorcinols A and B, two pairs of merosesquiterpenoid enantiomers with new carbon skeletons from Rhododendron dauricum. Bioorg Chem 2024; 148:107428. [PMID: 38733749 DOI: 10.1016/j.bioorg.2024.107428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
Five pairs of new merosesquiterpenoid enantiomers, named dauresorcinols A-E (1-5), were isolated from the leaves of Rhododendron dauricum. Their structures were elucidated by comprehensive spectroscopic data analysis, quantum chemical calculations, Rh2(OCOCF3)4-induced ECD, and single-crystal X-ray diffraction analysis. Dauresorcinols A (1) and B (2) possess two new merosesquiterpene skeletons bearing an unprecedented 2,6,7,10,14-pentamethyl-11-oxatetracyclo[8.8.0.02,7.012,17]octadecane and a caged 15-isohexyl-1,5,15-trimethyl-2,10-dioxatetracyclo[7.4.1.111,14.03,8]pentadecane motif, respectively. Plausible biosynthetic pathways of 1-5 are proposed involving key oxa-electrocyclization and Wagner-Meerwein rearrangement reactions. (+)/(-)-1 and 3-5 showed potent α-glucosidase inhibitory activity, 3 to 22 times stronger than acarbose, an antidiabetic drug targeting α-glucosidase. Docking results provide a basis to design and develop merosesquiterpenoids as potent α-glycosidase inhibitors.
Collapse
Affiliation(s)
- Hanqi Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Biao Gao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guijuan Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuanyuan Feng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhijun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
5
|
Qin F, Luo L, Liu YC, Bo XL, Wu FR, Wang FF, Tan MJ, Wei YQ, Dou XB, Wang CY, Huang XS, Wang HS. Diisoprenyl-cyclohexene-type meroterpenoids from a mangrove endophytic fungus Aspergillus sp. GXNU-Y65 and their anti-nonalcoholic steatohepatitis activity in AML12 cells. PHYTOCHEMISTRY 2024; 218:113955. [PMID: 38128773 DOI: 10.1016/j.phytochem.2023.113955] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 11/26/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023]
Abstract
Nine previously undescribed diisoprenyl-cyclohexene-type meroterpenoids, aspergienynes A-I, together with five known analogues, were obtained from the mangrove endophytic fungal strain Aspergillus sp. GXNU-Y65. The diisoprenyl-cyclohexene-type meroterpenoids were elucidated based on multispectroscopic analysis, and the previously undescribed compounds' absolute configurations were established via electronic circular dichroism calculations. Biological activity results indicated that aspergienyne C (compound 3) had strong anti-nonalcoholic steatohepatitis activity against AML12 cells treated with PA (Palmitic acid) + OA (Oleic acid). At the same concentration of 20 μM, 3 significantly reduced triglyceride (TG) content compared with fenofibrate (positive control) in PA + OA treated AML12 cells, and obviously increased phosphorylation of acetyl-CoA carboxylase.
Collapse
Affiliation(s)
- Feng Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China; Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, People's Republic of China
| | - Li Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Yu-Chen Liu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Xiang-Long Bo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Fu-Rong Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Fan-Fan Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, People's Republic of China
| | - Mei-Jing Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - You-Quan Wei
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Xiao-Bing Dou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Cai Yi Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.
| | - Xi-Shan Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China.
| | - Heng-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China.
| |
Collapse
|
6
|
Fu JT, Hao YK, Zhan ZC, Yang SY, Tang Q, Lin Q, Zhao HY, Du JY, Zhu TX, Li YL, Zhang YB, Wang GC. Lysidrhodosides A-I, acylphloroglucinol glucosides with anti-inflammatory activities from the leaves of Lysidice rhodostegia. Fitoterapia 2024; 172:105768. [PMID: 38056698 DOI: 10.1016/j.fitote.2023.105768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Lysidrhodosides A-I (1-9), nine acylphloroglucinol glucoside derivatives along with three known analogues (10-12) were isolated from the leaves of Lysidice rhodostegia. Their structures and absolute configuration were elucidated by spectroscopic data analysis (NMR, UV, IR, HR-ESI-MS), single-crystal X-ray diffraction, and acid hydrolysis with HPLC analysis. Notably, compounds 7-9 represent the first examples of 3-methylbutyryl phloroglucinol glucoside dimers isolated from this plant. Additionally, compounds 1-12 were assessed for their inhibitory effects on nitric oxide (NO) in the LPS-induced BV-2 cells. The results showed that compounds 6 and 12 significantly inhibited the production of the inflammatory mediator NO, with an inhibitory rate of 95.96 and 91.13% at a concentration of 50 μM, respectively.
Collapse
Affiliation(s)
- Jin-Tao Fu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Yi-Kun Hao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Zhao-Chun Zhan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Si-Yu Yang
- Guangdong Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Qing Tang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Qiang Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Hai-Yue Zhao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Jing-Yi Du
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Tian-Xi Zhu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Yao-Lan Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| | - Yu-Bo Zhang
- Guangdong Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, PR China.
| | - Guo-Cai Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
7
|
Prasetyo WE, Triadmojo B, Kusumaningsih T, Marliyana SD, Wibowo FR, Firdaus M. Mechanistic insight into the free radical scavenging and xanthine oxidase (XO) inhibitor potent of monoacetylphloroglucinols (MAPGs). Free Radic Res 2023:1-33. [PMID: 37315300 DOI: 10.1080/10715762.2023.2225731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Three novel antioxidant candidates based on phenolic polyketide, monoacetylphloroglucinol (MAPG), a natural antibiotic compound produced by plant growth-promoting rhizobacteria (PGPR), Pseudomonas fluorescens F113 have been proposed. Initially, a green and highly efficient route to the synthesis of MAPG and its two analogues from phloroglucinol (PG) has been developed. Afterward, their rational mechanism of antioxidant activity has been investigated based on thermodynamic descriptors involved in the double ( 2H+/2e-) radical trapping processes. These calculations have been performed using the systematic density functional theory (DFT) method at the B3LYP/Def2-SVP level of theory in the gas phase and aqueous solution. Our findings reveal that the double formal hydrogen atom transfer (df-HAT) mechanism is preferred in the gas phase, while the double sequential proton loss electron transfer (dSPLET) mechanism is preferred in aqueous solution for all MAPGs. The 6-OH group represents the most favourable site for trapping radical species for all MAPGs, which is supported by the pKa values obtained from DFT calculations. The role of acyl substituents on the PG ring has been comprehensively discussed. The presence of acyl substituents has a strong influence on the thermodynamic parameters of the phenolic O-H bond in PG. These results are supported by frontier molecular orbitals (FMOs) analysis, where the addition of acyl substituents increases the chemical reactivity of MAPGs significantly. Based on molecular docking and molecular dynamics simulations (MDs), MAPGs are also predicted to be promising candidates for xanthine oxidase (XO) inhibition.HighlightsThe antioxidant activity of the three synthesised MAPGs has been investigated using the DFT method.Acyl substituents increase the chemical reactivity and antioxidant activity of MAPGs.df-HAT is the preferred mechanism in the gas phase.dSPLET seems to be more favoured in aqueous solution.MAPGs are expected to be promising xanthine oxidase (XO) inhibitors.
Collapse
Affiliation(s)
- Wahyu Eko Prasetyo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami No.36A, Surakarta, 57126, Indonesia
| | - Bram Triadmojo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami No.36A, Surakarta, 57126, Indonesia
| | - Triana Kusumaningsih
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami No.36A, Surakarta, 57126, Indonesia
| | - Soerya Dewi Marliyana
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami No.36A, Surakarta, 57126, Indonesia
| | - Fajar Rakhman Wibowo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami No.36A, Surakarta, 57126, Indonesia
| | - Maulidan Firdaus
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami No.36A, Surakarta, 57126, Indonesia
| |
Collapse
|
8
|
Li XY, Dong RR, Nan MM, Wang XL, Cao TJ, Ying P, Zheng Q, Kong LY, Xu WJ. Hyperxylones A and B, two polycyclic polyprenylated acylphloroglucinols with a benzoyl substituted bicyclo[3.2.1]octane core from Hypericum beanii. Fitoterapia 2023; 165:105389. [PMID: 36586626 DOI: 10.1016/j.fitote.2022.105389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/29/2022]
Abstract
Two new polycyclic polyprenylated acylphloroglucinols (PPAPs) possessing a rare benzoyl substituted bicyclo[3.2.1]octane core, hyperxylones A (1) and B (2), along with three new dearomatized isoprenylated acylphloroglucinols (DIAPs), hyperxylones C - E (3-5), were isolated from the roots of Hypericum beanii. The structures of 1-5 were determined by high-resolution electrospray ionization mass spectroscopy (HRESIMS) and 1D/2D nuclear magnetic resonance (NMR) spectroscopic analyses, gauge-independent atomic orbital (GIAO) NMR calculations, and electronic circular dichroism (ECD) calculations. Compounds 1 and 2 were biomimetically semi-synthesized starting from 5 and 4, respectively, enabling the correct stereochemical assignment of 5 and 4. Moreover, compounds 1 and 2 showed anti-nonalcoholic steatohepatitis (NASH) activity by inhibiting lipid deposition in L02 cells; compounds 3 and 5 exhibited nitric oxide (NO) inhibitory activity in lipopolysaccharides (LPS)-induced RAW264.7 cells.
Collapse
Affiliation(s)
- Xue-Yan Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Rui-Rui Dong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Miao-Miao Nan
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xiao-Li Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Tian-Jie Cao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ping Ying
- College of Traditional Chinese Medicine and Health Industry, Lishui University, Lishui 323000, PR China
| | - Qiang Zheng
- College of Traditional Chinese Medicine and Health Industry, Lishui University, Lishui 323000, PR China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Wen-Jun Xu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
9
|
Caldeira GI, Gouveia LP, Serrano R, Silva OD. Hypericum Genus as a Natural Source for Biologically Active Compounds. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192509. [PMID: 36235373 PMCID: PMC9573133 DOI: 10.3390/plants11192509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/08/2023]
Abstract
Hypericum L. genus plants are distributed worldwide, with numerous species identified throughout all continents, except Antarctica. These plant species are currently used in various systems of traditional medicine to treat mild depression, wounds and burns, diarrhea, pain, fevers, and their secondary metabolites previously shown, and the in vitro and/or in vivo cytotoxic, antimicrobial, anti-inflammatory, antioxidant, antihyperglycemic, and hepatoprotective activities, as well as the acetylcholinesterase and monoamine oxidase inhibitory activities. We conducted a systematic bibliographic search according to the Cochrane Collaboration guidelines to answer the question: "What is known about plants of Hypericum genus as a source of natural products with potential clinical biological activity?" We documented 414 different natural products with confirmed in vitro/in vivo biological activities, and 58 different Hypericum plant species as sources for these natural products. Phloroglucinols, acylphloroglucinols, xanthones, and benzophenones were the main chemical classes identified. The selective cytotoxicity against tumor cells, cell protection, anti-inflammatory, antimicrobial, antidepressant, anti-Alzheimer's, and adipogenesis-inhibition biological activities are described. Acylphloroglucinols were the most frequent compounds with anticancer and cell-protection mechanisms. To date, no work has been published with a full descriptive list directly relating secondary metabolites to their species of origin, plant parts used, extraction methodologies, mechanisms of action, and biological activities.
Collapse
|
10
|
Li Q, Zheng Y, Fu A, Wei M, Kang X, Chen C, Zhu H, Zhang Y. 30-norlanostane triterpenoids and steroid derivatives from the endophytic fungus Aspergillus nidulans. PHYTOCHEMISTRY 2022; 201:113257. [PMID: 35662617 DOI: 10.1016/j.phytochem.2022.113257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Two undescribed 30-norlanostane triterpenoids, named nidulanoids A and B, one ergostane-type steroid with an unusual double bond between C-17 and C-20 designated (17E,22E,24R)-3β,5α-dihydroxyergosta-7,17,22-trien-6,16-dione, and one pregnane, (7Z,9Z,17Z)-,2α,3β-dihydroxypregna-7,9,17 (20)-trien-18-al, along with six known steroids were isolated from the extract of the fungus Aspergillus nidulans. Among them, nidulanosides A and B represents the first example of naturally occurred 30-norlanostane triterpenoids featuring a C9 side-chain moiety at C-17 and a hemiacetal system formed between C-3 and C-19, as an intermediate between lanostane and the regular steriods; the structure of (17E,22E,24R)-3β,5α-dihydroxyergosta-7,17,22-trien-6,16-dione possesses an untypical Δ17,20 double bond; meanwhile, (7Z,9Z,17Z)-,2α,3β-dihydroxypregna-7,9,17 (20)-trien-18-al represents the first example of C-21 steroid with an aldehyde group at C-13. Their structures and absolute stereochemistry were elucidated based on spectroscopic data, electronic circular dichroism (ECD) calculations, and single-crystal X-ray diffraction analysis. (7Z,9Z,17Z)-,2α,3β-dihydroxypregna-7,9,17 (20)-trien-18-al showed moderate inhibitory activities against rat brain cancer (PC12) cell lines, with IC50 value of 7.34 μM. This study enriches the diversified structures of triterpenoids and steroids analogues from A. nidulans and indicated (7Z,9Z,17Z)-,2α,3β-dihydroxypregna-7,9,17(20)-trien-18-al to be a promising lead compound against PC12 cell lines.
Collapse
Affiliation(s)
- Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yuyi Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Aimin Fu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Mengsha Wei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xin Kang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
11
|
Lu W, Zhang Y, Li Y, Ye S, Luo J, Kong L, Xu W. Hyperbenzones A and B, two 1,2-seco and rearranged polycyclic polyprenylated acylphloroglucinols from Hypericum beanii. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Jiang NN, Gar-Lee Yue G, Li P, Ye YS, Gomes AJ, Hin-Fai Kwok F, Kin-Ming Lee J, Gao S, Lau CBS, Xu G. Discovery of dearomatized isoprenylated acylphloroglucinols with colon tumor suppressive activities in mice via inhibiting NFκB-FAT1-PDCD4 signaling activation. Eur J Med Chem 2022; 239:114532. [PMID: 35749988 DOI: 10.1016/j.ejmech.2022.114532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022]
Abstract
Dearomatized isoprenylated acylphloroglucinols (DIAPs) are specific natural products mainly distributed in the plants of genus Hypericum. In this study, guided by HPLC-UV screening, 46 DIAPs (approximately 70% of all DIAPs) including 20 new ones and an unprecedented architecture, were discovered from the roots of Hypericum henryi, which were elucidated by comprehensive spectroscopic, X-ray crystallography, and ECD methods. Compounds 1-7, 39, and 41-42 exhibited remarkable cytotoxicities (IC50 = 0.84-5.63 μM) in human colon cancer HCT116 cells, in which 2 and 6 possessed selective cytotoxicities towards colon cancer cells. The preliminary structure-activity relationships of these tested compounds were discussed. In addition, mechanistic investigations demonstrated that 2 and 6 could significantly suppress the expressions of NFκB, FAT1, and promoted novel tumor suppressor gene PDCD4 in HCT116 cells. Furthermore, in HCT116 colon xenograft-bearing mouse model, treatments with 2 and 6 reduced the growth of xenograft tumors in dose-dependent manner. Expressions of FAT1 in tumors were also decreased in mice treated with 2 and 6, suggesting their anti-tumor effects were via FAT1 signaling pathway. In conclusion, this is the first report on the mechanistic and in vivo studies of DIAP, indicating that these metabolites can be considered as a new type of anti-colon cancer lead agents for further drug development.
Collapse
Affiliation(s)
- Na-Na Jiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Peng Li
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yan-Song Ye
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, China
| | - Adele Joyce Gomes
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Frankie Hin-Fai Kwok
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Julia Kin-Ming Lee
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Si Gao
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Clara Bik-San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Gang Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, China.
| |
Collapse
|
13
|
Liu ZQ. Why natural antioxidants are readily recognized by biological systems? 3D architecture plays a role! Food Chem 2022; 380:132143. [DOI: 10.1016/j.foodchem.2022.132143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/01/2022] [Accepted: 01/10/2022] [Indexed: 01/10/2023]
|
14
|
Hu L, Wang Z, Tong Z, Hu P, Kong L, Luo M, Li X, Zhang Y, Huang Z, Zhang Y. Undescribed Meroterpenoids from
Hypericum japonicum
with Neuroprotective Effects on
H
2
O
2
Insult
SH‐SY5Y
Cells Targeting
Keap1‐Nrf2. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Linzhen Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High‐throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Traditional Chinese Medicine, School of Life Sciences Hubei University Wuhan 430062 Hubei Province People's Republic of China
| | - Zhenzhen Wang
- School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 Hubei Province People's Republic of China
| | - Zhou Tong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High‐throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Traditional Chinese Medicine, School of Life Sciences Hubei University Wuhan 430062 Hubei Province People's Republic of China
| | - Ping Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High‐throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Traditional Chinese Medicine, School of Life Sciences Hubei University Wuhan 430062 Hubei Province People's Republic of China
| | - Luqi Kong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High‐throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Traditional Chinese Medicine, School of Life Sciences Hubei University Wuhan 430062 Hubei Province People's Republic of China
| | - Mengying Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High‐throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Traditional Chinese Medicine, School of Life Sciences Hubei University Wuhan 430062 Hubei Province People's Republic of China
| | - Xiao‐Nian Li
- Kunming Institute of Botany Chinese Academy of Sciences Kunming 650204 People's Republic of China
| | - Yuexing Zhang
- College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 Hubei Province People's Republic of China
| | - Zhiyong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High‐throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Traditional Chinese Medicine, School of Life Sciences Hubei University Wuhan 430062 Hubei Province People's Republic of China
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Tianjin 300308 People's Republic of China
| | - Yonghui Zhang
- School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 Hubei Province People's Republic of China
| |
Collapse
|
15
|
Liu XZ, Zhou M, Du CC, Zhu HH, Lu X, He SL, Wang GH, Lin T, Tian WJ, Chen HF. Unprecedented Monoterpenoid Polyprenylated Acylphloroglucinols with a Rare 6/6/5/4 Tetracyclic Core, Enhanced MCF-7 Cells' Sensitivity to Camptothecin by Inhibiting the DNA Damage Response. Biomedicines 2021; 9:1473. [PMID: 34680589 PMCID: PMC8533472 DOI: 10.3390/biomedicines9101473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/30/2022] Open
Abstract
(±)-Hypersines A-C (1-3), the three pairs of enantiomerically pure monoterpenoid polyprenylated acylphloroglucinols with an unprecedented 6/6/5/4 fused ring system, were isolated from Hypericum elodeoides. Their structures, including absolute configurations, were elucidated by comprehensive spectroscopic data, single-crystal X-ray diffraction, and quantum chemical calculations. The plausible, biosynthetic pathway of 1-3 was proposed. Moreover, the bioactivity evaluation indicated that 1a might be a novel DNA damage response inhibitor, and could enhance MCF-7 cell sensitivity to the anticancer agent, camptothecin.
Collapse
Affiliation(s)
- Xiang-Zhong Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Mi Zhou
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Chun-Chun Du
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Hong-Hong Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Xi Lu
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Shou-Lun He
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Guang-Hui Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Ting Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Wen-Jing Tian
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Hai-Feng Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|