1
|
Xie J, Zhang L, Yang K, Zhang H, Jiang M, Liao S, Yang D, Shen N. Enhanced chitinase production by Bacillus paralicheniformis GXMU-J23.1: Optimization, genomic insights, and chitin degradation mechanism. BIORESOURCE TECHNOLOGY 2024; 418:131911. [PMID: 39615763 DOI: 10.1016/j.biortech.2024.131911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024]
Abstract
Millions of tons of shrimp and crab waste, rich in chitin, are produced annually worldwide. To efficiently utilize this resource and address the contamination caused by traditional chitin treatment, a high-chitinase-producing strain, GXMU-J23.1, was isolated from the marine environment and identified as Bacillus paralicheniformis. Genome sequencing revealed several chitinolytic enzymes, such as chitinase, chitin deacetylase, and polysaccharide monooxygenases. Under optimal conditions, the chitinase activity increased 9.1-fold to 356.32 ± 1.21 U/mL. The purified chitinase Chi23 exhibited optimal activity at 50 °C and pH 5.0, degrading various chitin substrates. Metal ions such as Ca2+ and reagents such as EDTA increased the activity, whereas Fe2+ and Zn2+ inhibited the activity. Chi23, an endochitinase, converts chitin into chitotriose and diacetylchitobiose. Based on the structural reconstruction and molecular docking of Chi23, the potential enzyme-substrate mode of action was elucidated, which will support subsequent enzyme modification and in-depth development of enzyme systems assisting in chitin degradation.
Collapse
Affiliation(s)
- Junjie Xie
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, No. 158, Daxue Xi Road, Nanning 530008, PR China
| | - Ligang Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, No. 158, Daxue Xi Road, Nanning 530008, PR China
| | - Kexin Yang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, No. 158, Daxue Xi Road, Nanning 530008, PR China
| | - Hongyan Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, No. 158, Daxue Xi Road, Nanning 530008, PR China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, No. 158, Daxue Xi Road, Nanning 530008, PR China
| | - Siming Liao
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, No. 98, Daxue Road, Nanning 530007, PR China
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, No. 98, Daxue Road, Nanning 530007, PR China
| | - Naikun Shen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, No. 158, Daxue Xi Road, Nanning 530008, PR China.
| |
Collapse
|
2
|
Bisht V, Ghosh T, Kumar P, Sharma R, Chamoli S, Patodia H, Mohanty AK, Navani NK. Mitigation of acrylamide in fried food systems using a combination of zein-pectin hydrocolloid complex and a food-grade l-asparaginase. Int J Biol Macromol 2024; 276:133745. [PMID: 38986991 DOI: 10.1016/j.ijbiomac.2024.133745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Acrylamide, a Maillard reaction product, formed in fried food poses a serious concern to food safety due to its neurotoxic and carcinogenic nature. A "Green Approach" using L-Asparaginase enzyme from GRAS-status bacteria synergized with hydrocolloid protective coating could be effective in inhibiting acrylamide formation. To fill this void, the present study reports a new variant of type-II L-asparaginase (AsnLb) from Levilactobacillus brevis NKN55, a food-grade bacterium isolated using a unique metabolite profiling approach. The recombinant AsnLb enzyme was characterized to study acrylamide inhibition ability and showed excellent specificity towards L-asparagine (157.2 U/mg) with Km, Vmax of 0.833 mM, 4.12 mM/min respectively. Pretreatment of potato slices with AsnLb (60 IU/mL) followed by zein-pectin nanocomplex led to >70% reduction of acrylamide formation suggesting synergistic effect of this dual component system. The developed strategy can be employed as a sustainable treatment method by food industries for alleviating acrylamide formation and associated health hazard in fried foods.
Collapse
Affiliation(s)
- Vishakha Bisht
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India.
| | - Tamoghna Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Piyush Kumar
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.
| | - Rekha Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Shivangi Chamoli
- Department of Life sciences, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Harsh Patodia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ashok Kumar Mohanty
- ICAR-Central Institute for Research on Cattle (ICAR-CIRC), Meerut Cantt, Uttar Pradesh, India.
| | - Naveen Kumar Navani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India.
| |
Collapse
|
3
|
Wlodawer A, Dauter Z, Lubkowski J, Loch JI, Brzezinski D, Gilski M, Jaskolski M. Towards a dependable data set of structures for L-asparaginase research. Acta Crystallogr D Struct Biol 2024; 80:506-527. [PMID: 38935343 PMCID: PMC11220836 DOI: 10.1107/s2059798324005461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The Protein Data Bank (PDB) includes a carefully curated treasury of experimentally derived structural data on biological macromolecules and their various complexes. Such information is fundamental for a multitude of projects that involve large-scale data mining and/or detailed evaluation of individual structures of importance to chemistry, biology and, most of all, to medicine, where it provides the foundation for structure-based drug discovery. However, despite extensive validation mechanisms, it is almost inevitable that among the ∼215 000 entries there will occasionally be suboptimal or incorrect structure models. It is thus vital to apply careful verification procedures to those segments of the PDB that are of direct medicinal interest. Here, such an analysis was carried out for crystallographic models of L-asparaginases, enzymes that include approved drugs for the treatment of certain types of leukemia. The focus was on the adherence of the atomic coordinates to the rules of stereochemistry and their agreement with the experimental electron-density maps. Whereas the current clinical application of L-asparaginases is limited to two bacterial proteins and their chemical modifications, the field of investigations of such enzymes has expanded tremendously in recent years with the discovery of three entirely different structural classes and with numerous reports, not always quite reliable, of the anticancer properties of L-asparaginases of different origins.
Collapse
Affiliation(s)
- Alexander Wlodawer
- Center for Structural Biology, Center for Cancer ResearchNational Cancer InstituteMarylandUSA
| | - Zbigniew Dauter
- Center for Structural Biology, Center for Cancer ResearchNational Cancer InstituteMarylandUSA
| | - Jacek Lubkowski
- Center for Structural Biology, Center for Cancer ResearchNational Cancer InstituteMarylandUSA
| | - Joanna I. Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of ChemistryJagiellonian UniversityCracowPoland
| | - Dariusz Brzezinski
- Institute of Computing SciencePoznan University of TechnologyPoznanPoland
| | - Miroslaw Gilski
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Mariusz Jaskolski
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
4
|
Kato S, Tamura K, Masuda Y, Konishi M, Yamanaka K, Oikawa T. A novel type IIb L-asparaginase from Latilactobacillus sakei LK-145: characterization and application. Arch Microbiol 2024; 206:266. [PMID: 38761213 DOI: 10.1007/s00203-024-03979-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/29/2024] [Accepted: 04/25/2024] [Indexed: 05/20/2024]
Abstract
We succeeded in homogeneously expressing and purifying L-asparaginase from Latilactobacillus sakei LK-145 (Ls-Asn1) and its mutated enzymes C196S, C264S, C290S, C196S/C264S, C196S/C290S, C264S/C290S, and C196S/C264S/C290S-Ls-Asn1. Enzymological studies using purified enzymes revealed that all cysteine residues of Ls-Asn1 were found to affect the catalytic activity of Ls-Asn1 to varying degrees. The mutation of Cys196 did not affect the specific activity, but the mutation of Cys264, even a single mutation, significantly decreased the specific activity. Furthermore, C264S/C290S- and C196S/C264S/C290S-Ls-Asn1 almost completely lost their activity, suggesting that C290 cooperates with C264 to influence the catalytic activity of Ls-Asn1. The detailed enzymatic properties of three single-mutated enzymes (C196S, C264S, and C290S-Ls-Asn1) were investigated for comparison with Ls-Asn1. We found that only C196S-Ls-Asn1 has almost the same enzymatic properties as that of Ls-Asn1 except for its increased stability for thermal, pH, and the metals NaCl, KCl, CaCl2, and FeCl2. We measured the growth inhibitory effect of Ls-Asn1 and C196S-Ls-Asn1 on Jurkat cells, a human T-cell acute lymphoblastic leukemia cell line, using L-asparaginase from Escherichia coli K-12 as a reference. Only C196S-Ls-Asn1 effectively and selectively inhibited the growth of Jurkat T-cell leukemia, which suggested that it exhibited antileukemic activity. Furthermore, based on alignment, phylogenetic tree analysis, and structural modeling, we also proposed that Ls-Asn1 is a so-called "Type IIb" novel type of asparaginase that is distinct from previously reported type I or type II asparaginases. Based on the above results, Ls-Asn1 is expected to be useful as a new leukemia therapeutic agent.
Collapse
Affiliation(s)
- Shiro Kato
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0795, Japan
| | - Kazuya Tamura
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka-fu, 564-8680, Japan
| | - Yuki Masuda
- Department of Microbiological Chemistry, Kobe Pharmaceutical University, 4-9-1 Motoyamakita-machi, Higashinada-ku, Kobe, Hyougo, 658-8558, Japan
| | - Morichika Konishi
- Department of Microbiological Chemistry, Kobe Pharmaceutical University, 4-9-1 Motoyamakita-machi, Higashinada-ku, Kobe, Hyougo, 658-8558, Japan
| | - Kazuya Yamanaka
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka-fu, 564-8680, Japan
| | - Tadao Oikawa
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka-fu, 564-8680, Japan.
| |
Collapse
|
5
|
Sania A, Muhammad MA, Sajed M, Azim N, Ahmad N, Aslam M, Tang XF, Rashid N. Structural and functional analyses of an L-asparaginase from Geobacillus thermopakistaniensis. Int J Biol Macromol 2024; 263:130438. [PMID: 38408579 DOI: 10.1016/j.ijbiomac.2024.130438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Genome sequence of Geobacillus thermopakistaniensis contains an open reading frame annotated as a type II L-asparaginase (ASNaseGt). Critical structural analysis disclosed that ASNaseGt might be a type I L-asparaginase. In order to determine whether it is a type I or type II L-asparaginase, we have performed the structural-functional characterization of the recombinant protein as well as analyzed the localization of ASNaseGt in G. thermopakistaniensis. ASNaseGt exhibited optimal activity at 52 °C and pH 9.5. There was a > 3-fold increase in activity in the presence of β-mercaptoethanol. Apparent Vmax and Km values were 2735 U/mg and 0.35 mM, respectively. ASNaseGt displayed high thermostability with >80 % residual activity even after 6 h of incubation at 55 °C. Recombinant ASNaseGt existed in oligomeric form. Addition of β-mercaptoethanol lowered the degree of oligomerization and displayed that tetrameric form was the most active, with a specific activity of 4300 U/mg. Under physiological conditions, ASNaseGt displayed >50 % of the optimal activity. Localization studies in G. thermopakistaniensis revealed that ASNaseGt is a cytosolic protein. Structural and functional characterization, and localization in G. thermopakistaniensis displayed that ASNaseGt is not a type II but a type I L-asparaginase.
Collapse
Affiliation(s)
- Ayesha Sania
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Majida Atta Muhammad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Muhammad Sajed
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Naseema Azim
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Nasir Ahmad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Mehwish Aslam
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Xiao-Feng Tang
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei Province, China
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
6
|
Arredondo-Nuñez A, Monteiro G, Flores-Fernández CN, Antenucci L, Permi P, Zavaleta AI. Characterization of a Type II L-Asparaginase from the Halotolerant Bacillus subtilis CH11. Life (Basel) 2023; 13:2145. [PMID: 38004285 PMCID: PMC10672034 DOI: 10.3390/life13112145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
L-asparaginases from bacterial sources have been used in antineoplastic treatments and the food industry. A type II L-asparaginase encoded by the N-truncated gene ansZP21 of halotolerant Bacillus subtilis CH11 isolated from Chilca salterns in Peru was expressed using a heterologous system in Escherichia coli BL21 (DE3)pLysS. The recombinant protein was purified using one-step nickel affinity chromatography and exhibited an activity of 234.38 U mg-1 and a maximum catalytic activity at pH 9.0 and 60 °C. The enzyme showed a homotetrameric form with an estimated molecular weight of 155 kDa through gel filtration chromatography. The enzyme half-life at 60 °C was 3 h 48 min, and L-asparaginase retained 50% of its initial activity for 24 h at 37 °C. The activity was considerably enhanced by KCl, CaCl2, MgCl2, mercaptoethanol, and DL-dithiothreitol (p-value < 0.01). Moreover, the Vmax and Km were 145.2 µmol mL-1 min-1 and 4.75 mM, respectively. These findings evidence a promising novel type II L-asparaginase for future industrial applications.
Collapse
Affiliation(s)
- Annsy Arredondo-Nuñez
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Lima 01, Peru;
| | - Gisele Monteiro
- Department of Pharmaceutical and Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Carol N. Flores-Fernández
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Lima 01, Peru;
| | - Lina Antenucci
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, P.O. Box 35, FI-40014 Jyvaskyla, Finland; (L.A.); (P.P.)
| | - Perttu Permi
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, P.O. Box 35, FI-40014 Jyvaskyla, Finland; (L.A.); (P.P.)
- Department of Chemistry, Nanoscience Center, University of Jyvaskyla, P.O. Box 35, FI-40014 Jyvaskyla, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 65, FI-00014 Helsinki, Finland
| | - Amparo Iris Zavaleta
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Lima 01, Peru;
| |
Collapse
|
7
|
Chi H, Wang Y, Xia B, Zhou Y, Lu Z, Lu F, Zhu P. Enhanced Thermostability and Molecular Insights for l-Asparaginase from Bacillus licheniformis via Structure- and Computation-Based Rational Design. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14499-14509. [PMID: 36341695 DOI: 10.1021/acs.jafc.2c05712] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
l-Asparaginase has gained much attention for effectively treating acute lymphoblastic leukemia (ALL) and mitigating carcinogenic acrylamide in fried foods. Due to high-dose dependence for clinical treatment and low mitigation efficiency for thermal food processes caused by poor thermal stability, a method to achieve thermostable l-asparaginase has become a critical bottleneck. In this study, a rational design including free energy combined with structural and conservative analyses was applied to engineer the thermostability of l-asparaginase from Bacillus licheniformis (BlAsnase). Two enhanced thermostability mutants D172W and E207A were screened out by site-directed saturation mutagenesis. The double mutant D172W/E207A exhibited highly remarkable thermostability with a 65.8-fold longer half-life at 55 °C and 5 °C higher optimum reaction temperature and melting temperature (Tm) than those of wild-type BlAsnase. Further, secondary structure, sequence, molecular dynamics (MD), and 3D-structure analysis revealed that the excellent thermostability of the mutant D172W/E207A was on account of increased hydrophobicity and decreased flexibility, highly rigid structure, hydrophobic interactions, and favorable electrostatic potential. As the first report of rationally designing l-asparaginase with improved thermostability from B. licheniformis, this study offers a facile and efficient process to improve the thermostability of l-asparaginase for industrial applications.
Collapse
Affiliation(s)
- Huibing Chi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Yilian Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Bingjie Xia
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Yawen Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Ping Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|
8
|
Thermostability Improvement of L-Asparaginase from Acinetobacter soli via Consensus-Designed Cysteine Residue Substitution. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196670. [PMID: 36235209 PMCID: PMC9572581 DOI: 10.3390/molecules27196670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
To extend the application range of L-asparaginase in food pre-processing, the thermostability improvement of the enzyme is essential. Herein, two non-conserved cysteine residues with easily oxidized free sulfhydryl groups, Cys8 and Cys283, of Acinetobacter soli L-asparaginase (AsA) were screened out via consensus design. After saturation mutagenesis and combinatorial mutation, the mutant C8Y/C283Q with highly improved thermostability was obtained with a half-life of 361.6 min at 40 °C, an over 34-fold increase compared with that of the wild-type. Its melting temperature (Tm) value reaches 62.3 °C, which is 7.1 °C higher than that of the wild-type. Molecular dynamics simulation and structure analysis revealed the formation of new hydrogen bonds of Gln283 and the aromatic interaction of Tyr8 formed with adjacent residues, resulting in enhanced thermostability. The improvement in the thermostability of L-asparaginase could efficiently enhance its effect on acrylamide inhibition; the contents of acrylamide in potato chips were efficiently reduced by 86.50% after a mutant C8Y/C283Q treatment, which was significantly higher than the 59.05% reduction after the AsA wild-type treatment. In addition, the investigation of the mechanism behind the enhanced thermostability of AsA could further direct the modification of L-asparaginases for expanding their clinical and industrial applications.
Collapse
|
9
|
Chi H, Xia B, Shen J, Zhu X, Lu Z, Lu F, Zhu P. Characterization of a novel and glutaminase-free type II L-asparaginase from Corynebacterium glutamicum and its acrylamide alleviation efficiency in potato chips. Int J Biol Macromol 2022; 221:1384-1393. [PMID: 36130640 DOI: 10.1016/j.ijbiomac.2022.09.162] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022]
Abstract
Type II L-asparaginase as a pivotal enzyme agent has been applied to treating for acute lymphoblastic leukemia (ALL) and efficient mitigation of acrylamide formed in fried and baked foods. However, low activity, narrow range of pH stability, as well as undesirable glutaminase activity hinder the applications of this enzyme. In our work, A novel type II L-asparaginase (CgASNase) from Corynebacterium glutamicum with molecular mass of about 35 kDa was chosen to express in E. coli. CgASNase shared only 27 % structural identity with the reported L-asparaginase from Helicobacter pylori. The purified CgASNase showed the highest specific activity of 1979.08 IU mg-1 to L-asparagine, compared with reported type II ASNases in the literature. CgASNase displayed superior stability at a wide pH range from 5.0 to 11.0, and retained about 76 % of its activity at 30 °C for 30 min. The kinetic parameters Km (Michaelis constant), kcat (turnover number), and kcat/Km (catalytic efficiency) values of 4.66 mM, 79,697.40 min-1, and 17,102.45 mM-1 min-1, respectively. More importantly, CgASNase exhibited strict substrate specificity towards L-asparagine, no detectable activity to l-glutamine. To explore its ability to catalyze L-asparagine, CgASNase was supplied in frying potato chips, which produced the fries with 84 % less acrylamide content compared with no supply. These findings suggest that CgASNase presents excellent properties for chemotherapy against diseases and great potential in the food processing industry.
Collapse
Affiliation(s)
- Huibing Chi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bingjie Xia
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyu Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ping Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Enhancing the Catalytic Activity of Type II L-Asparaginase from Bacillus licheniformis through Semi-Rational Design. Int J Mol Sci 2022; 23:ijms23179663. [PMID: 36077061 PMCID: PMC9456134 DOI: 10.3390/ijms23179663] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 01/10/2023] Open
Abstract
Low catalytic activity is a key factor limiting the widespread application of type II L-asparaginase (ASNase) in the food and pharmaceutical industries. In this study, smart libraries were constructed by semi-rational design to improve the catalytic activity of type II ASNase from Bacillus licheniformis. Mutants with greatly enhanced catalytic efficiency were screened by saturation mutations and combinatorial mutations. A quintuple mutant ILRAC was ultimately obtained with specific activity of 841.62 IU/mg and kcat/Km of 537.15 min−1·mM−1, which were 4.24-fold and 6.32-fold more than those of wild-type ASNase. The highest specific activity and kcat/Km were firstly reported in type II ASNase from Bacillus licheniformis. Additionally, enhanced pH stability and superior thermostability were both achieved in mutant ILRAC. Meanwhile, structural alignment and molecular dynamic simulation demonstrated that high structure stability and strong substrate binding were beneficial for the improved thermal stability and enzymatic activity of mutant ILRAC. This is the first time that enzymatic activity of type II ASNase from Bacillus licheniformis has been enhanced by the semi-rational approach, and results provide new insights into enzymatic modification of L-asparaginase for industrial applications.
Collapse
|
11
|
Bhandari Y, Sajwan H, Pandita P, Koteswara Rao V. Chloroperoxidase applications in chemical synthesis of industrial relevance. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2107919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Yogesh Bhandari
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
| | - Hemlata Sajwan
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
| | - Parul Pandita
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
| | - Vamkudoth Koteswara Rao
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
12
|
Biochemical characterization and detection of antitumor activity of l-asparaginase from thermophilic Geobacillus kaustophilus DSM 7263 T. Protein Expr Purif 2022; 199:106146. [PMID: 35863721 DOI: 10.1016/j.pep.2022.106146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022]
Abstract
L-asparaginases, which are oncolytic enzymes, have been used in clinical applications for many years. These enzymes are also important in food processing industry due to their potential in acrylamide-mitigation. In this study, the gene for l-asparaginase (GkASN) from a thermophilic bacterium, Geobacillus kaustophilus, was cloned and expressed in E. coli Rosetta™2 (DE3) cells utilizing the pET-22b(+) vector. The 6xHis-tag attached enzyme was purified and analyzed both biochemically and structurally. The molecular mass of GkASN was determined as ∼36 kDa by SDS-PAGE, Western Blotting, and MALDI-TOF MS analyses. Optimum temperature and pH for the enzyme was determined as 55 °C and 8.5, respectively. The enzyme retained 89% of its thermal stability at 37 °C and 75% at 55 °C after 6 h of incubation. The enzyme activity was inhibited in the presence of Cu2+, Fe3+, Zn2+, and EDTA, while the activity was enhanced in the presence of Mn2+, Mg2+, and thiol group protective agents such as 2-mercaptoethanol and DTT. The structural modeling analysis demonstrated that the catalytic residues of the enzyme were partially similar to other asparaginases. The therapeutic potential of GkASN was tested on hepatocellular carcinoma cells, a solid cancer type with high mortality rate and rapidly increasing incidence in recent years. We showed that the GkASN-induced asparagine deficiency effectively reduced the metastatic synergy in HCC SNU387 cells on a xCELLigence system with differentiated epithelial Hep3B and poorly differentiated metastatic mesenchymal HCC SNU387 cells.
Collapse
|
13
|
Niu J, Yan R, Shen J, Zhu X, Meng F, Lu Z, Lu F. Cis-Element Engineering Promotes the Expression of Bacillus subtilis Type I L-Asparaginase and Its Application in Food. Int J Mol Sci 2022; 23:ijms23126588. [PMID: 35743032 PMCID: PMC9224341 DOI: 10.3390/ijms23126588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023] Open
Abstract
Type I L-asparaginase from Bacillus licheniformis Z-1 (BlAase) was efficiently produced and secreted in Bacillus subtilis RIK 1285, but its low yield made it unsuitable for industrial use. Thus, a combined method was used in this study to boost BlAase synthesis in B. subtilis. First, fifteen single strong promoters were chosen to replace the original promoter P43, with PyvyD achieving the greatest BlAase activity (436.28 U/mL). Second, dual-promoter systems were built using four promoters (PyvyD, P43, PaprE, and PspoVG) with relatively high BlAase expression levels to boost BlAase output, with the engine of promoter PaprE-PyvyD reaching 502.11 U/mL. The activity of BlAase was also increased (568.59 U/mL) by modifying key portions of the PaprE-PyvyD promoter. Third, when the ribosome binding site (RBS) sequence of promoter PyvyD was replaced, BlAase activity reached 790.1 U/mL, which was 2.27 times greater than the original promoter P43 strain. After 36 h of cultivation, the BlAase expression level in a 10 L fermenter reached 2163.09 U/mL, which was 6.2 times greater than the initial strain using promoter P43. Moreover, the application potential of BlAase on acrylamide migration in potato chips was evaluated. Results showed that 89.50% of acrylamide in fried potato chips could be removed when combined with blanching and BlAase treatment. These findings revealed that combining transcription and translation techniques are effective strategies to boost recombinant protein output, and BlAase can be a great candidate for controlling acrylamide in food processing.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fengxia Lu
- Correspondence: ; Tel.: +86-25-8439-5963
| |
Collapse
|
14
|
Darwesh DB, Al-Awthan YS, Elfaki I, Habib SA, Alnour TM, Darwish AB, Youssef MM. Anticancer Activity of Extremely Effective Recombinant L-Asparaginase from Burkholderia pseudomallei. J Microbiol Biotechnol 2022; 32:551-563. [PMID: 35354764 PMCID: PMC9628870 DOI: 10.4014/jmb.2112.12050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/28/2022] [Accepted: 03/25/2022] [Indexed: 01/19/2023]
Abstract
L-asparaginase (E.C. 3.5.1.1) purified from bacterial cells is widely used in the food industry, as well as in the treatment of childhood acute lymphoblastic leukemia. In the present study, the Burkholderia pseudomallei L-asparaginase gene was cloned into the pGEX-2T DNA plasmid, expressed in E. coli BL21 (DE3) pLysS, and purified to homogeneity using Glutathione Sepharose chromatography with 7.26 purification fold and 16.01% recovery. The purified enzyme exhibited a molecular weight of ~33.6 kDa with SDS-PAGE and showed maximal activity at 50°C and pH 8.0. It retained 95.1, 89.6%, and 70.2% initial activity after 60 min at 30°C, 40°C, and 50°C, respectively. The enzyme reserved its activity at 30°C and 37°C up to 24 h. The enzyme had optimum pH of 8 and reserved 50% activity up to 24 h. The recombinant enzyme showed the highest substrate specificity towards L-asparaginase substrate, while no detectable specificity was observed for L-glutamine, urea, and acrylamide at 10 mM concentration. THP-1, a human leukemia cell line, displayed significant morphological alterations after being treated with recombinant L-asparaginase and the IC50 of the purified enzyme was recorded as 0.8 IU. Furthermore, the purified recombinant L-asparaginase improved cytotoxicity in liver cancer HepG2 and breast cancer MCF-7 cell lines, with IC50 values of 1.53 and 18 IU, respectively.
Collapse
Affiliation(s)
- Doaa B. Darwesh
- Department of Biology, Faculty of Science, Tabuk University, Tabuk 71491, Saudi Arabia,Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Yahya S. Al-Awthan
- Department of Biology, Faculty of Science, Tabuk University, Tabuk 71491, Saudi Arabia,Department of Biology, Faculty of Science, Ibb University, 70270 Ibb, Yemen
| | - Imadeldin Elfaki
- Biochemistry Department, Faculty of Science, Tabuk University, Tabuk 71491, Saudi Arabia
| | - Salem A. Habib
- Biochemistry Department, Faculty of Science, Tabuk University, Tabuk 71491, Saudi Arabia
| | - Tarig M. Alnour
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, Tabuk University, Tabuk 71491, Saudi Arabia
| | - Ahmed B. Darwish
- Zoology Department, Faculty of Science, Suez University, El Salam-1, Suez 43533, Egypt
| | - Magdy M. Youssef
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt,Corresponding author Phone: +201003429355 E-mail:
| |
Collapse
|
15
|
Dong W, Wang K, Zhao L, Li T, Wang Q, Ding Z. Selective immobilization of his-tagged phosphomannose isomerase on Ni chelated nanoparticles with good reusability and activity. Chembiochem 2021; 23:e202100497. [PMID: 34958513 DOI: 10.1002/cbic.202100497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/02/2021] [Indexed: 11/06/2022]
Abstract
In this paper, self-stable precipitation polymerization was used to prepare the enzyme-immobilized microsphere composite. Phosphomannose isomerase (PMI) with His-tag was successfully immobilized on Ni 2+ charged pyridine-derived particles. The maximum amount of PMI immobilized on such particles was ~ 184 mg/g. Compared with the free enzymes, the activity of the immobilized enzymes has been significantly improved. In addition, the immoblized enzymes showed a much better thermostability than free enzymes. At the same time, the immobilized enzymes can be reused for multiple reaction cycles. We have observed that the enzyme activity did not decrease significantly after 6 cycles of repeating usages. We conclude that the pyridine-derived particles can be used to selectively immobilize His-tagged enzymes, which can couple the enzyme purification and catalysis steps and improve the efficiency of enzyme-catalyzed industrial processes.
Collapse
Affiliation(s)
- Weifu Dong
- Jiangnan University, School of Chemical and Material Engineering, Lihu Road 1800, 214122, Wuxi, CHINA
| | - Kangjing Wang
- Jiangnan University, school of chemical and material engineering, CHINA
| | - Liting Zhao
- Jiangnan University, School of Biotechnology, CHINA
| | - Ting Li
- Jiangnan University, school of chemical and material engineering, CHINA
| | - Qian Wang
- University of South Carolina, Chemistry and Biochemistry, UNITED STATES
| | | |
Collapse
|
16
|
Heterologous expression and molecular modelling of L-asparaginase from Bacillus subtilis ETMC-2. Int J Biol Macromol 2021; 192:28-37. [PMID: 34610352 DOI: 10.1016/j.ijbiomac.2021.09.186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022]
Abstract
Bacterial L-asparaginase is the key therapeutic enzyme in cancer therapy and is also witnessing demand as a food processing aid. In this study, L-asparaginase of newly isolated Bacillus subtilis ETMC-2 was cloned and over-expressed in Escherichia coli as an active soluble protein using ligation independent cloning strategy. The molecular mass was estimated to be 40 kDa and was optimally active at 50 °C. Zymography revealed that the enzyme was active in homo-tetramer state (~160 KDa). The encoded protein after BLASTp analysis on NCBI showed 99.73% similarity with L-ASNase that of Bacillus sp. Physico-chemical properties were predicted using Protparam leading to categorization of the enzyme as a stable protein with an instability index (II) of 19.02. The calculated aliphatic index (85.44) indicated the high thermal stability of the protein with GRAVY value of -0.317. Protein-Ligand docking revealed that the residues Thr89, Thr121, and Asp122 were fundamental in protein-ligand complexation. After homology modelling, model validation was performed using Ramachandran plot, VERIFY3D, and RMSD. The paper describes cloning, heterologous expression, catalytic characteristics and physico-chemical properties of the type II B. subtilis L-ASNase.
Collapse
|
17
|
Chi H, Chen M, Jiao L, Lu Z, Bie X, Zhao H, Lu F. Characterization of a Novel L-Asparaginase from Mycobacterium gordonae with Acrylamide Mitigation Potential. Foods 2021; 10:foods10112819. [PMID: 34829099 PMCID: PMC8617759 DOI: 10.3390/foods10112819] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 12/18/2022] Open
Abstract
L-asparaginase (E.C.3.5.1.1) is a well-known agent that prevents the formation of acrylamide both in the food industry and against childhood acute lymphoblastic leukemia in clinical settings. The disadvantages of L-asparaginase, which restrict its industrial application, include its narrow range of pH stability and low thermostability. In this study, a novel L-asparaginase from Mycobacterium gordonae (GmASNase) was cloned and expressed in Escherichia coli BL21 (DE3). GmASNase was found to be a tetramer with a monomeric size of 32 kDa, sharing only 32% structural identity with Helicobacter pylori L-asparaginases in the Protein Data Bank database. The purified GmASNase had the highest specific activity of 486.65 IU mg−1 at pH 9.0 and 50 °C. In addition, GmASNase possessed superior properties in terms of stability at a wide pH range of 5.0–11.0 and activity at temperatures below 40 °C. Moreover, GmASNase displayed high substrate specificity towards L-asparagine with Km, kcat, and kcat/Km values of 6.025 mM, 11,864.71 min−1 and 1969.25 mM−1min−1, respectively. To evaluate its ability to mitigate acrylamide, GmASNase was used to treat potato chips prior to frying, where the acrylamide content decreased by 65.09% compared with the untreated control. These results suggest that GmASNase is a potential candidate for applications in the food industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fengxia Lu
- Correspondence: ; Tel.: +0086-25-84395963
| |
Collapse
|
18
|
Lubkowski J, Wlodawer A. Structural and biochemical properties of L-asparaginase. FEBS J 2021; 288:4183-4209. [PMID: 34060231 DOI: 10.1111/febs.16042] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022]
Abstract
l-Asparaginase (a hydrolase converting l-asparagine to l-aspartic acid) was the first enzyme to be used in clinical practice as an anticancer agent after its approval in 1978 as a component of a treatment protocol for childhood acute lymphoblastic leukemia. Structural and biochemical properties of l-asparaginases have been extensively investigated during the last half-century, providing an accurate structural description of the enzyme isolated from a variety of sources, as well as clarifying the mechanism of its activity. This review provides a critical assessment of the current state of knowledge of primarily structural, but also selected biochemical properties of 'bacterial-type' l-asparaginases from different organisms. The most extensively studied members of this enzyme family are l-asparaginases highly homologous to one of the two enzymes from Escherichia coli (usually referred to as EcAI and EcAII). Members of this enzyme family, although often called bacterial-type l-asparaginases, have been also identified in such divergent organisms as archaea or eukarya. Over 100 structural models of l-asparaginases have been deposited in the Protein Data Bank during the last 30 years. One of the prime achievements of structure-centered approaches was the elucidation of the details of the mechanism of enzymatic action of this unique hydrolase that utilizes a side chain of threonine as the primary nucleophile. The molecular basis of other important properties of these enzymes, such as their substrate specificity, is still being evaluated. Results of structural and mechanistic studies of l-asparaginases are being utilized in efforts to improve the clinical properties of this important anticancer drug.
Collapse
Affiliation(s)
- Jacek Lubkowski
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Alexander Wlodawer
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|