1
|
Xu FF, Chen YS, Lin XQ, Zhong AH, Zhao M, Li YQ, Li ZY, Lai YF, Song J, Pan JL, Cai ZF, Liang XX, Liu ZP, Wu YN, Wu WL, Yang XF. Bioaccessibility and bioavailability assessment of cadmium in rice: In vitro simulators with/without gut microbiota and validation through in vivo mouse and human data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175980. [PMID: 39236823 DOI: 10.1016/j.scitotenv.2024.175980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 08/02/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Assessing the bioaccessibility and bioavailability of cadmium (Cd) is crucial for effective evaluation of the exposure risk associated with intake of Cd-contaminated rice. However, limited studies have investigated the influence of gut microbiota on these two significant factors. In this study, we utilized in vitro gastrointestinal simulators, specifically the RIVM-M (with human gut microbial communities) and the RIVM model (without gut microbial communities), to determine the bioaccessibility of Cd in rice. Additionally, we employed the Caco-2 cell model to assess bioavailability. Our findings provide compelling evidence that gut microbiota significantly reduces Cd bioaccessibility and bioavailability (p<0.05). Notably, strong in vivo-in vitro correlations (IVIVC) were observed between the in vitro bioaccessibilities and bioavailabilities, as compared to the results obtained from an in vivo mouse bioassay (R2 = 0.63-0.65 and 0.45-0.70, respectively). Minerals such as copper (Cu) and iron (Fe) in the food matrix were found to be negatively correlated with Cd bioaccessibility in rice. Furthermore, the results obtained from the toxicokinetic (TK) model revealed that the predicted urinary Cd levels in the Chinese population, based on dietary Cd intake adjusted by in vitro bioaccessibility from the RIVM-M model, were consistent with the actual measured levels (p > 0.05). These results indicated that the RIVM-M model represents a potent approach for measuring Cd bioaccessibility and underscore the crucial role of gut microbiota in the digestion and absorption process of Cd. The implementation of these in vitro methods holds promise for reducing uncertainties in dietary exposure assessment.
Collapse
Affiliation(s)
- Fei-Fei Xu
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Ying-Si Chen
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Xiu-Qin Lin
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Ai-Hua Zhong
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Min Zhao
- Institute of Toxicology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, PR China
| | - Yue-Qi Li
- Department of Preventive Medicine, Faculty of Medical Science, Jinan University, Guangzhou 510632, PR China
| | - Zi-Yin Li
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Yue-Fei Lai
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Jia Song
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Jia-Liang Pan
- Hygiene Detection Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Zhan-Fan Cai
- Guangdong Institute of Food Inspection (Guangdong Inspection Center of Wine and Spirits), Guangzhou 510435, PR China
| | - Xu-Xia Liang
- Guangdong Institute of Food Inspection (Guangdong Inspection Center of Wine and Spirits), Guangzhou 510435, PR China
| | - Zhao-Ping Liu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, PR China
| | - Yong-Ning Wu
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Medical University, Guangzhou 510515, PR China; NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, PR China
| | - Wei-Liang Wu
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Medical University, Guangzhou 510515, PR China.
| | - Xing-Fen Yang
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
2
|
Cao Y, Cao Z, Wang P, Zhao L, Zhang S, Shi Y, Liu L, Zhu H, Wang L, Cheng Z, Sun H. Source and bioavailability of quaternary ammonium compounds (QACs) in dust: Implications for Nationwide Exposure in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136268. [PMID: 39471614 DOI: 10.1016/j.jhazmat.2024.136268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/28/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
Quaternary ammonium compounds (QACs), widely used in various disinfectants products during the COVID-19 Pandemic, raised the concerns on their exposure and health effect. To date, the sources of QACs in indoor environments have been largely ignored. Additionally, there is no information on the nationwide human exposure assessment of QACs in China after the COVID-19. Herein, analysis of QACs in household products, including personal care (n = 27), cleaning (n = 6) and disinfection products (n = 11) from different manufacturing companies further confirmed there are extensive application of QACs in household products, raising their potential exposure to humans. QACs were frequently detected in indoor dust samples (n = 370) from 111 cities of 31 provinces/municipalities across China, with median concentration of 6778 ng/g. Benzalkyldimethylammonium compounds (BACs) and alkyltrimethylammonium compounds (ATMACs) were identified as the dominant QACs in dust samples, with the proportions of 44 % and 46 %, respectively. The in vivo bioavailability experiment (C57BL/6 male mice) showed that the relative bioavailability (RBA) of QACs through dust ingestion ranged from 5.08 % to 66.3 % and 60.3 % to 118 % in the low and high-dose group, respectively. Compared to the pre-adjustment scenario of RBA values, the exposure risk of QACs was overestimated by 2.23 - 5.14 times.
Collapse
Affiliation(s)
- Yuhao Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pingping Wang
- National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, China
| | - Leicheng Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lu Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
3
|
Lin Y, Liu J, Sun Y, Chen S, Chen J, Fu F. Bio-accessibility and bio-availability evaluation of each arsenic species existing in various edible seaweeds in vitro and in vivo for arsenic risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174247. [PMID: 38936725 DOI: 10.1016/j.scitotenv.2024.174247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Seaweeds consumption is one of main internal exposure sources of arsenic for human. However, the absence of representative bio-availabilities of arsenic species makes the accurate assessment of arsenic health risk originating from seaweeds consumption impossible. Herein, the arsenic species in various seaweeds collected from Fujian of China were investigated, and the bio-accessibilities/bio-availabilities of arsenic species existing in seaweeds were evaluated in vitro and in vivo. Results revealed that in vitro bio-availabilities of arsenic species presenting in seaweeds, which obtained with Caco-2 cells, were lower than those of pure arsenic standards, and varied with order of inorganic arsenic (iAs) > dimethylarsinic acid (DMA) ≈ arsenobetaine (AsB) > arsenosugars. During gastrointestinal digestion of mice, As5+ was partly methylated into monomethylarsonic acid (MMA) and DMA, which makes the in vivo bioavailability of iAs (⁓31.8 %) obtained with mouse metabolic experiment is much higher than its in vitro bio-availability (⁓10.3 %). The in vivo bio-availabilities of DMA and total arsenic (tAs) are similar to their in vitro bio-availabilities. As the dominant arsenic species in most seaweeds, arsenosugars have an ⁓0.0 % of in vivo bioavailability and only a ⁓3.7 % of in vitro bioavailability. The simulated calculation of target hazard quotient (THQ) and target cancer risk (TR) revealed that the arsenic risk originating from seaweeds was greatly degraded by taking into consideration of arsenic species and bio-availabilities, and all seaweeds collected from Fujian are safety for consumption. The simulated calculation also revealed that arsenic risk of seaweeds can be also more accurately assessed based on tAs together with bioavailability, which provides a simple but accurate and protective method for the risk assessment of arsenic originating from seaweeds. Our work provides the possible representative bio-availabilities of arsenic species presenting in seaweeds for accurately assessing arsenic risk of seaweeds, and novel insights into the bio-availabilities of arsenic in animal.
Collapse
Affiliation(s)
- Yue Lin
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Junfeng Liu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ying Sun
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Shilong Chen
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jianlang Chen
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - FengFu Fu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
4
|
Liu Y, Jiang S, Xiang Y, Lin F, Yue X, Li M, Xiao J, Cao H, Shi Y. In vivo-in vitro correlations (IVIVC) for the assessment of pyrethroid bioavailability in honey. Food Chem 2023; 429:136873. [PMID: 37459714 DOI: 10.1016/j.foodchem.2023.136873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/14/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023]
Abstract
Bioaccessibility/bioavailability is an important factor in assessing the potential human health risk via oral exposure. However, methods for accurately predicting the bioaccessibility/bioavailability of pesticide residues are still limited, preventing accurate measurements of actual exposure to pesticide residues. In this study, pyrethroid bioavailability in honey were analysed using a mouse bioassay and bioaccessibility via in vitro methods with Tenax extraction. The results demonstrated that the combined liver plus kidney data served as an appropriate biomarker to estimate the relative bioavailability. Notably, significant in vivo-in vitro correlations (IVIVC) were observed between bioavailability and bioaccessibility (R2 = 0.7898-0.9793). Estimation of the bioavailability of honey from different nectar plants using derived IVIVC confirmed that different contents and physicochemical properties might affect its bioavailability. The findings provide insight into assessing human exposure to pesticides based on bioavailability and can decrease the uncertainty about the assessment of the risk of dietary exposure to pesticides.
Collapse
Affiliation(s)
- Yuying Liu
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Siyuan Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yuxin Xiang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Fengxiang Lin
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Xingyu Yue
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Minkun Li
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yanhong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China.
| |
Collapse
|
5
|
Zhu Y, Li Y, Liu X, Yang X, Song X, Jia Y, Zhong W, Zhu L. Bioaccessibility of per- and polyfluoroalkyl substances in food and dust: Implication for more accurate risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161739. [PMID: 36690103 DOI: 10.1016/j.scitotenv.2023.161739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Humans are exposed to per- and polyfluoroalkyl substances (PFASs) mainly through oral exposure route, while little is known about their bioaccessibility (BC) in oral matrices. Here, the BC of 13 PFASs in simulated vegetable (VFs) and animal foods (AFs) as well as indoor dust was investigated using a physiology-based extraction test. The BC of PFASs in the AFs (78.5 ± 13.6 %) was distinctly higher than that in the VFs (60.6 ± 13.4 %), because high-saturated and long-chain fatty acids in the animal fat favored formation of more stable micelles. The BC of most long-chain PFASs was positively correlated with the protein content while negatively correlated with the carbohydrate content in the foods. The BC of polyfluoroalkyl phosphate diesters was negatively correlated with the lipid content. The BC of the very long-chain PFASs in the foods was 2.42-6.02 times higher than that in the dust, which might be attributed to their strong sequestration in dust. With the increase in bile salt concentration, the BC of PFASs in food increased and then remained constant, which was related to the changes in fatty acids and stability of the formed micelles. Comparing with the previous results obtained from animal study, the BC obtained in this study has the potential to predict PFAS bioavailability in food.
Collapse
Affiliation(s)
- Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yuqing Li
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Xiaosong Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Xin Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Xiaohua Song
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yibo Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Wenjue Zhong
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
6
|
Zhang X, Wang L, Liu X, Liu X, Cao W, He J, Fan J, Wen S, Zhou Y. Distribution and bioaccumulation of polychlorinated dibenzo-p-dioxins and dibenzofurans in the tissues of Yorkshire pig. J Food Sci 2022; 87:5142-5152. [PMID: 36226778 DOI: 10.1111/1750-3841.16336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 11/28/2022]
Abstract
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in various foods continuously concern the public. Pork and its byproducts, especially from Yorkshire pigs, are the largest meat food consumed by the general population in China. This study aims to investigate the distribution of PCDD/Fs in different tissues of Yorkshire pigs to understand their bioaccumulation. Yorkshire pigs were fed a known amount of PCDD/Fs through fly ash. PCDD/Fs were determined by isotope dilution method with a gas chromatography-high resolution mass spectrometer. The liver had the highest concentration levels (2041.33 pg/g lipid) and toxic equivalents values (69.14 pg/g lipid), followed by the spleen and lung, and the lowest ones in the brain. The liver also had the highest bioaccumulation of PCDD/Fs, and this level was considerably higher than that of other tissues. This study showed a strong accumulation capacity of the liver for polychlorinated dibenzo-p-dioxins and dibenzofurans under short-term exposure conditions, suggesting that the liver is a more sensitive tissue for monitoring PCDD/Fs in food safety risk monitoring. PRACTICAL APPLICATION: This paper may help the consumer in making food choices to minimize the exposure risk to Polychlorinated dibenzo-p-dioxins and dibenzofurans.
Collapse
Affiliation(s)
- Xuli Zhang
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China.,College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Liang Wang
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiaofang Liu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Xiao Liu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Wencheng Cao
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Jingyi He
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Jingli Fan
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China.,College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Sheng Wen
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Yan Zhou
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| |
Collapse
|
7
|
Xu J, Zhu Z, Zhong B, Gong W, Du S, Zhang D, Chen Y, Li X, Zheng Q, Ma J, Sun L, Lu S. Health risk assessment of perchlorate and chlorate in red swamp crayfish (Procambarus clarkii) in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156889. [PMID: 35753452 DOI: 10.1016/j.scitotenv.2022.156889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Perchlorate and chlorate are both strong oxidants and thyroid toxicants that are widely distributed in soil, water and human foods. The red swamp crayfish (Procambarus clarkii) is a common aquatic organism that is popular in Chinese culinary dishes. Dietary intake is the main route of human exposure to perchlorate and chlorate, though the health risks of crayfish consumption are unknown. Thus, this study investigated the quantities of perchlorate and chlorate in red swap crayfish from sampling sites in five provinces located near the Yangtze River in China, along with the associated health risks of consuming this species. Perchlorate was detected in 55.6-100 % of crayfish samples in each sampling location, and chlorate was found in 100 % of samples cross all sites. Concentrations of perchlorate in crayfish from upstream provinces (Hubei, Hunan and Jiangxi) were higher than those from downstream provinces (Anhui and Jiangsu). Perchlorate and chlorate concentrations were positively correlated in crayfish, suggesting that chlorate may be a degradation byproduct of perchlorate. The quantities of both pollutants in hepatopancreas tissue were higher than in muscle tissues (p < 0.05), such that we do not recommend ingesting crayfish hepatopancreas. Hazard quotient (HQ) values for chlorate in crayfish were <1 across all provinces, suggesting no potential health risk of chlorate exposure through crayfish consumption. However, perchlorate concentrations in crayfish from the Jiangxi province had an associated HQ value >1, suggesting potential risks for human health. These results will be useful in informing mitigation measures aimed at reducing perchlorate exposure associated with crayfish consumption.
Collapse
Affiliation(s)
- Jiayi Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Zhou Zhu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Baisen Zhong
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Weiran Gong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Sijin Du
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yining Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Xiangyu Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Quanzhi Zheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Jiaojiao Ma
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Litao Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
8
|
Chen Y, Zhu Z, Wu X, Zhang D, Tong J, Lin Y, Yin L, Li X, Zheng Q, Lu S. A nationwide investigation of perchlorate levels in staple foods from China: Implications for human exposure and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129629. [PMID: 36104921 DOI: 10.1016/j.jhazmat.2022.129629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Perchlorate is an emerging pollutant and thyroid toxicant frequently occurred in air, water, soil and various foodstuffs. Rice and wheat flour are the most common staple foods, which could accumulate perchlorate from contaminated soils and irrigation water. However, human exposure to perchlorate via rice and wheat flour consumption has only been investigated to a limited extent. Therefore, we collected 207 rice samples and 189 wheat flour samples from 19 provinces in China to assess the level of perchlorate. The levels of perchlorate in rice and wheat flour ranged from not detected (N.D.) to 28.7 ng/g and less than limits of quantification (<LOQ) to 147 ng/g, respectively, with detection rates in both rice and wheat flour samples exceeding 60 %. The estimated daily intake (EDI) and hazard quotient (HQ) were calculated to evaluate human exposure and potential health risk of perchlorate exposure via the consumption of rice and wheat flour. The HQ values for both rice and wheat flour were less than 1, which suggested that the consumption of these staple foods may not cause potential health risks. To our knowledge, this is the first nationwide monitoring, human exposure and risk assessment of perchlorate in both rice and wheat flour in China.
Collapse
Affiliation(s)
- Yining Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Zhou Zhu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiaoling Wu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jianyu Tong
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yuli Lin
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Liuyi Yin
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiangyu Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Quanzhi Zheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
9
|
Integration of probabilistic exposure assessment and risk characterization for perchlorate in infant formula and supplementary food. Food Chem Toxicol 2022; 168:113347. [PMID: 35932970 DOI: 10.1016/j.fct.2022.113347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/26/2022] [Accepted: 07/31/2022] [Indexed: 11/23/2022]
Abstract
Infants are the primary susceptible population to perchlorate exposure-related adverse health effects, while information on their dietary intake of perchlorate via infant food remains limited. This study determined perchlorate in six categories of baby food commodities commonly consumed by 0-36 months infants. A probabilistic approach with Monte Carlo simulation was used to estimate perchlorate's daily intake (EDI) considering uncertainty and variability. Results showed that the average perchlorate concentration in infant food ranged from 3.42 to 22.26 μg/kg. The mean (SD) EDIs of perchlorate were 0.42(0.20), 0.62(0.20), and 0.46(0.14) μg/kg-bw/day for 0-6, 7-12, and 13-36-months infants, respectively. Infant formula was the major contributor (34%-74%) to EDIs of perchlorate in all age groups. Probabilistic risk characterization showed the cumulative probability of EDIs exceeding the RfD (0.70 μg/kg-bw/day) were 6.5%, 37.9%, and 4.5% for 0-6, 7-12, and 13-36-months infants, respectively. The cumulative risk of perchlorate exposure from different infant food intake should be noted.
Collapse
|
10
|
Jia W, Wu X, Zhang R, Wang X, Shi L. Novel insight into the resilient drivers of bioaccumulation perchlorate on lipid nutrients alterations in goat milk by spatial multi-omics. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Chen M, Wang M, Zhou B, Zhou M, Wang Q, Liu X, Liu Y, Wu Y, Zhao X, Gong Z. Trends in the Exposure, Distribution, and Health Risk Assessment of Perchlorate among Crayfish in the Middle and Lower Reaches of the Yangtze River. Foods 2022; 11:foods11152238. [PMID: 35954009 PMCID: PMC9368539 DOI: 10.3390/foods11152238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Perchlorate is a well-known thyroid-disrupting chemical as well as an extremely stable inorganic pollutant widely distributed in the environment. Therefore, perchlorate posts potential risks to the environment as well as human health. Crayfish is a dominant aquatic food with increasing consumption levels in recent years. It is crucial to evaluate the accumulation of perchlorate with well-water-soluble properties in crayfish and to assess its health risks. In our present study, we obtained crayfish samples from cultivated ponds and markets based on the regions of the Middle and Lower Reaches of the Yangtze River. The perchlorate concentration was measured in all 206 samples using ultra-high performance liquid chromatography coupled with mass spectrometry (UPLC–MS). Monte Carlo simulation was used to perform health risk assessments. The results indicated that perchlorate levels ranged from 7.74–43.71 μg/kg for cultivated crayfish and 4.90–16.73 μg/kg for crayfish sold in markets. The perchlorate accumulation mainly occurred in exoskeleton parts. All the HQ values were remarkable, at less than one—indicating that perchlorate exposure through the ingestion of crayfish does not pose an appreciable risk to human health.
Collapse
Affiliation(s)
- Mengyuan Chen
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.C.); (M.W.); (B.Z.); (M.Z.); (Q.W.); (X.L.); (Y.L.); (Y.W.); (X.Z.)
| | - Manman Wang
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.C.); (M.W.); (B.Z.); (M.Z.); (Q.W.); (X.L.); (Y.L.); (Y.W.); (X.Z.)
| | - Bingjie Zhou
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.C.); (M.W.); (B.Z.); (M.Z.); (Q.W.); (X.L.); (Y.L.); (Y.W.); (X.Z.)
| | - Mengxin Zhou
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.C.); (M.W.); (B.Z.); (M.Z.); (Q.W.); (X.L.); (Y.L.); (Y.W.); (X.Z.)
| | - Qiao Wang
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.C.); (M.W.); (B.Z.); (M.Z.); (Q.W.); (X.L.); (Y.L.); (Y.W.); (X.Z.)
| | - Xin Liu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.C.); (M.W.); (B.Z.); (M.Z.); (Q.W.); (X.L.); (Y.L.); (Y.W.); (X.Z.)
| | - Yan Liu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.C.); (M.W.); (B.Z.); (M.Z.); (Q.W.); (X.L.); (Y.L.); (Y.W.); (X.Z.)
| | - Yongning Wu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.C.); (M.W.); (B.Z.); (M.Z.); (Q.W.); (X.L.); (Y.L.); (Y.W.); (X.Z.)
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Xiaole Zhao
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.C.); (M.W.); (B.Z.); (M.Z.); (Q.W.); (X.L.); (Y.L.); (Y.W.); (X.Z.)
| | - Zhiyong Gong
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.C.); (M.W.); (B.Z.); (M.Z.); (Q.W.); (X.L.); (Y.L.); (Y.W.); (X.Z.)
- Correspondence: ; Tel./Fax: +86-27-83924790
| |
Collapse
|
12
|
Wu KJ, Gong B, Wang PC, Zheng LQ, Fang M, Liu X, Gong Z. Assessment and Comparison of Bioavailability of Cadmium in Different Foods Using In Vitro, In Cellulo, and In Vivo Models. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Jia W, Wang X, Wu X, Shi L. Monitoring contamination of perchlorate migrating along the food chain to dairy products poses risks to human health. Food Chem 2021; 374:131633. [PMID: 34848089 DOI: 10.1016/j.foodchem.2021.131633] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
Assessments of human exposure to sodium perchlorate via dairy sources are limited. The current study applied untargeted metabolomics (LOD, 1.08-35.60 μg L-1; LOQ, 2.54-90.58 μg L-1; RSD < 6.2%) and proteomics methods by UHPLC-Q-Orbitrap HRMS to investigate the metabolic pathways and nutritional quality of goat milk contaminated with sodium perchlorate. Specifically, 11 metabolites including lactose (from 2.01 to 0.58 mg L-1), adenosine 5'-monophosphate (from 1.23 to 0.45 mg L-1), hypoxanthine (from 0.63 to 0.08 mg L-1), etc. and 3 crucial enzymes include α-lactalbumin, xanthine dehydrogenase and creatine kinase related to the quality traits of goat milk after sodium perchlorate treatment. Overall, except for spermidine, other related metabolites significantly decreased with the increase of sodium perchlorate concentration 0-160 μg L-1 and storage time (4-12 h). Collectively, we provide previously uncharacterized goat milk nutritional quality degradation mechanism induced by sodium perchlorate and a reference to ensure its safe use in human health.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Xin Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xixuan Wu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|