1
|
Cui Z, Qi C, Zhou T, Yu Y, Wang Y, Zhang Z, Zhang Y, Wang W, Liu Y. Artificial intelligence and food flavor: How AI models are shaping the future and revolutionary technologies for flavor food development. Compr Rev Food Sci Food Saf 2025; 24:e70068. [PMID: 39783879 DOI: 10.1111/1541-4337.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 01/12/2025]
Abstract
The food flavor science, traditionally reliant on experimental methods, is now entering a promising era with the help of artificial intelligence (AI). By integrating existing technologies with AI, researchers can explore and develop new flavor substances in a digital environment, saving time and resources. More and more research will use AI and big data to enhance product flavor, improve product quality, meet consumer needs, and drive the industry toward a smarter and more sustainable future. In this review, we elaborate on the mechanisms of flavor recognition and their potential impact on nutritional regulation. With the increase of data accumulation and the development of internet information technology, food flavor databases and food ingredient databases have made great progress. These databases provide detailed information on the nutritional content, flavor molecules, and chemical properties of various food compounds, providing valuable data support for the rapid evaluation of flavor components and the construction of screening technology. With the popularization of AI in various fields, the field of food flavor has also ushered in new development opportunities. This review explores the mechanisms of flavor recognition and the role of AI in enhancing food flavor analysis through high-throughput omics data and screening technologies. AI algorithms offer a pathway to scientifically improve product formulations, thereby enhancing flavor and customized meals. Furthermore, it discusses the safety challenges of integrating AI into the food flavor industry.
Collapse
Affiliation(s)
- Zhiyong Cui
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chengliang Qi
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tianxing Zhou
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
- Department of Bioinformatics, Faculty of Science, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yanyang Yu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yueming Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwei Zhang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Wenli Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| |
Collapse
|
2
|
Danzer B, Jukic M, Dunkel A, Andersen G, Lieder B, Schaudy E, Stadlmayr S, Lietard J, Michel T, Krautwurst D, Haller B, Knolle P, Somoza M, Lingor P, Somoza V. Impaired metal perception and regulation of associated human foliate papillae tongue transcriptome in long-COVID-19. Sci Rep 2024; 14:15408. [PMID: 38965271 PMCID: PMC11224223 DOI: 10.1038/s41598-024-66079-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
Chemosensory impairment is an outstanding symptom of SARS-CoV-2 infections. We hypothesized that measured sensory impairments are accompanied by transcriptomic changes in the foliate papillae area of the tongue. Hospital personnel with known SARS-CoV-2 immunoglobulin G (IgG) status completed questionnaires on sensory perception (n = 158). A subcohort of n = 141 participated in forced choice taste tests, and n = 43 participants consented to donate tongue swabs of the foliate papillae area for whole transcriptome analysis. The study included four groups of participants differing in IgG levels (≥ 10 AU/mL = IgG+; < 10 AU/mL = IgG-) and self-reported sensory impairment (SSI±). IgG+ subjects not detecting metallic taste had higher IgG+ levels than IgG+ participants detecting iron gluconate (p = 0.03). Smell perception was the most impaired biological process in the transcriptome data from IgG+/SSI+ participants subjected to gene ontology enrichment. IgG+/SSI+ subjects demonstrated lower expression levels of 166 olfactory receptors (OR) and 9 taste associated receptors (TAS) of which OR1A2, OR2J2, OR1A1, OR5K1 and OR1G1, as well as TAS2R7 are linked to metallic perception. The question raised by this study is whether odorant receptors on the tongue (i) might play a role in metal sensation, and (ii) are potential targets for virus-initiated sensory impairments, which needs to be investigated in future functional studies.
Collapse
Affiliation(s)
- Barbara Danzer
- School of Life Science, Technical University of Munich, Freising, Germany
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Mateo Jukic
- Department of Neurology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Andreas Dunkel
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Gaby Andersen
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Barbara Lieder
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Institute of Clinical Nutrition, University of Hohenheim, Stuttgart, Germany
| | - Erika Schaudy
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Sarah Stadlmayr
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jory Lietard
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Timm Michel
- School of Life Science, Technical University of Munich, Freising, Germany
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Dietmar Krautwurst
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Bernhard Haller
- Institute of AI and Informatics in Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Percy Knolle
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Mark Somoza
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Chair of Food Chemistry and Molecular Sensory Science, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Paul Lingor
- Department of Neurology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Veronika Somoza
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
- Chair of Nutritional Systems Biology, School of Life Sciences, Technical University of Munich, Freising, Germany.
| |
Collapse
|
3
|
Javi F, Torabi H, Dadmohammadi Y, Tiwari R, Prakash I, Abbaspourrad A. Quantification of diffusion coefficients of commonly used high-intensity sweeteners through mucin. Food Res Int 2024; 183:114185. [PMID: 38760122 DOI: 10.1016/j.foodres.2024.114185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 05/19/2024]
Abstract
Low- and no-calorie sweeteners reduce the amount of carbohydrates in foods and beverages. However, concerns about taste perception surrounding the role of non-nutritive sweeteners in the oral cavity remain unanswered. One of the parameters that influences taste perception is the diffusion coefficient of the sweetener molecules inside the mucin layer lining the mouth. This study investigated the impact of diffusion coefficients of common high-intensity sweeteners on taste perception focusing on the sweeteners' diffusion through mucin. Transwell Permeable Support well plates were used to measure diffusion coefficients of samples that were collected at specific intervals to estimate the coefficients based on concentration measurements. The diffusion coefficients of acesulfame-K, aspartame, rebaudioside M, sucralose, and sucrose with and without NaCl were compared. We found that different sweeteners show different diffusion behavior through mucin and that the presence of salt enhances the diffusion. These findings contribute insights into the diffusion of high-intensity sweeteners, offer a way to evaluate diffusion coefficients in real-time, and inform the development of products with improved taste profiles.
Collapse
Affiliation(s)
- Farhad Javi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Hooman Torabi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Younas Dadmohammadi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Rashmi Tiwari
- The Coca-Cola Company, One Coca-Cola Plaza, Atlanta, GA 30313, USA
| | - Indra Prakash
- The Coca-Cola Company, One Coca-Cola Plaza, Atlanta, GA 30313, USA
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
4
|
Kouakou YI, Lee RJ. Interkingdom Detection of Bacterial Quorum-Sensing Molecules by Mammalian Taste Receptors. Microorganisms 2023; 11:1295. [PMID: 37317269 PMCID: PMC10221136 DOI: 10.3390/microorganisms11051295] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023] Open
Abstract
Bitter and sweet taste G protein-coupled receptors (known as T2Rs and T1Rs, respectively) were originally identified in type II taste cells on the tongue, where they signal perception of bitter and sweet tastes, respectively. Over the past ~15 years, taste receptors have been identified in cells all over the body, demonstrating a more general chemosensory role beyond taste. Bitter and sweet taste receptors regulate gut epithelial function, pancreatic β cell secretion, thyroid hormone secretion, adipocyte function, and many other processes. Emerging data from a variety of tissues suggest that taste receptors are also used by mammalian cells to "eavesdrop" on bacterial communications. These receptors are activated by several quorum-sensing molecules, including acyl-homoserine lactones and quinolones from Gram-negative bacteria such as Pseudomonas aeruginosa, competence stimulating peptides from Streptococcus mutans, and D-amino acids from Staphylococcus aureus. Taste receptors are an arm of immune surveillance similar to Toll-like receptors and other pattern recognition receptors. Because they are activated by quorum-sensing molecules, taste receptors report information about microbial population density based on the chemical composition of the extracellular environment. This review summarizes current knowledge of bacterial activation of taste receptors and identifies important questions remaining in this field.
Collapse
Affiliation(s)
- Yobouet Ines Kouakou
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Robert J. Lee
- Department of Otorhinolaryngology and Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Mirlohi S. Characterization of Metallic Off-Flavors in Drinking Water: Health, Consumption, and Sensory Perception. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16829. [PMID: 36554714 PMCID: PMC9778853 DOI: 10.3390/ijerph192416829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 05/19/2023]
Abstract
Characterization of taste- and flavor-producing metals, namely iron and copper, in drinking water is a multifaceted subject. Both metals are essential nutrients, can be toxic, and are known to produce unpleasant tastes and flavor sensations in drinking water. Ingestion of trace metal contaminants through drinking water is a probable source of human exposure. Biochemical mechanisms of metallic flavor perception have been previously described; however, less is known about how variations in salivary constituents might impact individuals' sensitivities to metallic flavors and beverage consumption behaviors. This research presents findings from in vitro experiments, using artificial human saliva, to better understand the role of salivary lipids and proteins on metallic flavor production as measured by biomarkers of metal-induced oxidative stress. The results indicate that metal-induced lipid oxidation, as measured by thiobarbituric acid reactive substances (TBARS), is dominated by salivary proteins, is slightly inhibited in the presence of salivary nitrite, and is detectable by the TBARS method at and above respective concentrations of 9 µM (0.5 mg/L) and 90 µM (5 mg/L), which are both above the aesthetic standards for iron (0.3 mg/L) and copper (1.0 mg/L) in drinking water. Preliminary study with human subjects indicated that reduction in metallic flavor sensitivity, as measured by the best estimate flavor threshold for ferrous iron among 33 healthy adults aged 19-84 years old (22 females), corresponded with reduced drinking water consumption and increased caloric beverage intake among older subjects (>60 years), as determined by a validated self-reported beverage intake questionnaire. These findings provide insights for further research to examine how salivary constituents can impact humans' sensory abilities in detecting metallic off-flavors in water, and how reduced metallic flavor sensitivity may influence beverage choices and drinking water consumption.
Collapse
Affiliation(s)
- Susan Mirlohi
- Department of Public Health, California State University, Fresno, CA 93740-8031, USA
| |
Collapse
|
6
|
Spence C, Carvalho FM, Howes D. Metallic: A Bivalent Ambimodal Material Property? Iperception 2021; 12:20416695211037710. [PMID: 34540193 PMCID: PMC8447111 DOI: 10.1177/20416695211037710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/19/2021] [Indexed: 12/01/2022] Open
Abstract
Many metallic visual stimuli, especially the so-called precious metals, have long had a rich symbolic meaning for humans. Intriguingly, however, while metallic is used to describe sensations associated with pretty much every sensory modality, the descriptor is normally positively valenced in the case of vision while typically being negatively valenced in the case of those metallic sensations that are elicited by the stimulation of the chemical senses. In fact, outside the visual modality, metallic would often appear to be used to describe those sensations that are unfamiliar and unpleasant as much as to refer to any identifiable perceptual quality (or attribute). In this review, we assess those sensory stimuli that people choose to refer to as metallic, summarising the multiple, often symbolic, meanings of (especially precious) metals. The evidence of positively valenced sensation transference from metallic serviceware (e.g., plates, cups, and cutlery) to the food and drink with which it comes into contact is also reviewed.
Collapse
Affiliation(s)
- Charles Spence
- Centre for Sensory Studies, Concordia
University, Montreal, Quebec, Canada
| | | | - David Howes
- Centre for Sensory Studies, Concordia
University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Laffitte A, Gibbs M, Hernangomez de Alvaro C, Addison J, Lonsdale ZN, Giribaldi MG, Rossignoli A, Vennegeerts T, Winnig M, Klebansky B, Skiles J, Logan DW, McGrane SJ. Kokumi taste perception is functional in a model carnivore, the domestic cat (Felis catus). Sci Rep 2021; 11:10527. [PMID: 34006911 PMCID: PMC8131363 DOI: 10.1038/s41598-021-89558-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/28/2021] [Indexed: 01/03/2023] Open
Abstract
Kokumi taste is a well-accepted and characterised taste modality and is described as a sensation of enhancement of sweet, salty, and umami tastes. The Calcium Sensing Receptor (CaSR) has been designated as the putative kokumi taste receptor for humans, and a number of kokumi-active ligands of CaSR have been discovered recently with activity confirmed both in vivo and in vitro. Domestic cats (Felis catus) are obligate carnivores and accordingly, their diet is abundant in proteins, peptides, and amino acids. We hypothesised that CaSR is a key taste receptor for carnivores, due to its role in the detection of different peptides and amino acids in other species. Using in silico, in vitro and in vivo approaches, here we compare human CaSR to that of a model carnivore, the domestic cat. We found broad similarities in ligand specificity, but differences in taste sensitivity between the two species. Indeed our in vivo data shows that cats are sensitive to CaCl2 as a kokumi compound, but don't show this same activity with Glutathione, whereas for humans the reverse is true. Collectively, our data suggest that kokumi is an important taste modality for carnivores that drives the palatability of meat-derived compounds such as amino acids and peptides, and that there are differences in the perception of kokumi taste between carnivores and omnivores.
Collapse
Affiliation(s)
- A Laffitte
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK
| | - M Gibbs
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK
| | - C Hernangomez de Alvaro
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK
| | - J Addison
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK
| | - Z N Lonsdale
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK
| | - M G Giribaldi
- IMAX Discovery GmbH, Otto-Hahn-Straße 15, 44227, Dortmund, Germany.,AXXAM S.p.A., OpenZone, Via Meucci 3, 20091, Bresso, Milan, Italy
| | - A Rossignoli
- IMAX Discovery GmbH, Otto-Hahn-Straße 15, 44227, Dortmund, Germany.,AXXAM S.p.A., OpenZone, Via Meucci 3, 20091, Bresso, Milan, Italy
| | - T Vennegeerts
- IMAX Discovery GmbH, Otto-Hahn-Straße 15, 44227, Dortmund, Germany.,AXXAM S.p.A., OpenZone, Via Meucci 3, 20091, Bresso, Milan, Italy
| | - M Winnig
- IMAX Discovery GmbH, Otto-Hahn-Straße 15, 44227, Dortmund, Germany.,AXXAM S.p.A., OpenZone, Via Meucci 3, 20091, Bresso, Milan, Italy
| | - B Klebansky
- BioPredict, Inc., 4 Adele Avenue, Demarest, NJ, 07627, USA
| | - J Skiles
- BioPredict, Inc., 4 Adele Avenue, Demarest, NJ, 07627, USA.,Valis Pharma, Ins., 545 Bonair Way, La Jolla, CA, 92037, USA
| | - D W Logan
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK
| | - S J McGrane
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK.
| |
Collapse
|
8
|
Spence C, Levitan CA. Explaining Crossmodal Correspondences Between Colours and Tastes. Iperception 2021; 12:20416695211018223. [PMID: 34211685 PMCID: PMC8216361 DOI: 10.1177/20416695211018223] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
For centuries, if not millennia, people have associated the basic tastes (e.g., sweet, bitter, salty, and sour) with specific colours. While the range of tastes may have changed, and the reasons for wanting to connect the senses in this rather surprising way have undoubtedly differed, there would nevertheless appear to be a surprisingly high degree of consistency regarding this crossmodal mapping among non-synaesthetes that merits further consideration. Traditionally, colour-taste correspondences have often been considered together with odour-colour and flavour-colour correspondences. However, the explanation for these various correspondences with the chemical senses may turn out to be qualitatively different, given the presence of identifiable source objects in the case of food aromas/flavours, but not necessarily in the case of basic tastes. While the internalization of the crossmodal statistics of the environment provides one appealing account for the existence of colour-taste correspondences, emotional mediation may also be relevant. Ultimately, while explaining colour-taste correspondences is of both theoretical and historical interest, the growing awareness of the robustness of colour-taste correspondences would currently seem to be of particular relevance to those working in the fields of design and multisensory experiential marketing.
Collapse
Affiliation(s)
- Charles Spence
- Department of Experimental Psychology, Oxford University, UK
| | - Carmel A Levitan
- Department of Cognitive Science, Occidental College, Los Angeles, California, United States
| |
Collapse
|
9
|
Ecarma MJY, Nolden AA. A review of the flavor profile of metal salts: understanding the complexity of metallic sensation. Chem Senses 2021; 46:6366361. [PMID: 34498058 DOI: 10.1093/chemse/bjab043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The oral sensation of metallic is a complex experience. Much of our current understanding of metallic sensation is from the investigation of metal salts, which elicit diverse sensations, including taste, smell, and chemesthetic sensations, and therefore meet the definition of a flavor rather than a taste. Due to the involvement of multiple chemosensory systems, it can be challenging to define and characterize metallic sensation. Here, we provide a comprehensive review of the psychophysical studies quantifying and characterizing metallic sensation, focusing on metal salts. We examine the factors that impact perception, including anion complex, concentration, nasal occlusion, and pH. In addition, we summarize the receptors thought to be involved in the perception of metallic sensation (i.e., TRPV1, T1R3, TRPA1, and T2R7) either as a result of in vitro assays or from studies in knock-out mice. By enhancing our scientific understanding of metallic sensation and its transduction pathways, it has the potential to improve food and pharmaceuticals, help identify suppression or masking strategies, and improve the ability to characterize individual differences in metallic sensation. It also has the potential to translate to clinical populations by addressing the disparities in knowledge and treatment options for individuals suffering from metallic taste disorder (i.e., phantom taste or "metal mouth"). Future psychophysical studies investigating the sensory perception of metal salts should include a range of compounds and diverse food matrices, coupled with modern sensory methods, which will help to provide a more comprehensive understanding of metallic sensation.
Collapse
Affiliation(s)
- Michelle J Y Ecarma
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Alissa A Nolden
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|