1
|
Zhao L, Zhao Q, Sharafeldin S, Sang L, Wang C, Xue Y, Shen Q. Moderate Highland Barley Intake Affects Anti-Fatigue Capacity in Mice via Metabolism, Anti-Oxidative Effects and Gut Microbiota. Nutrients 2025; 17:733. [PMID: 40005062 DOI: 10.3390/nu17040733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
OBJECTIVES this study aimed to explore the effects of different intake levels (20-80%) of highland barley on the anti-fatigue capacity of ICR mice, focusing on energy metabolism, metabolite accumulation, oxidative stress, and changes in the gut microbiota. METHODS male ICR mice were assigned to five groups: control (normal diet) and four experimental groups with highland barley supplementation at 20%, 40%, 60%, and 80% of total dietary energy. Anti-fatigue performance was assessed by behavioral experiments (rotarod, running, and exhaustive swimming tests), biochemical markers, and gut microbiota analysis. RESULTS the results showed that moderate supplementation (20%) significantly enhanced exercise endurance and anti-fatigue capacity, as evidenced by increased liver glycogen (134.48%), muscle glycogen (87.75%), ATP content (92.07%), Na+-K+-ATPase activity (48.39%), and antioxidant enzyme activities (superoxide dismutase (103.31%), catalase (87.75%), glutathione peroxidase (81.14%). Post-exercise accumulation of blood lactate, quadriceps muscle lactate, serum urea nitrogen, and the oxidative stress marker malondialdehyde was significantly reduced, with differences of 31.52%, 21.83%, 21.72%, and 33.76%, respectively. Additionally, 20% supplementation promoted the growth of beneficial gut microbiota associated with anti-fatigue effects, including unclassified_f_Lachnospiraceae, g_norank_f_Peptococcaceae, Lachnospiraceae NK4A136, Colidextribacter, and Turicibacter. However, when intake reached 60% or more, anti-fatigue effects diminished, with decreased antioxidant enzyme activity, increased accumulation of metabolic waste, and a rise in potentially harmful microbiota (Allobaculum, Desulfovibrio, and norank_f_norank_o_RF39). CONCLUSIONS moderate highland barley supplementation (20% of total dietary energy) enhances anti-fatigue capacity, while excessive intake (≥60%) may have adverse effects.
Collapse
Affiliation(s)
- Liangxing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Grain Industry (Highland Barley Deep Processing) Technology Innovation Center, Beijing 100083, China
- National Grain and Oil Standards Research Verification and Testing Center, Beijing 100083, China
| | - Qingyu Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Grain Industry (Highland Barley Deep Processing) Technology Innovation Center, Beijing 100083, China
- National Grain and Oil Standards Research Verification and Testing Center, Beijing 100083, China
| | - Sameh Sharafeldin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Grain Industry (Highland Barley Deep Processing) Technology Innovation Center, Beijing 100083, China
- National Grain and Oil Standards Research Verification and Testing Center, Beijing 100083, China
- Department of Food and Dairy Sciences and Technology, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Luman Sang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Grain Industry (Highland Barley Deep Processing) Technology Innovation Center, Beijing 100083, China
- National Grain and Oil Standards Research Verification and Testing Center, Beijing 100083, China
| | - Chao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Grain Industry (Highland Barley Deep Processing) Technology Innovation Center, Beijing 100083, China
- National Grain and Oil Standards Research Verification and Testing Center, Beijing 100083, China
| | - Yong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Grain Industry (Highland Barley Deep Processing) Technology Innovation Center, Beijing 100083, China
- National Grain and Oil Standards Research Verification and Testing Center, Beijing 100083, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Grain Industry (Highland Barley Deep Processing) Technology Innovation Center, Beijing 100083, China
- National Grain and Oil Standards Research Verification and Testing Center, Beijing 100083, China
| |
Collapse
|
2
|
Zhang H, Kang R, Song T, Ren F, Liu J, Wang J. Advances in relieving exercise fatigue for curcumin: Molecular targets, bioavailability, and potential mechanism. J Food Sci 2024; 89:4604-4619. [PMID: 39031649 DOI: 10.1111/1750-3841.17162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 07/22/2024]
Abstract
Intense and prolonged physical activity can lead to a decrease in muscle capacity, making it difficult to maintain the desired exercise intensity and resulting in exercise fatigue. The long-term effects of exercise fatigue can be very damaging to the body, so it is an urgent problem to be addressed. The intervention of foodborne active substances will be an effective measure. There is growing evidence that the molecular structure and function of curcumin have a positive effect on relieving fatigue. In this review, we summarize curcumin's molecular structure, which enables it to bind to a wealth of molecular targets, regulate signaling pathways, and thus alleviate exercise fatigue through a variety of mechanisms, including reducing oxidative stress, inhibiting inflammation, reducing metabolite accumulation, and regulating energy metabolism. The effects of curcumin on fatigue-related markers were analyzed from the perspective of animal models and human models and based on the bidirectional interaction between curcumin and intestinal microbiota: Intestinal microbiota can transform curcumin, and curcumin regulates gut microbiota through metabolic pathways, providing a new perspective for alleviating fatigue. This review contributes to a more comprehensive understanding of the possible molecular mechanisms of curcumin in anti-fatigue and provides a new possibility for the development of functional foods in the future.
Collapse
Affiliation(s)
- Huijuan Zhang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-Products), Beijing Technology and Business University, Beijing, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing, China
| | - Rui Kang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-Products), Beijing Technology and Business University, Beijing, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing, China
| | - Tiancong Song
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-Products), Beijing Technology and Business University, Beijing, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing, China
| | - Feiyue Ren
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-Products), Beijing Technology and Business University, Beijing, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing, China
| | - Jie Liu
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-Products), Beijing Technology and Business University, Beijing, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing, China
| | - Jing Wang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-Products), Beijing Technology and Business University, Beijing, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing, China
| |
Collapse
|
3
|
Li Y, Wu Y, Li H, Wang M, Gao Y, Pei S, Liu S, Liu Z, Liu Z, Men L. UPLC-QTOF-MS based metabolomics unravels the modulatory effect of ginseng water extracts on rats with Qi-deficiency. J Pharm Biomed Anal 2024; 242:116019. [PMID: 38382315 DOI: 10.1016/j.jpba.2024.116019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
Ginseng is commonly used as a nutritional supplement and daily wellness product due to its ability to invigorate qi. As a result, individuals with Qi-deficiency often use ginseng as a health supplement. Ginsenosides and polysaccharides are the primary components of ginseng. However, the therapeutic effects and mechanisms of action of these components in Qi-deficiency remain unclear. This study aimed to determine the modulatory effects and mechanisms of ginseng water extract, ginsenosides, and ginseng polysaccharides in a rat model of Qi-deficiency using metabolomics and network analysis. The rat model of Qi-deficiency was established via swimming fatigue and a restricted diet. Oral administration of different ginseng water extracts for 30 days primarily alleviated oxidative stress and disrupted energy metabolism and immune response dysfunction caused by Qi-deficiency in rats. Ultra-high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) was used for untargeted serum metabolomic analysis. Based on the analysis results, the active constituents of ginseng significantly reversed the changes in serum biomarkers related to Qi-deficiency in rats, particularly energy, amino acid, and unsaturated fatty acid metabolism. Furthermore, analysis of the metabolite-gene network suggested that the anti-Qi-deficiency effects of the ginseng components were mainly associated with toll-like receptor (TLR) signaling and inflammatory response. Additional verification revealed that treatment with the ginseng components effectively reduced the inflammatory response and activation of the myocardial TLR4/NF-κB pathway induced by Qi-deficiency, especially the ginseng water extracts. Therefore, ginseng could be an effective preventive measure against the progression of Qi-deficiency by regulating metabolic and inflammatory responses.
Collapse
Affiliation(s)
- Yanyi Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Yi Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China.
| | - Hanlin Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Meiyuan Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Yang Gao
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Shuhua Pei
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130021, PR China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130021, PR China
| | - Zhongying Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Lihui Men
- College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
4
|
Zhu T, Pan Q, Xiao K, Zuo C, Liu Q, Zhou D, Tu K. Stilbenes-enriched peanut sprouts alleviated physical fatigue via regulating interactions of nutrients-microbiota-metabolites revealed by multi-omics analysis. Food Funct 2024; 15:2960-2973. [PMID: 38407402 DOI: 10.1039/d3fo04076c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In this study, the antifatigue effect and mechanism of peanut sprouts were explored. BALB/c mice divided into three groups (control, dark and UV-C) were respectively supplemented with a normal diet, peanut sprouts (dark germination) added diet and stilbenes-enriched peanut sprouts (UV-C radiated germination) added diet. Results showed that swimming time and levels of blood glucose and antioxidant enzymes significantly increased, while contents of triglyceride and malondialdehyde notably decreased by peanut sprout supplementation. Besides, combined analysis of gut microbiota gene sequencing and targeted metabolomics of fecal metabolites revealed that peanut sprout supplementation up-regulated abundances and metabolic transformations of Catenibacillus, Odoribacter, Prevotellaceae-UCG-001 and Butyricicoccus while it down-regulated the abundance of Parabacteroides. Consequently, contents of sebacic acid, azelaic acid, suberic acid, heptanoic acid, pimelic acid, aminoadipic acid and mono-phenolics notably increased, which were markedly correlated with the antifatigue effect. Compared with the dark group, the swimming time, glutathione peroxidase activity, methylmalonylcarnitine content and abundances of Butyricicoccus, Catenibacillus and Lachnospiraceae NK4A136 were higher in the UV-C group, while opposite results were obtained for the levels of triglyceride, malondialdehyde, alpha-linolenic acid, gamma-linolenic acid, 10Z-heptadecenoic acid and palmitelaidic acid. Overall, peanut sprout supplementation could alleviate fatigue by modulating gut microbiota composition to promote fatty acid oxidation and lysine and stilbene catabolism to increase energy supply and regulate redox balance. UV-C-radiated peanut sprout supplementation could alleviate fatigue more effectively by up-regulating abundances of Butyricicoccus, Catenibacillus and Lachnospiraceae NK4A136 to promote long-chain fatty acid oxidation and catabolism of flavonoids and stilbenes efficiently.
Collapse
Affiliation(s)
- Tong Zhu
- College of Food Science and Technology/Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, P. R. China
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, P. R. China.
| | - Qi Pan
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, P. R. China.
| | - Kunpeng Xiao
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, P. R. China.
| | - Changzhou Zuo
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, P. R. China.
| | - Qiang Liu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, P. R. China
| | - Dandan Zhou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Kang Tu
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, P. R. China.
| |
Collapse
|
5
|
Liu Y, Feng Z, Hu Y, Xu X, Kuang T, Liu Y. Polysaccharides derived from natural edible and medicinal sources as agents targeting exercise-induced fatigue: A review. Int J Biol Macromol 2024; 256:128280. [PMID: 38000591 DOI: 10.1016/j.ijbiomac.2023.128280] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Exercise-induced fatigue (EF) is a common occurrence during prolonged endurance and excessive exercise and is mainly caused by energy depletion, harmful metabolite accumulation, oxidative stress, and inflammation. EF usually leads to a reduction in initiating or maintaining spontaneous activities and muscle performance and ultimately results in a decrease in the quality of life of people who engage in physical work. Therefore, the interest in investigating EF-targeting agents with minimal side effects and good long-term efficacy has substantially increased. Natural edible and medicinal polysaccharides have shown positive anti-EF effects, but the relevant reviews are rare. This review comprehensively summarizes studies on natural polysaccharides from edible and medicinal sources that can relieve EF and improve physical performance from the past decade, focusing on their sources, monosaccharide compositions, anti-EF effects, and possible molecular mechanisms. Most of these anti-EF polysaccharides are heteropolysaccharides and are mainly composed of glucose, arabinose, galactose, rhamnose, xylose, and mannose. In EF animal models, the polysaccharides exert positive EF-alleviating effects through energy supply, metabolic regulation, antioxidation, anti-inflammation, and gut microbiota remodeling. However, further studies are still needed to clarify the anti-EF effects of these polysaccharides on human beings. In summary, the present review expects to provide scientific data for the future research and development of natural polysaccharide-based anti-EF drugs, dietary supplements, and health-care products for specific fatigue groups.
Collapse
Affiliation(s)
- Yuzhou Liu
- Chengdu Sport University, Chengdu 610041, China
| | - Zige Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610037, China; School of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Yao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610037, China; School of Physical Education and Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610037, China
| | - Xinmei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610037, China
| | - Tingting Kuang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610037, China.
| | - Yue Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610037, China.
| |
Collapse
|
6
|
Sun H, Shu F, Guan Y, Kong F, Liu S, Liu Y, Li L. Study of anti-fatigue activity of polysaccharide from fruiting bodies of Armillaria gallica. Int J Biol Macromol 2023; 241:124611. [PMID: 37119895 DOI: 10.1016/j.ijbiomac.2023.124611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/12/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023]
Abstract
Fatigue is a common physiological response that is closely related to energy metabolism. Polysaccharides, as excellent dietary supplements, have been proven to have a variety of pharmacological activities. In this study, A 23.007 kDa polysaccharide from Armillaria gallica (AGP) was purified and performed structural characterization, including analysis of homogeneity, molecular weight and monosaccharide composition. Methylation analysis is used to analyze the glycosidic bond composition of AGP. The mouse model of acute fatigue was used to evaluate the anti-fatigue effect of AGP. AGP-treatment improved exercise endurance in mice and reduced fatigue symptoms caused by acute exercise. AGP regulated the levels of adenosine triphosphate, lactic acid, blood urea nitrogen and lactate dehydrogenase, muscle glycogen and liver glycogen of acute fatigue mice. AGP affected the composition of intestinal microbiota, the changes of some intestinal microorganisms are correlated with fatigue and oxidative stress indicators. Meanwhile, AGP reduced oxidative stress levels, increased antioxidant enzyme activity and regulated the AMP-dependent protein kinase/nuclear factor erythroid 2-related factor 2 signaling pathway. AGP exerted an anti-fatigue effect through modulation of oxidative stress, which is related to intestinal microbiota.
Collapse
Affiliation(s)
- Huihui Sun
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Fang Shu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Yue Guan
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Fange Kong
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Shuyan Liu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Yang Liu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Lanzhou Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
7
|
Wu Y, Ma Y, Cao J, Xie R, Chen F, Hu W, Huang Y. Feasibility study on the use of "Qi-tonifying medicine compound" as an anti-fatigue functional food ingredient based on network pharmacology and molecular docking. Front Nutr 2023; 10:1131972. [PMID: 37215213 PMCID: PMC10196032 DOI: 10.3389/fnut.2023.1131972] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Fatigue has attracted broad attention in recent years due to its high morbidity rates. The use of functional foods to relieve fatigue-associated symptoms is becoming increasingly popular and has achieved relatively good results. In this study, network pharmacology and molecular docking strategies were used to establish the material basis and mechanisms of Chinese herbal compounds in fatigue treatment. According to traditional medicine theories and relevant guidance documents published by the Chinese Ministry of Health, four herbal medicines, including Eucommia ulmoides Oliver bark, Eucommia ulmoides Oliver male flower, Panax notoginseng, and Syzygium aromaticum (EEPS), were selected to constitute the anti-fatigue herbal compound that may be suitable as functional food ingredients. Methods The major active ingredients in EEPS were identified via comprehensive literature search and Traditional Chinese Medicine Systems Pharmacology database search. Corresponding targets for these ingredients were predicted using SwissTargetPrediction. The network was constructed using Cytoscape 3.9.1 to obtain key ingredients. Prediction of absorption, distribution, metabolism, excretion and toxicity properties was performed using the ADMETIab 2.0 database. The anti-fatigue targets were retrieved from GeneCards v5.13, OMIM, TTD and DisGeNET 7.0 databases. Then, the potential targets of EEPS in fatigue treatment were screened through a Venn diagram. A protein-protein interaction (PPI) network of these overlapping targets was constructed, and the hub targets in the network selected through topological screening. Gene Ontology and KEGG pathway enrichment analyses were performed using the DAVID database and the bioinformatics online platform. Finally, AutoDock tools were used to verify the binding capacity between the key active ingredients and the core targets. Results and Discussion This study identified the active ingredients and potential molecular mechanisms of EEPS in fatigue treatment, which will provide a foundation for future research on applications of herbal medicines in the functional food industry.
Collapse
Affiliation(s)
- Yi Wu
- Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
| | - Yixuan Ma
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Jinguo Cao
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Rui Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Feng Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Department of Pediatric Surgery, The First Affiliated Hospital of GanNan Medical University, Ganzhou, China
| | - Wen Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Yushan Huang
- Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
8
|
Li XY, Jiang CL, Zheng C, Hong CZ, Pan LH, Li QM, Luo JP, Zha XQ. Polygonatum cyrtonema Hua Polysaccharide Alleviates Fatigue by Modulating Osteocalcin-Mediated Crosstalk between Bones and Muscles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6468-6479. [PMID: 37043685 DOI: 10.1021/acs.jafc.2c08192] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Osteocalcin was reported to regulate muscle energy metabolism, thus fighting fatigue during exercise. The current work aimed to investigate the anti-fatigue effect and the underlying mechanism of a homogeneous polysaccharide (PCPY-1) from Polgonatum cyrtonema after structure characterization. In the exhaustive swimming mouse model and the co-culture system of BMSCs/C2C12 cells, PCPY-1 significantly stimulated BMSC differentiation into osteoblasts as determined by ALP activity, matrix mineralization, and the protein expressions of osteogenic markers BMP-2, phosphor-Smad1, RUNX2, and osteocalcin. Meanwhile, PCPY-1 remarkably enhanced myoblast energy metabolism by upregulating osteocalcin release and GPRC6A protein expression; the phosphorylation levels of CREB and HSL; the mRNA levels of GLUT4, CD36, FATP1, and CPT1B; and ATP production in vitro and in vivo. Accordingly, PCPY-1 exhibited good anti-fatigue capacity in mice as confirmed by fatigue-related indicators. Our findings indicated PCPY-1 could enhance osteocalcin-mediated communication between bones and muscles, which was conducive to muscle energy metabolism and ATP generation, thus alleviating fatigue in exhausted swimming mice.
Collapse
Affiliation(s)
- Xue-Ying Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Chao-Li Jiang
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Chao Zheng
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Cheng-Zhi Hong
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- Key Laboratory of Metabolism and Regulation for Major Disease of Anhui Higher Education Institutes, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| |
Collapse
|
9
|
Liu Y, Li C, Shen X, Liu Y. The use of traditional Chinese medicines in relieving exercise-induced fatigue. Front Pharmacol 2022; 13:969827. [PMID: 35935864 PMCID: PMC9353218 DOI: 10.3389/fphar.2022.969827] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Exercise-induced fatigue is a non-pathological fatigue and indicated by a reduction of muscle performance that is caused by excessive physical activity. It seriously affects the daily lives of people, in particular athletes, military personnel, and manual laborers. In recent years, increasing attention has been paid to improving the adverse effect of exercise-induced fatigue on people’s daily activities. Thus, studies and applications of traditional Chinese medicines (TCMs) in relieving exercise-induced fatigue have become the focus because of their good curative effects with fewer side effects. This review aims to document and summarize the critical and comprehensive information about the biological processes of exercise-induced fatigue, and to know the types of TCMs, their active components, and possible molecular mechanisms in alleviating exercise-induced fatigue. The peripheral and central mechanisms that cause exercise-induced fatigue have been summarized. A total of 47 exercise-induced fatigue relief TCMs have been collected, mostly including the types of visceral function regulation and emotional adjustment TCMs. Polysaccharides, terpenes, flavonoids/polyphenols are demonstrated to be the major bioactive components. The underlying molecular mechanisms are mainly related to the improvement of energy metabolism, elimination of excess metabolites, inhibition of oxidative stress and inflammatory response, regulation of HPA axis and neurotransmitters. Although current results are obtained mostly from animal models, the clinic trials are still insufficient, and a very few TCMs have been reported to possess potential hepatotoxicity. These findings still offer great reference value, and the significant efficacy in relieving exercise-induced fatigue is impossible to ignore. This review is expected to give insights into the research and development of new TCMs-derived drugs and health care products in relieving exercise-induced fatigue.
Collapse
Affiliation(s)
- Yuzhou Liu
- School of Leisure Sports, Chengdu Sport University, Chengdu, China
| | - Congying Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofei Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaofei Shen, ; Yue Liu,
| | - Yue Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaofei Shen, ; Yue Liu,
| |
Collapse
|
10
|
Spore Powder of Paecilomyces hepiali Shapes Gut Microbiota to Relieve Exercise-Induced Fatigue in Mice. Nutrients 2022; 14:nu14142973. [PMID: 35889929 PMCID: PMC9323605 DOI: 10.3390/nu14142973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023] Open
Abstract
Paecilomyces hepiali, a fungal strain isolated from natural Ophiocordyceps sinensis, contains similar pharmacologically active components, has been used widely as a substitute of O. sinensis in functional food and medicine. However, the components and anti-fatigue effects of P.hepiali spores and their mechanisms of action are largely unknown. Here, we compared the chemical composition in P.hepiali spore (HPS) and mycelium (HPM) by liquid chromatography with tandem mass spectrometry analysis. We found 85 metabolites with significant differences, and HPS contains more L-Malic acid, Oxalacetic acid, Fructose-1,6-bisphosphate, and L-Arginine than HPM. Then we evaluated their anti-fatigue effects and regulatory effects on the gut microbiota in mice. The forced swimming time (SW) was only significantly increased in HPS groups: the high and low dose of the HPS group was 101% and 72% longer than the control group, respectively. Both HPS and HPM treatment decreased lactic acid, blood urea nitrogen, creatine kinase while increased lactate dehydrogenase (LDH) levels in the blood. Moreover, mice treated with HPS and HPM showed less skeletal muscle fiber spacing and breakage. The relative abundance of Alistips, Eubacterium, Bacterium, Parasutterella, and Olsenella in the gut microbiota of the HPS group was higher than that in the HPM group through 16S rRNA gene sequencing analysis. These changes may be related to the regulation of nucleotide, amino acid, and carbohydrate metabolism. Correlation analysis between the gut microbiota and fatigue-related indicators suggested that Alistips, Clostridium, Akkermansia, Olsenella, and Lactobacillus were positively correlated with the SW and LDH content. Our findings demonstrated that HPS has beneficial anti-fatigue effects by regulating gut microbiota.
Collapse
|
11
|
A Comparative Study on Relieving Exercise-Induced Fatigue by Inhalation of Different Citrus Essential Oils. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103239. [PMID: 35630716 PMCID: PMC9145370 DOI: 10.3390/molecules27103239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022]
Abstract
Citrus essential oils (CEOs) possess physiological functions due to diverse aroma components. However, evidence for the effects of CEOs on exercise performance and exercise-induced fatigue is limited. The CEOs with discrepancies in components may exert different effects on the amelioration of exercise-induced fatigue. In this study, sweet orange (Citrus sinensis L.) essential oil (SEO), lemon (Citrus limon Osbeck) essential oil (LEO), and bergamot (Citrus bergamia Risso and Poit) essential oil (BEO) were chosen to explore the effect on amelioration of exercise-induced fatigue. Our results demonstrated that SEO and LEO increased the swimming time by 276% and 46.5%, while BEO did not. Moreover, the three CEOs exerted varying effects on mitigating exercise-induced fatigue via inhibiting oxidative stress, protecting muscle injury, and promoting glucose-dependent energy supply. Accordingly, BEO showed the best efficiency. Moreover, the GC-MS and Pearson correlation analysis of BEO showed that the contents of the major components, such as (±)-limonene (32.9%), linalyl butyrate (17.8%), and linalool (7.7%), were significantly positively correlated with relieving exercise-induced fatigue.
Collapse
|
12
|
Willems MET, Blacker SD. Anthocyanin-Rich Supplementation: Emerging Evidence of Strong Potential for Sport and Exercise Nutrition. Front Nutr 2022; 9:864323. [PMID: 35433792 PMCID: PMC9009509 DOI: 10.3389/fnut.2022.864323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Dark-colored fruits, especially berries, have abundant presence of the polyphenol anthocyanin which have been show to provide health benefits. Studies with the berry blackcurrant have provided notable observations with application for athletes and physically active individuals. Alterations in exercise-induced substrate oxidation, exercise performance of repeated high-intensity running and cycling time-trial and cardiovascular function at rest and during exercise were observed with intake of New Zealand blackcurrant. The dynamic plasma bioavailability of the blackcurrant anthocyanins and the anthocyanin-derived metabolites must have changed cell function to provide meaningful in-vivo physiological effects. This perspective will reflect on the research studies for obtaining the applied in-vivo effects by intake of anthocyanin-rich supplementation, the issue of individual responses, and the emerging strong potential of anthocyanins for sport and exercise nutrition. Future work with repeated intake of known amount and type of anthocyanins, gut microbiota handling of anthocyanins, and coinciding measurements of plasma anthocyanin and anthocyanin-derived metabolites and in-vivo cell function will be required to inform our understanding for the unique potential of anthocyanins as a nutritional ergogenic aid for delivering meaningful effects for a wide range of athletes and physically active individuals.
Collapse
|
13
|
Enhancement of Swimming Endurance by Herbal Supplement M3P. Chin J Integr Med 2022; 28:725-729. [PMID: 35048243 DOI: 10.1007/s11655-021-3502-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To investigate the effect of M3P (containing Deer antler, Cordyceps sinensis, Rhodiola rosea, and Panax ginseng); an herbal remedy with the function of tonifying Kidney (Shen) and invigorating Spleen (Pi), replenishing qi and nourishing blood; on fatigue alleviation, endurance capacity and toxicity. METHODS Swimming with weight-loading of 24 male ICR mice was used to evaluate the endurance capacity, and fatigue-related plasma biomarkers were determined. Mice were randomly assigned to control or M3P treatment groups with 6 mice for each group and were orally administered with M3P everyday for 8 weeks at doses 0, 10, 33 or 100 mg/kg. Swimming time to exhaustion was measured in a specialized water tank. Lliver and kidney functions, body weight, and hematological profile were determined to evaluate the safety and toxicity after long-term M3P administration. RESULTS M3P supplementation 100 mg/kg significantly increased swimming endurance time up to approximate 2.4 folds of controls (P<0.05). The plasma concentrations of cortisol and hepatic glycogen content were significantly increased in mice received M3P (P<0.05, P<0.01 respectively). The lactic acid level and blood glucose were not changed after M3P treatment (P>0.05). The liver and kidney functions muscle damage biomarker creatine, body weight, and hemograms were not altered in M3P supplementation (P>0.05). CONCLUSION M3P supplementation may improve swimming endurance accompanied by increasing hepatic glycogen content and serum cortisol level without major toxicity.
Collapse
|
14
|
Chen H, Ma X, Cao L, Zhao S, Zhao C, Yin S, Hu H. A Multi-Ingredient Formula Ameliorates Exercise-Induced Fatigue by Changing Metabolic Pathways and Increasing Antioxidant Capacity in Mice. Foods 2021; 10:3120. [PMID: 34945671 PMCID: PMC8701726 DOI: 10.3390/foods10123120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple mechanisms are involved in exercise-induced fatigue, including energy depletion, metabolite accumulation, and oxidative stress, etc. The mechanistic findings provide a rationale for a multi-targeted approach to exercise-induced fatigue management. This study created a multi-ingredient formula mixed with valine, isoleucine, leucine, β-alanine, creatine, l-carnitine, quercetin, and betaine, based on the functional characteristics of these agents, and evaluated the preventive effect of this mechanism-based formula on exercise-induced fatigue. Results showed that the 7-d formula supplement significantly increased the running duration time of mice by 14% and the distance by 20% in an exhaustive treadmill test, indicating that the formula could delay fatigue appearance and improve exercise performance. Mechanistically, the formula enhanced fatty acid oxidation and spared liver glycogen by regulating the fat/glucose metabolism-related signaling pathways, including phospho-adenosine monophosphate-activated protein kinase α (p-AMPKα), phospho-acetyl CoA carboxylase (p-ACC), carnitine palmitoyl-transferase 1B (CPT1B), fatty acid translocase (CD36), and glucose transporter type 4 (GLUT4), and increased antioxidant capacity. The findings suggested that the formula tested in this study effectively ameliorated exercise-induced fatigue by targeting multi-signaling pathways, showing promise as a regimen to fight exercise-induced fatigue.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongbo Hu
- Department of Food Nutrition and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.C.); (X.M.); (L.C.); (S.Z.); (C.Z.); (S.Y.)
| |
Collapse
|
15
|
Ma X, Chen H, Cao L, Zhao S, Zhao C, Yin S, Hu H. 18β-glycyrrhetinic acid improves high-intensity exercise performance by promoting glucose-dependent energy production and inhibiting oxidative stress in mice. Phytother Res 2021; 35:6932-6943. [PMID: 34709693 DOI: 10.1002/ptr.7310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/10/2021] [Accepted: 09/30/2021] [Indexed: 01/08/2023]
Abstract
It has been shown that 18β-glycyrrhetinic acid (18β-GA), the main bioactive compound of licorice, can modulate oxidative stress and metabolic processes in liver and skin. Given the critical role of oxidative stress and energy metabolism in exercise-induced fatigue, we hypothesized that 18β-GA could exert an ergogenic action by inhibiting excess reactive oxygen species (ROS) induction and promoting energy production in muscles. Mice were gavage-fed with 18β-GA for four consecutive days. Running ability was assessed based on the exhaustive treadmill test with high- and moderate-intensity. Western blot analysis, enzyme-linked immunosorbent assay, and immunofluorescence staining were used to measure the changes of muscle fatigue-related markers, oxidative stress status, and energy metabolism in response to 18β-GA exposure. Treatment with 18β-GA significantly increased the exhaustive running distance (~37%) in the high-intensity exercise, but not in the moderate-intensity exercise. Mechanistically, reduction of oxidative stress and induction of antioxidants (SOD, CAT, and GSH) by 18β-GA were observed. Moreover, 18β-GA treatment caused an improved preservation of muscle glycogen (12%), which was associated with upregulation of glucose transporter 4 (GLUT4) (91%) and increased insulin level (17%). The findings of the present study clearly suggest that 18β-GA holds excellent potential as a novel bioactive agent against high-intensity exercise-induced fatigue.
Collapse
Affiliation(s)
- Xuan Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hui Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lixing Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shuang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shutao Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|