1
|
Cui D, Ling M, Huang Y, Duan C, Lan Y. Micro‑oxygenation in red wines: Current status and future perspective. Food Chem 2025; 464:141678. [PMID: 39454438 DOI: 10.1016/j.foodchem.2024.141678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Micro‑oxygenation (MOX) is the technology providing a slow and continuous oxidation reaction in the whole winemaking process to improve wine quality. However, traditional methods of oxygen management struggle to achieve a precise control over oxygen at critical process points, failing to meet the personalized and diverse production demands of wine. In this paper, an overview of three application stages of MOX, and the detailed dosage and duration at each stage were summarized. In addition, the application prospect of the new MOX application facility in wine production was proposed. Compared to passive MOX, active MOX could allow a more precise control of oxygen. The innovation of MOX equipment based on active MOX technique will be an inspiring interest in the research of winemaking. The integration and development of precise MOX will achieve the targeted control of wine quality and the creation of distinctive characteristics of wine style.
Collapse
Affiliation(s)
- Dongsheng Cui
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Mengqi Ling
- College of Food Science and Engineering, "The Belt and Road" International Institute of Grape and Wine Industry Innovation, Beijing University of Agriculture, Beijing 102206, China
| | - Yongce Huang
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| | - Yibin Lan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| |
Collapse
|
2
|
Liu W, Cao J, Wu D, Wu Y, Qin Y, Liu Y, Zhao X, Song Y. Development of an advanced acetaldehyde detection solution based on yeast and bacterial surface display technology. J Biotechnol 2024; 398:42-50. [PMID: 39622345 DOI: 10.1016/j.jbiotec.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Acetaldehyde, a carcinogen widely present in various beverages and the natural environment, necessitates convenient and efficient detection methods. In this work, two different host strains were used to develop a sensitive, convenient, and efficient whole-cell optical biosensor for acetaldehyde detection. Acetaldehyde dehydrogenase (AldH) was displayed on the cell surface of Saccharomyces cerevisiae and E. coli using flocculin protein and the N-terminal ice nucleation protein (INP), respectively. The successful construction of yeast and bacteria surface display platforms was confirmed by laser scanning confocal microscopy. Then, the optimal AldH-display system for yeast and bacteria was confirmed. The optimum reaction conditions were determined by changing testing temperatures and pH values. The differences between the two display systems were compared. The highest whole-cell activities of yeast and bacteria under optimal conditions were 3.68 ± 0.07 U/mL/OD600 for BY-S6G and 6.95 ± 0.04 U/mL/OD600 for E-32-IrA. The strains with the best performance were chosen for the detection of acetaldehyde in wine and other beverage samples and showed substrate specificity and accuracy, in which the recovery rate ranged between 94.4 % and 110.1 %. The results demonstrated that the AldH surface display strains could be used as an optical biosensor to detect acetaldehyde in beverages and red wine.
Collapse
Affiliation(s)
- Weigeng Liu
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiamin Cao
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Di Wu
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yue Wu
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yi Qin
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yanlin Liu
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xixi Zhao
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yuyang Song
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
3
|
Cucciniello R, Tomasini M, Russo A, Falivene L, Gambuti A, Forino M. Experimental and theoretical studies on the acetaldehyde reaction with (+)-catechin. Food Chem 2023; 426:136556. [PMID: 37343411 DOI: 10.1016/j.foodchem.2023.136556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/28/2023] [Accepted: 06/04/2023] [Indexed: 06/23/2023]
Abstract
Acetaldehyde plays a key role in determining some wine properties. Interesting is the reaction of acetaldehyde with flavonoids, as the ensuing products can alter wine color, astringency, colloidal stability. Many studies reported on the formation of ethylidene-bridged flavan-3-ols as products of the reaction between acetaldehyde and either (+)-catechin or (-)-epicatechin. In white wines after one year of incubation with acetaldehyde only vinyl-(+)-catechin and vinyl-(-)-epicatechin were observed, while no ethylidene linked oligomers were detected. This observation prompted us to study the reaction of (+)-catechin with acetaldehyde in wine model solution through an experimental and theoretical approach, with the purpose of exploring the nature of the species involved along with the mechanisms leading to them. The products of the reaction were observed over 38 days. The results showed that ethylidene-bridged catechins are the first products to be formed but over time the dissociation of these dimers causes vinyl-catechins to accumulate.
Collapse
Affiliation(s)
- Raffaele Cucciniello
- Department of Chemistry and Biology 'Adolfo Zambelli', University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Province of Salerno 84084, Italy
| | - Michele Tomasini
- Department of Chemistry and Biology 'Adolfo Zambelli', University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Province of Salerno 84084, Italy; Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, Girona, Catalonia 17003, Spain
| | - Anna Russo
- Department of Chemistry and Biology 'Adolfo Zambelli', University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Province of Salerno 84084, Italy
| | - Laura Falivene
- Department of Chemistry and Biology 'Adolfo Zambelli', University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Province of Salerno 84084, Italy.
| | - Angelita Gambuti
- Department of Agricultural Sciences, Section of Vine and Wine Sciences, University of Napoli 'Federico II', Viale Italia, Avellino 83100, Italy
| | - Martino Forino
- Department of Agricultural Sciences, Section of Vine and Wine Sciences, University of Napoli 'Federico II', Viale Italia, Avellino 83100, Italy
| |
Collapse
|
4
|
Peng Z, Wang R, Xia X, Zhang J. Engineered acetaldehyde dehydrogenase for the efficient degradation of acetaldehyde. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117258. [PMID: 36669314 DOI: 10.1016/j.jenvman.2023.117258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/30/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Acetaldehyde is highly cytotoxic and widely presents in food and the environment. Aldehyde dehydrogenase (ALDH) can degrade acetaldehyde to non-toxic acetic acid, showing potential for acetaldehyde elimination. However, a lack of high-throughput methods for screening efficient variants is a significant obstacle to ALDH design. Here, we established a visualized high-throughput method to screen recombinantly expressed ALDH variants in Bacillus subtilis by fluorescent probes of dual-acceptor cyanine-based in response to NADH, the acetaldehyde degradation product. Molecular docking revealed key amino acids in the binding region of acetaldehyde to ALDH. Combined with saturation mutagenesis and visualization high-throughput methods, a variant ALDHS273N with an activity of 119.82 U·mL-1 was screened. The optimal reaction temperature and pH of ALDHS273N were 60 °C and 9.0, respectively. ALDHS273N showed stability at 30-50 °C and pH 5.0-9.0. The activity of ALDHS273N was increased to 263.52 U∙mL-1 by fermentation optimization, which was 5.58 times that of ALDHWT. The degradation rate of ALDHS273N to 100 mmol L-1 acetaldehyde was 87.34% within 2 h, which was 4.2 times that of the wild enzyme (20.81%). As far as we know, this is the ALDH with the highest activity reported so far, and it is also the first time that ALDH has been used for the efficient degradation of acetaldehyde. Overall, the reported high-throughput screening method and developed mutants represent a significant advance in green bio-elimination technologies of acetaldehyde.
Collapse
Affiliation(s)
- Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Ran Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Xiaofeng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| |
Collapse
|
5
|
Acetaldehyde accumulation during wine micro oxygenation: The influence of microbial metabolism. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
De Bellis D, Di Stefano A, Simeone P, Catitti G, Vespa S, Patruno A, Marchisio M, Mari E, Granchi L, Viti C, Chiacchiaretta P, Cichelli A, Tofalo R, Lanuti P. Rapid Detection of Brettanomyces bruxellensis in Wine by Polychromatic Flow Cytometry. Int J Mol Sci 2022; 23:ijms232315091. [PMID: 36499420 PMCID: PMC9740995 DOI: 10.3390/ijms232315091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Brettanomyces bruxellensis is found in several fermented matrices and produces relevant alterations to the wine quality. The methods usually used to identify B. bruxellensis contamination are based on conventional microbiological techniques that require long procedures (15 days), causing the yeast to spread in the meantime. Recently, a flow cytometry kit for the rapid detection (1-2 h) of B. bruxellensis in wine has been developed. The feasibility of the method was assessed in a synthetic medium as well as in wine samples by detecting B. bruxellensis in the presence of other yeast species (Saccharomyces cerevisiae and Pichia spp.) and at the concentrations that produce natural contaminations (up to 105 cells/mL), as well as at lower concentrations (103-102 cells/mL). Wine samples naturally contaminated by B. bruxellensis or inoculated with four different strains of B. bruxellensis species together with Saccharomyces cerevisiae and Pichia spp., were analyzed by flow cytometry. Plate counts were carried out in parallel to flow cytometry. We provide evidence that flow cytometry allows the rapid detection of B. bruxellensis in simple and complex mixtures. Therefore, this technique has great potential for the detection of B. bruxellensis and could allow preventive actions to reduce wine spoilage.
Collapse
Affiliation(s)
- Domenico De Bellis
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- FlowForLife Lab, Spin-Off, Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Alessio Di Stefano
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Pasquale Simeone
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- FlowForLife Lab, Spin-Off, Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Correspondence:
| | - Giulia Catitti
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Simone Vespa
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Antonia Patruno
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Marchisio
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Eleonora Mari
- Department of Agronomy, Food, Environmental and Forestry, University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy
| | - Lisa Granchi
- Department of Agronomy, Food, Environmental and Forestry, University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy
| | - Carlo Viti
- Department of Agronomy, Food, Environmental and Forestry, University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy
| | - Piero Chiacchiaretta
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Advanced Computing Core, Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti–Pescara, Via Luigi Polacchi 11, 66100 Chieti, Italy
| | - Angelo Cichelli
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Rosanna Tofalo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- FlowForLife Lab, Spin-Off, Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
7
|
A novel method combining stable isotopic labeling and high-resolution mass spectrometry to trace the quinone reaction products in wines. Food Chem 2022; 383:132448. [DOI: 10.1016/j.foodchem.2022.132448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/29/2022] [Accepted: 02/10/2022] [Indexed: 11/23/2022]
|
8
|
Dai L, Zhong K, Ma Y, Cui X, Sun Y, Zhang A, Han G. Impact of the Acetaldehyde-Mediated Condensation on the Phenolic Composition and Antioxidant Activity of Vitis vinifera L. Cv. Merlot Wine. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092608. [PMID: 35565959 PMCID: PMC9105304 DOI: 10.3390/molecules27092608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/09/2022] [Accepted: 04/17/2022] [Indexed: 11/16/2022]
Abstract
Acetaldehyde is a critical reactant on modifying the phenolic profile during red wine aging, suggesting that the acetaldehyde-mediated condensation can be responsible for the variation of antioxidant activity during the aging of this beverage. The present study employs exogenous acetaldehyde at six levels of treatment (7.86 ± 0.10–259.02 ± 4.95 mg/L) before the bottle aging of Merlot wines to encourage phenolic modification. Acetaldehyde and antioxidant activity of wine were evaluated at 0, 15, 30, 45, 60 and 75 days of storage, while monomeric and polymeric phenolics were analyzed at 0, 30 and 75 days of storage. The loss of acetaldehyde was fitted to a first-order reaction model, the rate constant (k) demonstrated that different chemical reaction happened in wines containing a different initial acetaldehyde. The disappearance of monomeric phenolics and the formation of polymeric phenolics induced by acetaldehyde could be divided into two phases, the antioxidant activity of wine did not alter significantly in the first phase, although most monomeric phenolics vanished, but the second phase would dramatically reduce the antioxidant activity of wine. Furthermore, a higher level of acetaldehyde could shorten the reaction time of the first phase. These results indicate that careful vinification handling aiming at controlling the acetaldehyde allows one to maintain prolonged biological activity during wine aging.
Collapse
Affiliation(s)
- Lingmin Dai
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (L.D.); (K.Z.); (Y.M.); (X.C.); (Y.S.)
| | - Ke Zhong
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (L.D.); (K.Z.); (Y.M.); (X.C.); (Y.S.)
| | - Yan Ma
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (L.D.); (K.Z.); (Y.M.); (X.C.); (Y.S.)
| | - Xiaoqian Cui
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (L.D.); (K.Z.); (Y.M.); (X.C.); (Y.S.)
| | - Yuhang Sun
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (L.D.); (K.Z.); (Y.M.); (X.C.); (Y.S.)
| | - Ang Zhang
- Technology Centre of Qinhuangdao Customs, Qinhuangdao 066004, China;
| | - Guomin Han
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (L.D.); (K.Z.); (Y.M.); (X.C.); (Y.S.)
- Correspondence:
| |
Collapse
|
9
|
Marrufo-Curtido A, Ferreira V, Escudero A. An Index for Wine Acetaldehyde Reactive Potential (ARP) and Some Derived Remarks about the Accumulation of Acetaldehyde during Wine Oxidation. Foods 2022; 11:foods11030476. [PMID: 35159626 PMCID: PMC8834303 DOI: 10.3390/foods11030476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
The amount of acetaldehyde accumulated during wine oxidation was very small, far less than expected. The existence of polyphenols specifically reactive to acetaldehyde was postuled. In order to assess the acetaldehyde reactive potential (ARP) of wines, different reactive conditions have been studied: acetaldehyde concentration, temperature and pH. The evaluation/validation of developed ARP assay was made with 12 wines. Results have shown that high temperatures cannot be used to estimate wine ARP. In fact, at 70 °C acetaldehyde reacts strictly proportionally to wine total polyphenols. A reproducible index by letting wine at pH 2 react with 35 mgL−1 of acetaldehyde for 7 days was obtained and applied to 12 wines. Rosés did not consume any, whites consumed 8% and reds between 18 and 38% of their total acetaldehyde content. After pH correction, whites ARP can be similar to low ARP reds. Basic kinetic considerations derived from the measurement of ARP were applied to interpret observed acetaldehyde accumulation and consumption during the forced oxidation of the 12 wines. It is concluded that wine ARPs cannot explain the huge fraction of acetaldehyde presumably consumed by wine and the fraction of H2O2 produced during oxidation and not consumed by SO2 has to oxidize majorly wine components other than ethanol.
Collapse
Affiliation(s)
| | | | - Ana Escudero
- Correspondence: ; Tel.: +34-976-762503; Fax: +34-976-761292
| |
Collapse
|
10
|
Catania A, Lerno L, Sari S, Fanzone M, Casassa F, Oberholster A. Impact of micro-oxygenation timing and rate of addition on color stabilization and chromatic characteristics of cabernet sauvignon wines. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
|
12
|
Campbell JR, Grosnickel F, Kennedy JA, Waterhouse AL. Anthocyanin Addition Alters Tannin Extraction from Grape Skins in Model Solutions via Chemical Reactions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7687-7697. [PMID: 34180657 DOI: 10.1021/acs.jafc.1c00112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Condensed tannin extraction and stable color formation are two of the cornerstones of red wine production. Without condensed tannin, red wine would lack the tactile feeling of astringency, and without the formation of modified pigments, it would lack color stability for long-term aging. To understand how malvidin-3,5-diglucoside interacts with condensed tannin under nonoxidative conditions, an experiment was designed conducting model-wine skin extractions of Sauvignon blanc grapes harvested at various dates of maturity. Monomeric malvidin-3,5-diglucoside was isolated from color concentrate and added during these extractions. Following a 72 h extraction, solutions were evaluated for recovery of monomeric anthocyanins, skin tannin concentration, skin tannin extractability, and impact of anthocyanins on condensed tannin size. Anthocyanins showed a significant impact on the extraction of flavan-3-ol material in the early stages of ripening that declined in the latter stages of ripening. Furthermore, anthocyanins significantly decreased the size of the condensed tannin extracted. These results suggest that anthocyanins are not only enhancing the extractability of condensed tannin but also readily incorporating into the polymeric material, leading to a decrease in the average molecular mass of the condensed tannin polymer. The extent of reaction in 72 h suggests that the rate of interflavan bond cleavage may be higher than previously reported and merits closer scrutiny.
Collapse
Affiliation(s)
- James R Campbell
- Department of Viticulture and Enology, University of California, One Shields Ave., Davis, California 95616, United States
| | - Florian Grosnickel
- Université Bourgogne Franche-Comté, AgroSup Dijon, F-21000 Dijon, France
| | - James A Kennedy
- Functional Phenolics LLC, PO Box 1443, Corvallis, Oregon 97339, United States
| | - Andrew L Waterhouse
- Department of Viticulture and Enology, University of California, One Shields Ave., Davis, California 95616, United States
| |
Collapse
|