1
|
Coerini LF, Mulato ATN, Martins-Junior J, Persinoti GF, Velasco de Castro Oliveira J. Inhibition of Xanthomonas growth by bioactive volatiles from Pseudomonas sp. triggers remarkable changes in the phytopathogen transcriptome. Microbiol Res 2025; 290:127971. [PMID: 39571246 DOI: 10.1016/j.micres.2024.127971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 08/05/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024]
Abstract
Volatile organic compounds (VOCs) produced by microorganisms may have a noteworthy role in the control of plant pathogens. Xanthomonas are a well-studied group of phytobacteria that cause diverse diseases in economically important crops worldwide. Key species that infect sugarcane are X. albilineans (Xab) and X. axonopodis pv. vasculorum (Xav). Here, we investigated VOC-producing bacteria with antagonistic effects against Xab and Xav. We demonstrated that VOCs produced by Pseudomonas sp. V5-S-D11 was able to abolish the growth of these pathogens. A set of 32 VOCs was identified in the volatilome of V5-S-D11, with 10 showing a concentration-dependent inhibitory effect on both phytobacteria. Among them, dimethyl disulfide (DMDS), a volatile sulfur compound, has the potential to be biotechnologically explored in agriculture since it can improve plant growth and induce systemic resistance against plant pathogens. Interestingly, transcriptomic analysis of Xab treated with DMDS revealed several up-regulated metabolic pathways such as a two-component system, flagellar assembly, chemotaxis, and a bacterial secretion system. Although the ethanol (ETOH) used as DMDS solvent did not inhibit Xab growth, it triggered a similar up-regulation of some genes, indicating that this phytopathogen can deal with ETOH better than DMDS. Overall, this study explores the wide role of VOCs in the interactions with bacteria. Moreover, our results indicate that VOCs from Pseudomonas sp. may represent a novel biotechnological strategy to counteract diseases caused by Xanthomonas species and can be further exploited for sustainable approaches in agriculture.
Collapse
Affiliation(s)
- Luciane Fender Coerini
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-970, Brazil.
| | - Aline Tieppo Nogueira Mulato
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-970, Brazil.
| | - Joaquim Martins-Junior
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil.
| | - Gabriela Felix Persinoti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil.
| | - Juliana Velasco de Castro Oliveira
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-970, Brazil.
| |
Collapse
|
2
|
Wang L, Zhu T. Combined transcriptomic and metabolomic analysis of the mechanism by which Bacillus velezensis induces resistance to anthracnose in walnut. Front Microbiol 2024; 15:1420922. [PMID: 39444687 PMCID: PMC11496756 DOI: 10.3389/fmicb.2024.1420922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/07/2024] [Indexed: 10/25/2024] Open
Abstract
Walnut (Juglans spp.), a significant deciduous tree of economic and ecological importance, faces substantial threats from walnut anthracnose, primarily caused by Colletotrichum gloeosporioides. Bacillus velezensis has shown promise in mitigating this fungal pathogen. To delve deeper into the induction mechanism of B. velezensis on walnut plant resistance, we conducted a metabolomic analysis on walnut leaves from six different treatment groups. Specifically, the groups were defined as follows: Group B.v. was inoculated with B. velezensis alone, Group CK served as the blank control, and Group C.g. was inoculated solely with C. gloeosporioides. Group B.v.-C.g. received B. velezensis followed by C. gloeosporioides inoculation. Group B.v.+C.g. underwent simultaneous inoculation with both B. velezensis and C. gloeosporioides, while Group C.g.-B.v. was treated first with C. gloeosporioides then B. velezensis. A total of 1,503 metabolites were detected, mainly including flavonoids, terpenoids, and steroids. The results revealed that B. velezensis spraying not only enhanced the inherent resistance of walnut plants but also significantly regulated walnut plants already infected with C. gloeosporioides. This was mainly achieved by inducing walnut plants to adjust their metabolic pathways such as salicylic acid, jasmonic acid, and abscisic acid, thereby strengthening their stress response. Transcriptomic and metabolomic correlation analyses showed that in the comparisons of B.v. vs. CK, C.g. vs. CK, and C.g.-B.v. vs. C.g., 59, 244, and 122 differential abundance metabolites were detected, along with 7860, 3677, and 5587 differential genes, respectively. Amino acid synthesis, starch and sucrose metabolism, photosynthesis, phenylpropane metabolism, purine metabolism, and glutathione metabolism played crucial roles in walnut's disease resistance mechanism. Further analysis revealed that B. velezensis induced walnut plants to regulate multiple genes, such as LOC109005403, LOC108985444 and LOC118344177, resulting in the production of defensive metabolites such as palmitic acid, coumarin and ferulic acid, thereby enhancing their resistance to C. gloeosporioides. In summary, B. velezensis induces systemic resistance in walnut plants by modulating the metabolic pathways of salicylic acid, jasmonic acid, and abscisic acid. It enhances this resistance by strengthening cell walls, synthesizing defensive secondary metabolites, and regulating energy metabolism and stress responses. These findings provide a solid theoretical foundation for the future field application of B. velezensis in controlling walnut anthracnose.
Collapse
Affiliation(s)
- Linmin Wang
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
- School of Agronomy and Horticulture, Chengdu Agricultural College, Chengdu, Sichuan, China
| | - Tianhui Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu, China
| |
Collapse
|
3
|
Qin YY, Gong Y, Kong SY, Wan ZY, Liu JQ, Xing K, Qin S. Aerial signaling by plant-associated Streptomyces setonii WY228 regulates plant growth and enhances salt stress tolerance. Microbiol Res 2024; 286:127823. [PMID: 38959523 DOI: 10.1016/j.micres.2024.127823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Plant-associated streptomycetes play important roles in plant growth and development. However, knowledge of volatile-mediated crosstalk between Streptomyces spp. and plants remains limited. In this study, we investigated the impact of volatiles from nine endophytic Streptomyces strains on the growth and development of plants. One versatile strain, Streptomyces setonii WY228, was found to significantly promote the growth of Arabidopsis thaliana and tomato seedlings, confer salt tolerance, and induce early flowering and increased fruit yield following volatile treatment. Analysis of plant growth-promoting traits revealed that S. setonii WY228 could produce indole-3-acetic acid, siderophores, ACC deaminase, fix nitrogen, and solubilize inorganic phosphate. These capabilities were further confirmed through genome sequencing and analysis. Volatilome analysis indicated that the volatile organic compounds emitted from ISP-2 medium predominantly comprised sesquiterpenes and 2-ethyl-5-methylpyrazine. Further investigations showed that 2-ethyl-5-methylpyrazine and sesquiterpenoid volatiles were the primary regulators promoting growth, as confirmed by experiments using the terpene synthesis inhibitor phosphomycin, pure compounds, and comparisons of volatile components. Transcriptome analysis, combined with mutant and inhibitor studies, demonstrated that WY228 volatiles promoted root growth by activating Arabidopsis auxin signaling and polar transport, and enhanced root hair development through ethylene signaling activation. Additionally, it was confirmed that volatiles can stimulate plant abscisic acid signaling and activate the MYB75 transcription factor, thereby promoting anthocyanin synthesis and enhancing plant salt stress tolerance. Our findings suggest that aerial signaling-mediated plant growth promotion and abiotic stress tolerance represent potentially overlooked mechanisms of Streptomyces-plant interactions. This study also provides an exciting strategy for the regulation of plant growth and the improvement of horticultural crop yields within sustainable agricultural practices.
Collapse
Affiliation(s)
- Yue-Ying Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Yuan Gong
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Su-Yun Kong
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Zhi-Yuan Wan
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Jia-Qi Liu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Ke Xing
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Sheng Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China.
| |
Collapse
|
4
|
Khan AR, Ali Q, Ayaz M, Bilal MS, Tariq H, El-Komy MH, Gu Q, Wu H, Vater J, Gao X. Bio-perfume guns: Antifungal volatile activity of Bacillus sp. LNXM12 against postharvest pathogen Botrytis cinerea in tomato and strawberry. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105995. [PMID: 39084769 DOI: 10.1016/j.pestbp.2024.105995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024]
Abstract
Gray mold disease, caused by Botrytis cinerea is a major postharvest disease impacting fruits such as strawberries and tomatoes. This study explores the use of volatile organic compounds (VOCs) produced by Bacillus spp. as eco-friendly biocontrol agents against B. cinerea. In vitro experiments demonstrated that VOCs from Bacillus sp. LNXM12, B. thuringiensis GBAC46, and B. zhanghouensis LLTC93-VOCs inhibited fungal growth by 61.2%, 40.5%, and 21.6%, respectively, compared to the control. LNXM12 was selected for further experiments due to its highest control efficacy of 58.3% and 76.6% on tomato and strawberry fruits, respectively. The LNXM12 VOCs were identified through gas chromatography-mass spectrometry (GC-MS) analysis, and 22 VOCs were identified. Synthetic VOCs with the highest probability percentage, namely ethyloctynol, 3-methyl-2-pentanone (3M2P), 1,3-butadiene-N, N-dimethylformamide (DMF), and squalene were used in experiments. The results showed that the synthetic VOCs ethyloctynol and 3M2P were highly effective, with an inhibition rate of 56.8 and 57.1% against fungal mycelium radial growth at 120 μg/mL on agar plates. Trypan blue staining revealed strongly disrupted, deeper blue, and lysed mycelium in VOC-treated B. cinerea. The scanning and transmission electron microscope (SEM and TEM) results showed that fungal mycelium was smaller, irregular, and shrunken after synthetic VOC treatments. Furthermore, the synthetic VOCs Ethyloctynol and 3M2P revealed high control efficacy on tomatoes and strawberries infected by B. cinerea. The control efficacy on leaves was 67.2%, 66.1% and 64.5%, 78.4% respectively. Similarly, the control efficiency on fruits was 45.5%, 67.3% and 46.3% 65.1%. The expression of virulence genes in B. cinerea was analyzed, and the results revealed that selected genes BcSpl1, BcXyn11A, BcPG2, BcNoxB, BcNoxR, and BcPG1 were downregulated after VOCs treatment. The overall result revealed novel mechanisms by which Bacillus sp. volatiles control postharvest gray mold disease.
Collapse
Affiliation(s)
- Abdur Rashid Khan
- Department of Plant Pathology, College of Plant Protection, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Qurban Ali
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, Abu-Dhabi, United Arab Emirates
| | - Muhammad Ayaz
- Department of Plant Pathology, College of Plant Protection, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Muhammad Saqib Bilal
- Department of Plant Pathology, College of Plant Protection, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Hamza Tariq
- Department of Plant Pathology, College of Plant Protection, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Mahmoud H El-Komy
- Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Qin Gu
- Department of Plant Pathology, College of Plant Protection, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Huijun Wu
- Department of Plant Pathology, College of Plant Protection, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Joachim Vater
- Proteomics and Spectroscopy Unit (ZBS6), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Xuewen Gao
- Department of Plant Pathology, College of Plant Protection, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Xie S, Si H, Xue Y, Zhou R, Wang S, Duan Y, Niu J, Wang Z. Efficacy of rhizobacteria Paenibacillus polymyxa SY42 for the biological control of Atractylodes chinensis root rot. Microb Pathog 2024; 187:106517. [PMID: 38159617 DOI: 10.1016/j.micpath.2023.106517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/11/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Atractylodes chinensis is one of the most commonly used bulk herbs in East Asia; however, root rot can seriously affect its quality and yields. In contrast to chemical pesticides, biological control strategies are environmentally compatible and safe. For this study, 68 antagonistic bacterial strains were isolated from the rhizospheres of healthy Atractylodes chinensis. Strain SY42 exhibited the most potent fungicidal activities, with inhibition rates against F. oxysporum, F. solani, and F. redolens of 67.07 %, 63.40 % and 68.45 %, respectively. Through morphological observation and molecular characterization, strain SY42 was identified as Paenibacillus polymyxa. The volatile organic components (VOCs) produced by SY42 effectively inhibited the mycelial growth of pathogenic fungi through diffusion. SY42 significantly inhibited the germination of pathogenic fungal spores. Following co-culturing with SY42, the mycelium of the pathogenic fungus was deformed, folded, and even ruptured. SY42 could produce cellulases and proteases to degrade fungal cell walls. Pot experiments demonstrated the excellent biocontrol efficacy of SY42. This study revealed that P. polymyxa SY42 inhibited pathogenic fungi through multiple mechanisms, which verified its utility as a biocontrol agent for the control of A. chinensis root rot.
Collapse
Affiliation(s)
- Siyuan Xie
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710119, China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, Xi'an, 710119, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - He Si
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710119, China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, Xi'an, 710119, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Yuyan Xue
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710119, China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, Xi'an, 710119, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Ru Zhou
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710119, China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, Xi'an, 710119, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Shiqiang Wang
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710119, China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, Xi'an, 710119, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Yizhong Duan
- College of Life Sciences, Yulin University, Yulin, Shaanxi, 718000, China.
| | - Junfeng Niu
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710119, China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, Xi'an, 710119, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Zhezhi Wang
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710119, China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, Xi'an, 710119, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| |
Collapse
|
6
|
Yang M, Lu H, Xiao N, Qin Y, Sun L, Sun R. Fumigation with dimethyl trisulfide to inhibit Aspergillus flavus growth, aflatoxin B1 production and virulence. FEMS Microbiol Lett 2024; 371:fnae102. [PMID: 39577849 DOI: 10.1093/femsle/fnae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/02/2024] [Accepted: 11/21/2024] [Indexed: 11/24/2024] Open
Abstract
Aspergillus flavus is a common saprophytic aerobic fungus in oil crops that poses a serious threat worldwide with the carcinogenic aflatoxin. Prevention of aflatoxin B1 contamination has great significance to ensure food safety and reduce the economic loss. The present work focuses on the antagonistic activity against A. flavus growth in peanuts by fumigation with dimethyl trisulfide. The results indicated that dimethyl trisulfide exhibits great antifungal activity against A. flavus. The conidial germination and mycelial growth of A. flavus were completely suppressed after exposure to 15 and 20 µl/l of dimethyl trisulfide, respectively. Numerous deformed conidia were found after exposure to dimethyl trisulfide at high concentration (≥20 µl/l). Scanning electron microscope observation demonstrated that dimethyl trisulfide induced severely shrinking mycelia of A. flavus. The results of OD-260 nm absorption and rhodamine-123 fluorescent staining indicated that cell membrane and mitochondria may be legitimate antifungal targets of dimethyl trisulfide. Dimethyl triethyl has a significant inhibitory effect on A. flavus infection in peanuts. In addition, dimethyl trisulfide could reduce the production of aflatoxin B1 via down-regulation of toxin synthesis and regulatory gene expression. Dimethyl trisulfide can be a tremendous potential agent for the biological control of A. flavus and deepened our understanding of the anti-fungal mechanisms of volatile organic compounds.
Collapse
Affiliation(s)
- Mingguan Yang
- College of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P.R. China
| | - Honggui Lu
- Shandong Provincial Forestry Protection and Development Service Center, Jinan 250014, P.R. China
| | - Nan Xiao
- Shandong Provincial Forestry Protection and Development Service Center, Jinan 250014, P.R. China
| | - Yongjian Qin
- Shandong Provincial Forestry Protection and Development Service Center, Jinan 250014, P.R. China
| | - Lei Sun
- Economic Forest Institute, Shandong Academy of Forestry Sciences, Jinan 250014, P.R. China
| | - Rui Sun
- College of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P.R. China
| |
Collapse
|
7
|
Heo Y, Lee Y, Balaraju K, Jeon Y. Characterization and evaluation of Bacillus subtilis GYUN-2311 as a biocontrol agent against Colletotrichum spp. on apple and hot pepper in Korea. Front Microbiol 2024; 14:1322641. [PMID: 38260885 PMCID: PMC10800898 DOI: 10.3389/fmicb.2023.1322641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Crop plants are vulnerable to a variety of diseases, including anthracnose, caused by various species of Colletotrichum fungi that damages major crops, including apples and hot peppers. The use of chemical fungicides for pathogen control may lead to environmental pollution and disease resistance. Therefore, we conducted this research to develop a Bacillus subtilis-based biological control agent (BCA). B. subtilis GYUN-2311 (GYUN-2311), isolated from the rhizosphere soil of an apple orchard, exhibited antagonistic activity against a total of 12 fungal pathogens, including eight Colletotrichum species. The volatile organic compounds (VOCs) and culture filtrate (CF) from GYUN-2311 displayed antifungal activity against all 12 pathogens, with 81% control efficiency against Fusarium oxysporum for VOCs and 81.4% control efficacy against Botryosphaeria dothidea for CF. CF also inhibited germination and appressorium formation in Colletotrichum siamense and C. acutatum. The CF from GYUN-2311 showed antifungal activity against all 12 pathogens in different media, particularly in LB medium. It also exhibited plant growth-promoting (PGP) activity, lytic enzyme activity, siderophore production, and the ability to solubilize insoluble phosphate. In trials on apples and hot peppers, GYUN-2311 effectively controlled disease, with 75 and 70% control efficacies against C. siamense in wounded and unwounded apples, respectively. Similarly, the control efficacy of hot pepper against C. acutatum in wounded inoculation was 72%. Combined application of GYUN-2311 and chemical suppressed hot pepper anthracnose to a larger extent than other treatments, such as chemical control, pyraclostrobin, TK®, GYUN-2311 and cross-spraying of chemical and GYUN-2311 under field conditions. The genome analysis of GYUN-2311 identified a circular chromosome comprising 4,043 predicted protein-coding sequences (CDSs) and 4,096,969 bp. B. subtilis SRCM104005 was the strain with the highest average nucleotide identity (ANI) to GYUN-2311. AntiSMASH analysis identified secondary metabolite biosynthetic genes, such as subtilomycin, bacillaene, fengycin, bacillibactin, pulcherriminic acid, subtilosin A, and bacilysin, whereas BAGEL analysis confirmed the presence of competence (ComX). Six secondary metabolite biosynthetic genes were induced during dual culture in the presence of C. siamense. These findings demonstrate the biological control potential of GYUN-2311 against apple and hot pepper anthracnose.
Collapse
Affiliation(s)
- Yunjeong Heo
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
| | - Younmi Lee
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
| | - Kotnala Balaraju
- Agricultural Science and Technology Research Institute, Andong National University, Andong, Republic of Korea
| | - Yongho Jeon
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
| |
Collapse
|
8
|
Khan AR, Ali Q, Ayaz M, Bilal MS, Sheikh TMM, Gu Q, Wu H, Gao X. Plant-Microbes Interaction: Exploring the Impact of Cold-Tolerant Bacillus Strains RJGP41 and GBAC46 Volatiles on Tomato Growth Promotion through Different Mechanisms. BIOLOGY 2023; 12:940. [PMID: 37508371 PMCID: PMC10376619 DOI: 10.3390/biology12070940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
The interaction between plant and bacterial VOCs has been extensively studied, but the role of VOCs in growth promotion still needs to be explored. In the current study, we aim to explore the growth promotion mechanisms of cold-tolerant Bacillus strains GBAC46 and RJGP41 and the well-known PGPR strain FZB42 and their VOCs on tomato plants. The result showed that the activity of phytohormone (IAA) production was greatly improved in GBAC46 and RJGP41 as compared to FZB42 strains. The in vitro and in-pot experiment results showed that the Bacillus VOCs improved plant growth traits in terms of physiological parameters as compared to the CK. The VOCs identified through gas chromatography-mass spectrometry (GC-MS) analysis, namely 2 pentanone, 3-ethyl (2P3E) from GBAC46, 1,3-cyclobutanediol,2,2,4,4-tetramethyl (CBDO) from RJGP41, and benzaldehyde (BDH) from FZB42, were used for plant growth promotion. The results of the partition plate (I-plate) and in-pot experiments showed that all the selected VOCs (2P3E, CBDO, and BDH) promoted plant growth parameters as compared to CK. Furthermore, the root morphological factors also revealed that the selected VOCs improved the root physiological traits in tomato plants. The plant defense enzymes (POD, APX, SOD, and CAT) and total protein contents were studied, and the results showed that the antioxidant enzymes and protein contents significantly increased as compared to CK. Similarly, plant growth promotion expression genes (IAA4, ARF10A, GA2OX2, CKX2, and EXP1) were significantly upregulated and the ERF gene was downregulated as compared to CK. The overall findings suggest that both Bacillus isolates and their pure VOCs positively improved plant growth promotion activities by triggering the antioxidant enzyme activity, protein contents, and relative gene expressions in tomato plants.
Collapse
Affiliation(s)
- Abdur Rashid Khan
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing 210095, China
| | - Qurban Ali
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing 210095, China
| | - Muhammad Ayaz
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing 210095, China
| | - Muhammad Saqib Bilal
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing 210095, China
| | - Taha Majid Mahmood Sheikh
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qin Gu
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing 210095, China
| | - Huijun Wu
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing 210095, China
| | - Xuewen Gao
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing 210095, China
| |
Collapse
|
9
|
Duan WY, Zhang SB, Lei JD, Qin YL, Li YN, Lv YY, Zhai HC, Cai JP, Hu YS. Protection of postharvest grains from fungal spoilage by biogenic volatiles. Appl Microbiol Biotechnol 2023; 107:3375-3390. [PMID: 37115251 DOI: 10.1007/s00253-023-12536-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
Fungal spoilage of postharvest grains poses serious problems with respect to food safety, human health, and the economic value of grains. The protection of cereal grains from deleterious fungi is a critical aim in postharvest grain management. Considering the bulk volume of grain piles in warehouses or bins and food safety, fumigation with natural gaseous fungicides is a promising strategy to control fungal contamination on postharvest grains. Increasing research has focused on the antifungal properties of biogenic volatiles. This review summarizes the literature related to the effects of biogenic volatiles from microbes and plants on spoilage fungi on postharvest grains and highlights the underlying antifungal mechanisms. Key areas for additional research on fumigation with biogenic volatiles in postharvest grains are noted. The research described in this review supports the protective effects of biogenic volatiles against grain spoilage by fungi, providing a basis for their expanded application in the management of postharvest grains.
Collapse
Affiliation(s)
- Wen-Yan Duan
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shuai-Bing Zhang
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Jun-Dong Lei
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yu-Liang Qin
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yan-Nan Li
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yang-Yong Lv
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Huan-Chen Zhai
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Jing-Ping Cai
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yuan-Sen Hu
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| |
Collapse
|
10
|
Grahovac J, Pajčin I, Vlajkov V. Bacillus VOCs in the Context of Biological Control. Antibiotics (Basel) 2023; 12:antibiotics12030581. [PMID: 36978448 PMCID: PMC10044676 DOI: 10.3390/antibiotics12030581] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
A contemporary agricultural production system relying on heavy usage of agrochemicals represents a questionable outlook for sustainable food supply in the future. The visible negative environmental impacts and unforeseen consequences to human and animal health have been requiring a shift towards the novel eco-friendly alternatives for chemical pesticides for a while now. Microbial-based biocontrol agents have shown a promising potential for plant disease management. The bacteria of the genus Bacillus have been among the most exploited microbial active components due to several highly efficient mechanisms of action against plant pathogens, as well as a palette of additional plant-beneficial mechanisms, together with their suitable properties for microbial biopesticide formulations. Among other bioactive metabolites, volatile organic compounds (VOCs) have been investigated for their biocontrol applications, exhibiting the main advantage of long-distance effect without the necessity for direct contact with plants or pathogens. The aim of this study is to give an overview of the state-of-the-art in the field of Bacillus-based VOCs, especially in terms of their antibacterial, antifungal, and nematicidal action as the main segments determining their potential for biocontrol applications in sustainable agriculture.
Collapse
|
11
|
Vanreppelen G, Wuyts J, Van Dijck P, Vandecruys P. Sources of Antifungal Drugs. J Fungi (Basel) 2023; 9:jof9020171. [PMID: 36836286 PMCID: PMC9965926 DOI: 10.3390/jof9020171] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Due to their eukaryotic heritage, the differences between a fungal pathogen's molecular makeup and its human host are small. Therefore, the discovery and subsequent development of novel antifungal drugs are extremely challenging. Nevertheless, since the 1940s, researchers have successfully uncovered potent candidates from natural or synthetic sources. Analogs and novel formulations of these drugs enhanced the pharmacological parameters and improved overall drug efficiency. These compounds ultimately became the founding members of novel drug classes and were successfully applied in clinical settings, offering valuable and efficient treatment of mycosis for decades. Currently, only five different antifungal drug classes exist, all characterized by a unique mode of action; these are polyenes, pyrimidine analogs, azoles, allylamines, and echinocandins. The latter, being the latest addition to the antifungal armamentarium, was introduced over two decades ago. As a result of this limited arsenal, antifungal resistance development has exponentially increased and, with it, a growing healthcare crisis. In this review, we discuss the original sources of antifungal compounds, either natural or synthetic. Additionally, we summarize the existing drug classes, potential novel candidates in the clinical pipeline, and emerging non-traditional treatment options.
Collapse
|
12
|
Zhang L, Wang Y, Lei S, Zhang H, Liu Z, Yang J, Niu Q. Effect of volatile compounds produced by the cotton endophytic bacterial strain Bacillus sp. T6 against Verticillium wilt. BMC Microbiol 2023; 23:8. [PMID: 36627563 PMCID: PMC9830902 DOI: 10.1186/s12866-022-02749-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/24/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Verticillium wilt, caused by the fungus Verticillium dahliae, leads to significant losses in cotton yield worldwide. Biocontrol management is a promising means of suppressing verticillium wilt. The purpose of the study was to obtain and analyze endophytic bacteria with Verticillium wilt-resistant activities from the roots of Gossypium barbadense 'Xinhai15' and to explore the interactions between the soil and plants. RESULTS An endophytic bacterium Bacillus sp. T6 was obtained from the Verticillium wilt-resistant cotton G. barbadense 'Xinhai15', which showed significant antagonistic abilities against cotton Verticillium wilt. The bioassay results indicated that the strain possessed strong antagonistic abilities that inhibited V. dahliae spore germination and mycelial growth without contact, and thus it was speculated that the active factor of the bacteria might be volatile compounds. A total of 46 volatile substances were detected via headspace solid-phase microextraction and gas chromatography-mass spectrometry analysis. The pure product verification experiment confirmed that the styrene produced by the T6 strain was the main virulence factor. Transcriptome analysis showed that following styrene induction, 247 genes in V. dahliae, including four hydrolase genes, eight dehydrogenase genes, 11 reductase genes, 17 genes related to transport and transfer were upregulated. Additionally, 72 genes, including two chitinase genes, two protease genes, five transport-related genes, and 33 hypothetical protein genes, were downregulated. The quantitative real-time PCR results confirmed that the expression of the four genes VDAG_02838, VDAG_09554, VDAG_045572, and VDAG_08251 was increased by 3.18, 78.83, 2.71, and 2.92 times, respectively, compared with the uninduced control group. CONCLUSIONS The research provides a new reference for the development and application of the volatile compounds of endophytic bacteria as new biocontrol agents for the control of Verticillium wilt and as biological preservatives for agricultural products.
Collapse
Affiliation(s)
- Lin Zhang
- grid.453722.50000 0004 0632 3548College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061 Henan China
| | - Yu Wang
- grid.453722.50000 0004 0632 3548College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061 Henan China
| | - Shengwei Lei
- grid.453722.50000 0004 0632 3548College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061 Henan China
| | - Hongxin Zhang
- grid.453722.50000 0004 0632 3548College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061 Henan China
| | - Ziyang Liu
- grid.453722.50000 0004 0632 3548College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061 Henan China
| | - Jianwei Yang
- grid.453722.50000 0004 0632 3548College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061 Henan China
| | - Qiuhong Niu
- grid.453722.50000 0004 0632 3548College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061 Henan China
| |
Collapse
|
13
|
Yu H, Jia W, Zhao M, Li L, Liu J, Chen J, Pan H, Zhang X. Antifungal mechanism of isothiocyanates against Cochliobolus heterostrophus. PEST MANAGEMENT SCIENCE 2022; 78:5133-5141. [PMID: 36053944 DOI: 10.1002/ps.7131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 08/06/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Isothiocyanates (ITCs) generated from the 'glucosinolates-myrosinase' defense system in the Brassicaceae exhibit broad antagonistic activity to various fungal pathogens. Nevertheless, the antifungal activity of ITCs to non-adapted fungi of Brassicaceae plants were seldom determined. The inhibitory effects of ITCs on Cochliobolus heterostrophus were evaluated and the antagonistic mechanism was explored. RESULTS The mycelium growth of C. heterostrophus was hindered significantly by allyl, 4-(methylthio)-butyl, and phenyethyl ITCs, 4MTB-ITC exhibited the highest inhibitory effect on mycelium growth with an IC50 value of 53.4 μmol L-1 . In addition, ITCs exhibited obvious inhibitory effect on conidia germination and pathogenicity of C. heterostrophus. Proteomic analysis indicated that the inhibition of C. heterostrophus by A-ITC downregulated the expression of genes related to energy metabolism, oxidoreductase activity, melanin biosynthesis, and cell wall-degrading enzymes. Furthermore, mutants ΔChtrx2 and ΔChnox1 showed increased sensitivity to ITCs, and melanin biosynthesis was inhibited significantly in C. heterostrophus in response to A-ITC. Interestingly, unlike other pathogens that infected Brassicaceae plants, the SaxA in C. heterostrophus displayed no function in ITC degradation. In addition, the ITCs also exhibited obvious inhibitory effect on mycelium growth of Setosphaeria turcica, Fusarium graminearum, and Magnaporthe oryzae. CONCLUSION This study indicated that non-Brassicaceae-adapted pathogens are more sensitive to ITCs, and ITCs could have applications in protecting non-Brassicaceae crops in future. In addition, loss of ChNOX1 and ChTRX2 increased the sensitivity of C. heterostrophus to ITCs. Our results provided potential utilization of ITCs to control diseases caused by non-Brassicaceae pathogenic fungi. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huilin Yu
- College of Plant Science, Jilin University, Changchun, China
| | - Wantong Jia
- College of Plant Science, Jilin University, Changchun, China
| | - Meixi Zhao
- College of Plant Science, Jilin University, Changchun, China
| | - Le Li
- College of Plant Science, Jilin University, Changchun, China
| | - Jinliang Liu
- College of Plant Science, Jilin University, Changchun, China
| | - Jingyuan Chen
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Zhuhai, China
| | - Hongyu Pan
- College of Plant Science, Jilin University, Changchun, China
| | - Xianghui Zhang
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
14
|
Antifungal compound from marine Serratia marcescens BKACT and its potential activity against Fusarium sp. Int Microbiol 2022; 25:851-862. [PMID: 35900707 DOI: 10.1007/s10123-022-00268-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 10/16/2022]
Abstract
Ecofriendly biocontrol agents to control pathogenic fungi are in demand globally. The present study evaluated the antifungal potentials of marine bacteria Serratia marcescens BKACT against eight different Fusarium species. A highest 75.5 ± 0.80% of mycelial inhibition was observed against Fusarium foetens NCIM 1330. Structural characterization of the purified compound was analyzed by GC-MS and NMR techniques; based on the analysis, it is confirmed as 2, 4-di-tert butyl phenol (2, 4-DTBP) with chemical structure C14H22O. At 0.53 mM concentration, purified compound inhibited complete spore germination of F. foetens NCIM 1330. In vitro assay showed complete inhibition of F. foetens NCIM 1330 on the wheat seeds. Tested concentration does not show any toxic effect on germination of the seeds. By this study, we conclude that, 2, 4-DTBP is a suitable candidate to be used as biocontrol agent against Fusarium infection.
Collapse
|
15
|
Wang B, He B, Chen T, Li H, Chen L, Chen Y, Tian K, Yang K, Shen D, Yan W, Ye Y. Discovery of Tropolone Stipitaldehyde as a Potential Agent for Controlling Phytophthora Blight and Its Action Mechanism Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8693-8703. [PMID: 35793537 DOI: 10.1021/acs.jafc.2c03163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fermentation of endophytic Nigrospora chinensis GGY-3 resulted in the isolation of tropolone stipitaldehyde (1), which exhibited broad-spectrum inhibition activity against fungi and bacteria, especially against Phytophthora capsici, with an EC50 value of 0.83 μg/mL and Xanthomonas oryzae pv. oryzicola, with a minimum inhibitory concentration value of 4.0 μg/mL. The in vitro and in vivo assays demonstrated that 1 had a significant protective effect on P. capsici. Furthermore, 1 inhibited the spore germination of P. capsici and damaged the plasma membrane structure. As observed by SEM and TEM, after exposure to 1, mycelia exhibited swelling, shrunken, branch-increasing phenomena, cell wall and membrane damage, and disordered content. Transcriptome analysis revealed that 1 might affect starch and sucrose metabolism and fatty acid biosynthesis by suppressing the expression of genes relevant to cell wall synthetases and cell membrane-associated genes. These findings indicate that 1 may be a potential agrochemical fungicide for controlling phytophthora blight.
Collapse
Affiliation(s)
- Biao Wang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Bo He
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Tianyu Chen
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Hao Li
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Liyifan Chen
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Yiliang Chen
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Kailin Tian
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Kun Yang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Danyu Shen
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Wei Yan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
- The Sanya Institute of Nanjing Agricultural University, Sanya 572000, P. R. China
| | - Yonghao Ye
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
- The Sanya Institute of Nanjing Agricultural University, Sanya 572000, P. R. China
| |
Collapse
|
16
|
Zhao X, Zhou J, Tian R, Liu Y. Microbial volatile organic compounds: Antifungal mechanisms, applications, and challenges. Front Microbiol 2022; 13:922450. [PMID: 35910607 PMCID: PMC9337857 DOI: 10.3389/fmicb.2022.922450] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
The fungal decay of fresh fruits and vegetables annually generates substantial global economic losses. The utilization of conventional synthetic fungicides is damaging to the environment and human health. Recently, the biological control of post-harvest fruit and vegetable diseases via antagonistic microorganisms has become an attractive possible substitution for synthetic fungicides. Numerous studies have confirmed the potential of volatile organic compounds (VOCs) for post-harvest disease management. Moreover, VOC emission is a predominant antifungal mechanism of antagonistic microorganisms. As such, it is of great significance to discuss and explore the antifungal mechanisms of microbial VOCs for commercial application. This review summarizes the main sources of microbial VOCs in the post-harvest treatment and control of fruit and vegetable diseases. Recent advances in the elucidation of antifungal VOC mechanisms are emphasized, and the applications of VOCs produced from antagonistic microorganisms are described. Finally, the current prospects and challenges associated with microbial VOCs are considered.
Collapse
|
17
|
Fungal control in foods through biopreservation. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Antifungal volatile organic compounds from Streptomyces setonii WY228 control black spot disease of sweet potato. Appl Environ Microbiol 2022; 88:e0231721. [PMID: 35108080 DOI: 10.1128/aem.02317-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Volatile organic compounds (VOCs) produced by microorganisms are considered as promising environmental-safety fumigants for controlling postharvest diseases. Ceratocystis fimbriata, the pathogen of black spot disease, seriously affects the quality and yield of sweet potato in the field and postharvest. This study tested the effects of VOCs produced by Streptomyces setonii WY228 on the control of C. fimbriata in vitro and in vivo. The VOCs exhibited strong antifungal activity and significantly inhibited the growth of C. fimbriata. During the 20-days storage, VOCs fumigation significantly controlled the occurrence of pathogen, increased the content of antioxidant and defense-related enzymes and flavonoids, and boosted the starch content so as to maintain the quality of sweet potato. Headspace analysis showed that volatiles 2-ethyl-5-methylpyrazine and dimethyl disulfide significantly inhibited the mycelial growth and spore germination of C. fimbriata in a dose dependent manner. Fumigation with 100 μL/L 2-ethyl-5-methylpyrazine completely controlled the pathogen in vivo after 10-days storage. Transcriptome analysis showed that volatiles mainly downregulated the ribosomal synthesis genes and activated the proteasome system of pathogen in response to VOCs stress, while the genes related to spore development, cell membrane synthesis, mitochondrial function, as well as hydrolase and toxin synthesis were also downregulated, indicating that WY228-produced VOCs act diverse modes of action for pathogen control. Our study demonstrates that fumigation of sweet potato tuberous roots with S. setonii WY228 or use of formulations based on the VOCs is a promising new strategy to control sweet potato and other food and fruit pathogens during storage and shipment. Importance Black spot disease caused by Ceratocystis fimbriata has caused huge economic losses to worldwide sweet potato production. At present, the control of C. fimbriata mainly depends on toxic fungicides, and there is a lack of effective alternative strategies. The research on biological control of sweet potato black spot disease is also very limited. The development of efficient biocontrol technique against pathogens using microbial volatile organic compounds could be an alternative method to control this disease. Our study revealed the significant biological control effect of volatile organic compounds of Streptomyces setonii WY228 on black spot disease of postharvest sweet potato and the complex antifungal mechanism against C. fimbriata. Our data demonstrated that Streptomyces setonii WY228 and its volatile 2-ethyl-5-methylpyrazine could be candidate strain and compound for the creation of fumigants, and showed the important potential of biotechnology application in the field of food and agriculture.
Collapse
|