1
|
Feng W, Guo X, Yang G, Yao Y, Zhao L, Gao S, Ye F, Fu Y. Direct electrospinning for producing multiple activity nanofibers consisting of aggregated luteolin/hydroxypropyl-gamma-cyclodextrin inclusion complex. Int J Biol Macromol 2024; 270:132344. [PMID: 38754666 DOI: 10.1016/j.ijbiomac.2024.132344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 05/04/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Hydroxypropyl-gamma-cyclodextrin (HPγCD) inclusion complex nanofibers (Lut/HPγCD-IC-NF) containing Luteolin (Lut) were prepared by electrospinning technology. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) spectra confirmed the formation of Lut/HPγCD-IC-NF. Scanning electron microscopy (SEM) images showed that the morphology of Lut/HPγCD-IC-NF was uniform and bead-free, suggesting that self-assembled aggregates, macromolecules with higher molecular weights, were formed by strong hydrogen bonding interactions between the cyclodextrin inclusion complexes. Confocal laser scanning microscopy (CLSM) images showed that Lut was distributed in Lut/HPγCD-IC-NF. Proton nuclear magnetic resonance (1H NMR) spectroscopy revealed the change in chemical shift of the proton peak between Lut and HPγCD, confirming the formation of inclusion complex. Thermogravimetric analysis (TGA) proved that Lut/HPγCD-IC-NF had good thermal stability. The phase solubility test confirmed that HPγCD had a solubilizing effect on Lut. When the solubility of HPγCD reached 10 mM, the solubility of Lut increased by 15-fold. The drug loading test showed that the content of Lut in fibers reached 8.57 ± 0.02 %. The rapid dissolution experiment showed that Lut/HPγCD-IC-NF dissolved within 3 s. The molecular simulation provides three-dimensional evidence for the formation of inclusion complexes between Lut and HPγCD. Antibacterial experiments showed that Lut/HPγCD-IC-NF had enhanced antibacterial activity against S. aureus. Lut/HPγCD-IC-NF exhibited excellent antioxidant properties with a free radical scavenging ability of 89.5 ± 1.1 %. In vitro release experiments showed Lut/HPγCD-IC-NF had a higher release amount of Lut. In conclusion, Lut/HPγCD-IC-NF improved the physicochemical properties and bioavailability of Lut, providing potential applications of Lut in the pharmaceutical field.
Collapse
Affiliation(s)
- Weiwei Feng
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Guo
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Guang Yang
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Yao Yao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Lixia Zhao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China.
| | - Fei Ye
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China.
| | - Ying Fu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Celebioglu A, Dash K, Aboelkheir M, Kilic ME, Durgun E, Uyar T. Formulation of a fast-disintegrating drug delivery system from cyclodextrin/naproxen inclusion complex nanofibrous films. RSC Med Chem 2024; 15:595-606. [PMID: 38389869 PMCID: PMC10880899 DOI: 10.1039/d3md00557g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/17/2023] [Indexed: 02/24/2024] Open
Abstract
Naproxen is a well-known non-steroidal anti-inflammatory drug (NSAID) that suffers from limited water solubility. The inclusion complexation with cyclodextrin (CD) can eliminate this drawback and the free-standing nanofibrous film (NF) generated from these inclusion complexes (ICs) can be a promising alternative formula as an orally disintegrating drug delivery system. For this, naproxen/CD IC NFs were generated using the highly water soluble hydroxypropylated derivative of βCD (HPβCD) with two different molar ratios of 1/1 and 1/2 (drug/CD). The complexation energy calculated by the modeling study demonstrated a more favorable interaction between HPβCD and naproxen for the 1/2 molar ratio than 1/1. HPβCD/naproxen IC NFs were generated with loading concentrations of ∼7-11% and without using toxic chemicals. HPβCD/naproxen IC NFs indicated a faster and enhanced release profile in aqueous medium compared to pure naproxen owing to inclusion complexation. Moreover, rapid disintegration in less than a second was achieved in an artificial saliva environment.
Collapse
Affiliation(s)
- Asli Celebioglu
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University Ithaca NY 14853 USA
| | - Kareena Dash
- Biological Sciences, College of Arts and Sciences, Cornell University Ithaca NY 14853 USA
| | - Mahmoud Aboelkheir
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University Ithaca NY 14853 USA
| | - Mehmet E Kilic
- Computational Science Research Center, Korea Institute of Science and Technology Seoul 02792 Republic of Korea
| | - Engin Durgun
- UNAM-National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University Ankara 06800 Turkey
| | - Tamer Uyar
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University Ithaca NY 14853 USA
| |
Collapse
|
3
|
Sarabia-Vallejo Á, Caja MDM, Olives AI, Martín MA, Menéndez JC. Cyclodextrin Inclusion Complexes for Improved Drug Bioavailability and Activity: Synthetic and Analytical Aspects. Pharmaceutics 2023; 15:2345. [PMID: 37765313 PMCID: PMC10534465 DOI: 10.3390/pharmaceutics15092345] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Many active pharmaceutical ingredients show low oral bioavailability due to factors such as poor solubility and physical and chemical instability. The formation of inclusion complexes with cyclodextrins, as well as cyclodextrin-based polymers, nanosponges, and nanofibers, is a valuable tool to improve the oral bioavailability of many drugs. The microencapsulation process modifies key properties of the included drugs including volatility, dissolution rate, bioavailability, and bioactivity. In this context, we present relevant examples of the stabilization of labile drugs through the encapsulation in cyclodextrins. The formation of inclusion complexes with drugs belonging to class IV in the biopharmaceutical classification system as an effective solution to increase their bioavailability is also discussed. The stabilization and improvement in nutraceuticals used as food supplements, which often have low intestinal absorption due to their poor solubility, is also considered. Cyclodextrin-based nanofibers, which are polymer-free and can be generated using environmentally friendly technologies, lead to dramatic bioavailability enhancements. The synthesis of chemically modified cyclodextrins, polymers, and nanosponges based on cyclodextrins is discussed. Analytical techniques that allow the characterization and verification of the formation of true inclusion complexes are also considered, taking into account the differences in the procedures for the formation of inclusion complexes in solution and in the solid state.
Collapse
Affiliation(s)
- Álvaro Sarabia-Vallejo
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - María del Mar Caja
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - Ana I. Olives
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - M. Antonia Martín
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - J. Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| |
Collapse
|
4
|
Jiang B, Chen P, Guo J, Han B, Jin H, Li D, Liu C, Feng Z. Structural characteristics and biological activity of lactic acid bacteria exopolysaccharides separated by ethanol/(NH 4) 2SO 4 ATPS. Int J Biol Macromol 2023:125451. [PMID: 37331540 DOI: 10.1016/j.ijbiomac.2023.125451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/13/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Exopolysaccharides (EPS) from lactic acid bacteria (LAB) as edible and safe bioproducts with health benefits have become an interesting topic. In this study, aqueous two-phase system (ATPS) was established using ethanol and (NH4)2SO4 as phase-forming substances to separate and purify LAB EPS from Lactobacillus plantarum 1.0665. The operating conditions were optimized by a single factor and response surface method (RSM). The results indicated that an effectively selective separation of LAB EPS was achieved by the ATPS consisted of 28 % (w/w) ethanol and 18 % (w/w) (NH4)2SO4 at pH 4.0. Under optimized conditions, the partition coefficient (K) and recovery rate (Y) were well matched with the predicted value of 3.83 ± 0.019 and 74.66 ± 1.05 %. The physicochemical properties of purified LAB EPS were characterized by various technologies. According to the results, LAB EPS was a complex polysaccharide with a triple helix structure mainly composed of mannose, glucose and galactose in the molar ratio of 1.00: 0.32: 0.14, and it proved that the ethanol/(NH4)2SO4 system had good selectivity for LAB EPS. In addition, LAB EPS displayed excellent antioxidant activity, antihypertension activity, anti-gout capacity and hypoglycemic activity in vitro analysis. The results suggested that LAB EPS could be a dietary supplement applied in functional foods.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Peifeng Chen
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jiaxuan Guo
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Bing Han
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Hongwei Jin
- Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen 518107, People's Republic of China
| | - Dongmei Li
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Chunhong Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zhibiao Feng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
5
|
Algethami JS, Hassan MS, Amna T, Sheikh FA, Alhamami MAM, Seliem AF, Faisal M, Kim HY. Nanotextured CeO 2-SnO 2 Composite: Efficient Photocatalytic, Antibacterial, and Energy Storage Fibers. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061001. [PMID: 36985895 PMCID: PMC10052679 DOI: 10.3390/nano13061001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 05/27/2023]
Abstract
Bacterial infections remain a serious and pervasive threat to human health. Bacterial antibiotic resistance, in particular, lowers treatment efficacy and increases mortality. The development of nanomaterials has made it possible to address issues in the biomedical, energy storage, and environmental fields. This paper reports the successful synthesis of CeO2-SnO2 composite nanofibers via an electrospinning method using polyacrylonitrile polymer. Scanning and transmission electron microscopy assessments showed that the average diameter of CeO2-SnO2 nanofibers was 170 nm. The result of photocatalytic degradation for methylene blue dye displayed enhanced efficiency of the CeO2-SnO2 composite. The addition of SnO2 to CeO2 resulted in the enhancement of the light absorption property and enriched charge transmission of photoinduced electron-hole duos, which conspicuously contributed to momentous photoactivity augmentation. Composite nanofibers exhibited higher specific capacitance which may be accredited to the synergism between CeO2 and SnO2 particles in nanofibers. Furthermore, antibacterial activity was screened against Escherichia coli and CeO2-SnO2 composite nanofibers depicted excellent activity. The findings of this work point to new possibilities as an electrode material in energy storage systems and as a visible-light-active photocatalyst for the purification of chemical and biological contaminants, which would substantially benefit environmental remediation processes.
Collapse
Affiliation(s)
- Jari S. Algethami
- Department of Chemistry, College of Science and Arts, Najran University, Najran 11001, Saudi Arabia
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
| | - M. Shamshi Hassan
- Department of Chemistry, College of Science, Albaha University, Albaha 65799, Saudi Arabia
| | - Touseef Amna
- Department of Biology, College of Science, Albaha University, Albaha 65799, Saudi Arabia
| | - Faheem A. Sheikh
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, India
| | - Mohsen A. M. Alhamami
- Department of Chemistry, College of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - Amal F. Seliem
- Department of Chemistry, College of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - M. Faisal
- Department of Chemistry, College of Science and Arts, Najran University, Najran 11001, Saudi Arabia
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
| | - H. Y. Kim
- Organic Materials and Fibers Engineering Department, Chonbuk National University, Jeonju 560011, Republic of Korea
| |
Collapse
|
6
|
Dragone M, Shitaye G, D’Abrosca G, Russo L, Fattorusso R, Isernia C, Malgieri G, Iacovino R. Inclusions of Pesticides by β-Cyclodextrin in Solution and Solid State: Chlorpropham, Monuron, and Propanil. Molecules 2023; 28:molecules28031331. [PMID: 36771001 PMCID: PMC9920956 DOI: 10.3390/molecules28031331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Persistence and degradation are important factors in determining the safe use of such synthetic products, and numerous studies have been addressed to develop pesticide remediation methods aimed at ameliorating these features. In this frame, the use of different cyclodextrins (CDs) molecules has attracted considerable attention due to their well-known non-toxic nature, limited environmental impact, and capability to reduce the environmental and health risks of pesticides. CDs appear to be a valuable tool for the elimination of pesticides from polluted areas as well as for better pesticide formulations that positively influence their hydrolysis or degradation. The present work investigates the interaction between β-cyclodextrins and three commonly used pesticides (i.e., chlorpropham, monuron, and propanil) both in solution and in the solid state by means of UV-Vis, FT-IR, and X-ray powder diffractometry. We show that such interactions result in all three cases in the formation of inclusion complexes with a 1:1 stoichiometry and binding constants (Kb) of 369.9 M-1 for chlorpropham, 292.3 M-1 for monuron, and 298.3 M-1 for propanil. We also report the energy-minimized structures in silico for each complex. Our data expand and complement the available literature data in indicating CDs as a low-cost and very effective tool capable of modulating the properties that determine the environmental fate of pesticides.
Collapse
Affiliation(s)
- Martina Dragone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
| | - Getasew Shitaye
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
- Department of Biomedical Sciences, School of Medical Sciences, Bahir Dar University, Bahir Dar 6000, Ethiopia
| | - Gianluca D’Abrosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
| | - Rosa Iacovino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
- Correspondence: ; Tel.: +39-0823-2746363
| |
Collapse
|
7
|
Xu PW, Yuan XF, Li H, Zhu Y, Zhao B. Preparation, characterization, and physicochemical property of the inclusion complexes of Cannabisin A with β-cyclodextrin and hydroxypropyl-β-cyclodextrin. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Development of non-toxic and water-soluble nanofibers from oseltamivir in the presence of cyclodextrins for drug release. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Fareed F, Saeed F, Afzaal M, Imran A, Ahmad A, Mahmood K, Shah YA, Hussain M, Ateeq H. Fabrication of electrospun gum Arabic-polyvinyl alcohol blend nanofibers for improved viability of the probiotic. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4812-4821. [PMID: 36276519 PMCID: PMC9579235 DOI: 10.1007/s13197-022-05567-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 06/01/2023]
Abstract
In the current study, the probiotic (Lactobacillus acidophilus) was encapsulated using Gum Arabic and polyvinyl alcohol blended nanofibers by electrospinning. Obtained nanofibers were characterized in terms of particle size, diameter, mechanical strength, and encapsulation efficiency. The molecular and internal structure characterization was carried out using Fourier transform infrared spectroscopy and X-ray diffraction respectively. Thermo Gravimetric (TGA) analysis was conducted to determine the thermal features of PVA/GA/probiotics nanofibers. Free and encapsulated probiotics were also subjected to in vitro assay under different detrimental conditions. Images obtained using SEM indicated that probiotics were successfully encapsulated in blends by a nano-spider. FTIR and XRD spectra showed bonding interactions between the wall and core materials. In-vitro assay indicated that probiotics with encapsulated showed significantly (P < 0.05) viability compared to free cells. Free cells lost their viability under simulated gastrointestinal conditions while encapsulated cells retained viability count above the therapeutic number (107 cfu).
Collapse
Affiliation(s)
- Faisal Fareed
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhan Saeed
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Imran
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aftab Ahmad
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Yasir Abbas Shah
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muzammal Hussain
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Huda Ateeq
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
10
|
Ibrahim M, Munir S, Ahmed S, Chughtai AH, Ahmad W, Khan J, Murtey MD, Ijaz H, Ojha SC. Gliclazide in Binary and Ternary Systems Improves Physicochemical Properties, Bioactivity, and Antioxidant Activity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2100092. [PMID: 36466089 PMCID: PMC9718633 DOI: 10.1155/2022/2100092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/01/2022] [Accepted: 09/27/2022] [Indexed: 10/03/2023]
Abstract
The poor solubility of the antidiabetic drug gliclazide (Glc) is due to its hydrophobic nature. This research is aimed at improving Glc's solubility and drug release profile, as well as at investigating additional benefits such as bioactivity and antioxidant activity, by forming binary complexes with HPβCD at different w/w ratios (1 : 1, 1 : 2.5, 1 : 4, and 1 : 9) and ternary complexes with HPβCD and Tryp at 1 : 1 : 1, 1 : 1 : 0.27, 1 : 2.5 : 0.27, 1 : 3.6 : 3.6, 1 : 4 : 1, and 1 : 9 : 1, respectively. Complexes were prepared by the physical mixing (PM) and solvent evaporation (SE) methods. The prepared inclusion complexes were meticulously characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra. To verify our findings, the inclusion complexes were evaluated by equilibrium solubility, in vitro drug release profile, kinetic models, and antidiabetic and antioxidant activities in animal models. Our results demonstrated that the solubility and drug release profile were found to be enhanced through binary as well as ternary complexes. Notably, ternary complexes with a ratio of 1 : 9 : 1 showed the highest solubility and drug release profile compared to all other preparations. Data on antioxidant activity indicated that the ternary complex had the higher total antioxidant status (TAS), superoxide dismutase (SOD), and catalase (CAT) activity than the binary complex and Glc alone, in contrast to the diabetic group. In vivo antidiabetic activity data revealed a high percentage reduction in the blood glucose level by ternary complexes (49-52%) compared to the binary complexes (45-46%; p ≤ 0.05). HPβCD and Tryp provide a new platform for overcoming the challenges associated with poorly soluble Glc by providing greater complexing and solubilizing capabilities and imparting ancillary benefits to improve the drug's antidiabetic and antioxidant activities.
Collapse
Affiliation(s)
- Muhammad Ibrahim
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Shehla Munir
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sarfraz Ahmed
- Department of Basic Sciences, University of Veterinary and Animal Sciences Lahore, Narowal Campus, Narowal 51600, Pakistan
| | | | - Waqas Ahmad
- Department of Clinical Sciences, University of Veterinary and Animal Sciences Lahore, Narowal Campus, Narowal 51600, Pakistan
| | - Jallat Khan
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Mogana Das Murtey
- Basic Sciences and Oral Biology Unit, School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Hira Ijaz
- Department of Pharmacy, Pak–Austria Fachhochschule Institute of Applied Sciences and Technology, Mang, Haripur 22620, Khyber Pakhtunkhwa, Pakistan
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Southwest Medical University, Jiangyang District, Luzhou 646000 Sichuan, China
| |
Collapse
|
11
|
Topuz F. Rapid Sublingual Delivery of Piroxicam from Electrospun Cyclodextrin Inclusion Complex Nanofibers. ACS OMEGA 2022; 7:35083-35091. [PMID: 36211067 PMCID: PMC9535703 DOI: 10.1021/acsomega.2c03987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Piroxicam (Px) is a nonsteroidal anti-inflammatory drug (NSAID) used for the treatment of osteoarthritis and rheumatoid arthritis. It is administered orally; however, its poor water solubility causes low loading to the nonconventional drug delivery systems (DDSs), such as electrospun fibers. Furthermore, the rapid dissolution of DDS and fast release of the embedded drugs are crucial for oral delivery of drugs to patients who are unconscious or suffering from dysphagia. In this regard, this study reports the development of rapidly dissolving cyclodextrin (CD)-based inclusion complex (IC) nanofibers by waterborne electrospinning for fast oral delivery of Px. Scanning electron microscopy analysis revealed the formation of bead-free fibers with a mean diameter range of 170-500 nm at various concentrations of Px; increasing the Px loading decreased the fiber diameter. The formation of IC was demonstrated by X-ray diffraction (XRD) analysis by the disappearance of crystalline peaks of Px. Likewise, differential scanning calorimetry (DSC) analysis showed the disappearance of the melting peak of the embedded Px due to IC formation. Both Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) confirmed the presence of Px within the fibers. 1H NMR experiments demonstrated Px preservation in the fibers after six months. Px-loaded nanofibers were employed for sublingual drug delivery. To mimic the environment of the mouth, the nanofibers were treated with artificial saliva, which revealed the instant dissolution of the nanofibers. Furthermore, dissolution experiments were performed on the tissues wetted with artificial saliva, where the dissolution of the fibers could be extended to a few seconds, demonstrating the suitability of the materials for sublingual oral drug delivery. Overall, this paper, for the first time, reports the rapid oral delivery of Px from polymer-free CD fibers produced by waterborne electrospinning without the requirement of any carrier polymer and toxic solvent.
Collapse
|
12
|
Mohammadi A, Sahabi M, Beigi-Boroujeni S, Abdolvand H, Makvandi P, Pournaghshband Isfahani A, Gharibi R, Ebrahimibagha M. Alginate hydrogel with enhanced curcumin release through HPβCD assisted host-guest interaction. BIOMATERIALS ADVANCES 2022; 141:213130. [PMID: 36179495 DOI: 10.1016/j.bioadv.2022.213130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The underprivileged pharmacodynamic action of curcumin, which arose from its low water solubility and rapid metabolism, restricts its therapeutic performance. In this study, (2-Hydroxy isopropyl)-β-cyclodextrin (HPβCD) as a macrocycle host molecule was employed to enhance the availability and control release of curcumin by forming a host-guest inclusion complex within an in-situ forming alginate hydrogel. The formation of the inclusion complexes of curcumin with a single host molecule was characterized by FTIR, XRD, TGA, SEM, and DLS analyses. The inclusion complex of curcumin and HPβCD (HPβCD-Cur) showed a high encapsulation efficiency of 88.2 %. According to DLS results, aqueous dispersion of HPβCD-Cur exhibited a unimodal histogram after 2 and 7 days with average particles size of 207.5 and 230.6 nm, respectively. This observation could be because of the formation of an inclusion complex that effectively distributed in solution and prevented curcumin agglomeration. The prepared alginate hydrogel containing HPβCD-Cur demonstrated >87 % reduction in colonies of methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa, which significantly is higher than that for Alg/Cur (<69 %). The Alg/HPβCD-Cur hydrogel exhibited a high water uptake of 470 % after 2 h, and a curcumin cumulative release of 80 % over 72 h, with proper cytocompatibility. Consequently, it was shown that the HPβCD carrier could act as an apt host molecule that can properly encapsulate curcumin and enhance its release from the Alg/HPβCD-Cur hydrogel.
Collapse
Affiliation(s)
- Abbas Mohammadi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Mahyar Sahabi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Saeed Beigi-Boroujeni
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 2501, N.L., Mexico
| | - Hossein Abdolvand
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, Pontedera, 56025 Pisa, Italy
| | | | - Reza Gharibi
- Faculty of Chemistry, Kharazmi University, Tehran, Iran
| | - Mehrnoosh Ebrahimibagha
- Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
13
|
Cyclodextrin Derivatives as Promising Solubilizers to Enhance the Biological Activity of Rosmarinic Acid. Pharmaceutics 2022; 14:pharmaceutics14102098. [PMID: 36297533 PMCID: PMC9611598 DOI: 10.3390/pharmaceutics14102098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Rosmarinic acid (RA) is a natural antioxidant with neuroprotective properties; however, its preventive and therapeutic use is limited due to its slight solubility and poor permeability. This study aimed to improve RA physicochemical properties by systems formation with cyclodextrins (CDs): hydroxypropyl-α-CD (HP-α-CD), HP-β-CD, and HP-γ-CD, which were prepared by the solvent evaporation (s.e.) method. The interactions between components were determined by X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and Fourier Transform infrared spectroscopy (FTIR). The sites of interaction between RA and CDs were suggested as a result of in silico studies focused on assessing the interaction between molecules. The impact of amorphous systems formation on water solubility, dissolution rate, gastrointestinal (GIT) permeability, and biological activity was studied. RA solubility was increased from 5.869 mg/mL to 113.027 mg/mL, 179.840 mg/mL, and 194.354 mg/mL by systems formation with HP-α-CD, HP-β-CD, and HP-γ-CD, respectively. During apparent solubility studies, the systems provided an acceleration of RA dissolution. Poor RA GIT permeability at pH 4.5 and 5.8, determined by parallel artificial membrane permeability assay (PAMPA system), was increased; RA–HP-γ-CD s.e. indicated the greatest improvement (at pH 4.5 from Papp 6.901 × 10−7 cm/s to 1.085 × 10−6 cm/s and at pH 5.8 from 5.019 × 10−7 cm/s to 9.680 × 10−7 cm/s). Antioxidant activity, which was determined by DPPH, ABTS, CUPRAC, and FRAP methods, was ameliorated by systems; the greatest results were obtained for RA–HP-γ-CD s.e. The inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) was increased from 36.876% for AChE and 13.68% for BChE to a maximum inhibition of the enzyme (plateau), and enabled reaching IC50 values for both enzymes by all systems. CDs are efficient excipients for improving RA physicochemical and biological properties. HP-γ-CD was the greatest one with potential for future food or dietary supplement applications.
Collapse
|
14
|
Jiang B, Zhong S, Yu H, Chen P, Li B, Li D, Liu C, Feng Z. Covalent and Noncovalent Complexation of Phosvitin and Gallic Acid: Effects on Protein Functionality and In Vitro Digestion Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11715-11726. [PMID: 36095172 DOI: 10.1021/acs.jafc.2c03990] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To investigate the effects of different binding modes on the structure, function, and digestive properties of the phosvitin (Pv) and gallic acid (GA) complex, Pv was covalently and noncovalently combined with different concentrations of GA (0.5, 1.5, and 2.5 mM). The structural characterization of the two Pv-GA complexes was performed by Fourier transform infrared, circular dichroism, and LC-MS/MS to investigate the covalent and noncovalent binding of Pv and GA. In addition, the microstructure of the two Pv-GA complexes was investigated by super-resolution microscopy and transmission electron microscopy. The particle size and zeta potential results showed that the addition of GA increased the particle size and the absolute potential of Pv. The determination of protein digestibility, polyphenol content, SH and S-S group levels, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and antioxidant capacity of the digests indicated that noncovalent complexes had greater antioxidant and protective effects on polyphenols. Molecular docking revealed that GA was conjugated with Pv through hydrogen bond interactions.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Shaojing Zhong
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Hongliang Yu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Peifeng Chen
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Baoyun Li
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Dongmei Li
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Chunhong Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Zhibiao Feng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| |
Collapse
|
15
|
Chinnappan BA, Krishnaswamy M, Xu H, Hoque ME. Electrospinning of Biomedical Nanofibers/Nanomembranes: Effects of Process Parameters. Polymers (Basel) 2022; 14:3719. [PMID: 36145868 PMCID: PMC9504486 DOI: 10.3390/polym14183719] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Nanotechnology has attracted great attention from researchers in modern science because nanomaterials have innovative and superior physical, chemical, and biological properties, and they can be altered and modified accordingly. As particles get smaller, their surface area increases compared to their volume. Electrospinning is one of the advanced techniques to produce ultrathin nanofibers and membranes, and it is one of the best ways to create continuous nanomaterials with variable biological, chemical, and physical properties. The produced fibers can be utilized in various domains such as wound dressing, drug release, enzyme immobilization, etc. This review examines the biomedical nanofibers/membranes produced by electrospinning techniques to investigate the effects of process parameters (e.g., solution characteristics, applied voltage, and ambient conditions) on nanofiber characteristics (physical, chemical, and mechanical properties). The solution parameters like (i) optimum concentration, (ii) higher molecular weight, and (iii) higher conductivity produce uniform nanofibers, smoother nanofibers, and a smaller and more uniform fiber diameter, respectively. In addition, process parameters such as (i) higher voltage and (ii) slower flow rate produce more polymer ejection from the nozzle and enhance the smoother fiber production, respectively. The optimum tip-to-collector distance is considered to be 13-15 cm. The ambient conditions such as (i) higher humidity and (ii) higher temperature produce thicker and thinner nanofibers, respectively. The controlled parameters through optimization process determine the size and quality of the fibers. The effects of each parameter are discussed in this review. The applications of nanofibers are also discussed.
Collapse
Affiliation(s)
- Balaji Ayyanar Chinnappan
- Department of Mechanical Engineering, Coimbatore Institute of Technology Coimbatore, Tamilnadu 641014, India
| | - Marimuthu Krishnaswamy
- Department of Mechanical Engineering, Coimbatore Institute of Technology Coimbatore, Tamilnadu 641014, India
| | - Huaizhong Xu
- Department of Biobased Materials Science, Kyoto Institute of Technology (KIT), Matsugasaki Hashikamicho, Sakyo-ku, Kyoto 606-8585, Japan
| | - Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka 1216, Bangladesh
| |
Collapse
|
16
|
Gao S, Feng W, Sun H, Zong L, Li X, Zhao L, Ye F, Fu Y. Fabrication and Characterization of Antifungal Hydroxypropyl-β-Cyclodextrin/Pyrimethanil Inclusion Compound Nanofibers Based on Electrospinning. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7911-7920. [PMID: 35748509 DOI: 10.1021/acs.jafc.2c01866] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pyrimethanil (PMT) is an anilinopyrimidine bactericide with poor water solubility, which limits its applications. To improve the physical and chemical properties of PMT, hydroxypropyl-β-cyclodextrin/pyrimethanil inclusion compound nanofibers (HPβCD/PMT-IC-NFs) were fabricated via electrospinning. A variety of analytical techniques were used to confirm the formation of the inclusion compound. Scanning electron microscopy image displayed that HPβCD/PMT-IC-NF was homogeneous without particles. Thermogravimetric analysis indicated that the formation of the inclusion compound improved the thermostability of PMT. In addition, the phase solubility test illustrated that the inclusion compound formed by PMT and HPβCD had a stronger water solubility. The antifungal effect test exhibited that HPβCD/PMT-IC-NF had better antifungal properties. The release experiment confirmed that HPβCD/PMT-IC-NF had a sustained-release effect, and the release curve conformed to the first-order kinetic model equation. In short, the fabrication HPβCD/PMT-IC-NF inhibited improved solubility and thermostability of PMT, thus promoting the development of pesticide dosage form to water-based and low-pollution direction.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Weiwei Feng
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Han Sun
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Lei Zong
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoming Li
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Lixia Zhao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
17
|
Wu HT, Chuang YH, Lin HC, Hu TC, Tu YJ, Chien LJ. Immediate Release Formulation of Inhaled Beclomethasone Dipropionate-Hydroxypropyl-Beta-Cyclodextrin Composite Particles Produced Using Supercritical Assisted Atomization. Polymers (Basel) 2022; 14:2114. [PMID: 35631996 PMCID: PMC9144350 DOI: 10.3390/polym14102114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, the enhanced solubilization performance of a poorly soluble drug, beclomethasone dipropionate (BDP), was investigated using hydroxypropyl-β-cyclodextrin (HP-β-CD) and ethanol. The enhanced solubility of the drug was determined using the phase solubility method and correlated as a function of both HP-β-CD and ethanol concentrations. The effective progress of drug solubility originated from the formation of cyclodextrin and BDP inclusion complexes and increase in the lipophilicity of the medium, by aqueous ethanol, for hydrophobic BDP. BDP and HP-β-CD composite particles were produced using supercritical assisted atomization (SAA) with carbon dioxide as the spraying medium, 54.2% (w/w) aqueous ethanol as the solvent, and an optimal amount of the dispersion enhancer leucine. The effect of the mass ratio of HP-β-CD to BDP (Z) on the in vitro aerosolization and in vitro dissolution performance of BDP-HP-β-CD composite particles was evaluated. The aerosolization performance showed that the fine particles fraction (FPF) of the composite particles increased with increasing mass ratio. The water-soluble excipient (HP-β-CD) effectively enhance the dissolution rate of BDP from composite particles. This study suggests that BDP-HP-β-CD composite particles produced using SAA can be employed in immediate-release drug formulations for pulmonary delivery.
Collapse
Affiliation(s)
- Hsien-Tsung Wu
- Department of Chemical Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan; (Y.-H.C.); (H.-C.L.); (T.-C.H.); (Y.-J.T.); (L.-J.C.)
| | | | | | | | | | | |
Collapse
|
18
|
Solubility and Dissolution Enhancement of Dexibuprofen with Hydroxypropylbetacyclodextrin (HPβCD) and Poloxamers (188/407) Inclusion Complexes: Preparation and In Vitro Characterization. Polymers (Basel) 2022; 14:polym14030579. [PMID: 35160569 PMCID: PMC8838044 DOI: 10.3390/polym14030579] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/02/2023] Open
Abstract
The objective of this study was to improve the dissolution and solubility of dexibuprofen (DEX) using hydroxypropyl beta cyclodextrin (HPβCD) inclusion complexes and also to evaluate the effect of presence of hydrophilic polymers on solubilization efficiency of HPβCD. Three different methods (physical trituration, kneading and solvent evaporation) were used to prepare binary inclusion complexes at various drug-to-cyclodextrin weight ratios. An increase in solubility and drug release was observed with the kneading (KN) method at a DEX/HPβCD (1:4) weight ratio. The addition of hydrophilic polymers poloxamer-188 (PXM-188) and poloxamer-407 (PXM-407) at 2.5, 5.0, 10.0 and 20% w/w enhanced the complexation efficiency and solubility of DEX/HPβCD significantly. Fourier-transform infrared (FTIR) analysis revealed that DEX was successfully incorporated into the cyclodextrin cavity. Differential scanning calorimetry (DSC) and X-ray diffractometry (XRD) revealed less crystallinity of the drug and its entrapment in the cyclodextrin molecular cage. The addition of PXM-188 or PXM-407 reduced the strength of the DEX endothermic peak. With the addition of hydrophilic polymers, sharp and intense peaks of DEX disappeared. Finally, it was concluded that PXM-188 at a weight ratio of 10.0% w/w was the best candidate for improving solubility, stability and release rate of DEX.
Collapse
|
19
|
Yin XF, Wang QY, Ren FZ, Pang GF, Zhang XX, Li YX. Efficiency and mechanism of C 18-functionalized magnetic nanoparticles for extracting weakly polar pesticides from human serum determined by UHPLC-QTOF-MS and molecular dynamics simulations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118489. [PMID: 34780754 DOI: 10.1016/j.envpol.2021.118489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Detecting pesticide residues in human serum is a challenging process due to trace-level chronic exposure. Several methods using magnetic adsorbents have been developed for analyzing pesticide residue levels in human serum, but it is still difficult to achieve lower quantitative levels, and the adsorption mechanism for extracting pesticides is unclear. Herein, we propose a feasibility concept of using C18-functionalized magnetic nanoparticles for the adsorption of target pesticides, focusing on the extensively used weakly polar pesticides based on molecular dynamics (MD) simulations. To support this, the facilitated target nanoparticles of Fe3O4@SiO2-C18 were synthesized at a size of 12-13 nm with a magnetic saturation of 40 emu/g. After optimizing and establishing the extraction conditions (1.8 mL C18 modifier, 10 mg sorbents, 3 min adsorption time, 1000 μL ACN for desorption eluent at pH 3.8 and 5 min desorption time), which exhibited recovery = 72.3%-118.3% with RSDs = 0.03-6.57, linearity at 0.01-10 ng/mL with R2 = 0.9561-0.9993, and LODs = 0.01-0.30 ng/mL for the 11 weakly polar pesticides in human serum. Furthermore, the mechanism by which the C18 group selectively extracts weakly polar pesticides was confirmed by binding van der Waals and electrostatic interactions under stable and strong binding energy. The extraction process of efficient adsorption and desorption with C18 functional magnetite nanoparticles suggests a simple method for detecting weakly polar pesticides. The concept may lead to a general approach to analyzing multiple pesticide residues in human serum at trace levels.
Collapse
Affiliation(s)
- Xue-Feng Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Qing-Yu Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Fa-Zheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Guo-Fang Pang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiao-Xu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yi-Xuan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
20
|
Alvi Z, Akhtar M, Rahman NU, Hosny KM, Sindi AM, Khan BA, Nazir I, Sadaquat H. Utilization of Gelling Polymer to Formulate Nanoparticles Loaded with Epalrestat-Cyclodextrin Inclusion Complex: Formulation, Characterization, In-Silico Modelling and In-Vivo Toxicity Evaluation. Polymers (Basel) 2021; 13:polym13244350. [PMID: 34960901 PMCID: PMC8708980 DOI: 10.3390/polym13244350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022] Open
Abstract
Epalrestat (EPL) is an aldose reductase inhibitor with poor aqueous solubility that affects its therapeutic efficacy. The research study was designed to prepare epalrestat-cyclodextrins (EPL-CDs) inclusion complexes to enhance the aqueous solubility by using beta-cyclodextrin (β-CD) and sulfobutyl ether₇ β-CD (SBE7 β-CD). Furthermore, polymeric nanoparticles (PNPs) of EPL-CDs were developed using chitosan (CS) and sodium tripolyphosphate (sTPP). The EPL-CDs complexed formulations were then loaded into chitosan nanoparticles (CS NPs) and further characterized for different physico-chemical properties, thermal stability, drug-excipient compatibility and acute oral toxicity studies. In-silico molecular docking of cross-linker with SBE7 β-CD was also carried out to determine the binding site of the CDs with the cross-linker. The sizes of the prepared NPs were laid in the range of 241.5–348.4 nm, with polydispersity index (PDI) ranging from 0.302–0.578. The surface morphology of the NPs was found to be non-porous, smooth, and spherical. The cumulative percentage of drug release from EPL-CDs loaded CS NPs was found to be higher (75–88%) than that of the pure drug (25%). Acute oral toxicity on animal models showed a biochemical, histological profile with no harmful impact at the cellular level. It is concluded that epalrestat-cyclodextrin chitosan nanoparticles (EPL-CDs-CS NPs) with improved solubility are safe for oral administration since no toxicity was reported on vital organs in rabbits.
Collapse
Affiliation(s)
- Zunaira Alvi
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (Z.A.); (H.S.)
| | - Muhammad Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (Z.A.); (H.S.)
- Department of Medical Laboratory Technology, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
- Correspondence: ; Tel.: +92-300-6720628
| | - Nisar U. Rahman
- Department of Pharmacy, Royal Institute of Medical Sciences (RIMS), Multan 60000, Punjab, Pakistan;
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Amal M. Sindi
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Barkat A. Khan
- Drug Design and Cosmetics Lab (DDCL), Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Khyber Pakhtoonkhwa, Pakistan;
| | - Imran Nazir
- Bahawal Victoria Hospital, Bahawalpur 63100, Punjab, Pakistan;
| | - Hadia Sadaquat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (Z.A.); (H.S.)
| |
Collapse
|
21
|
Effect of hydrophilic polymer on solubility and taste masking of linezolid in multi-component cyclodextrin inclusion complex: Physicochemical characterization and molecular docking. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Mashaqbeh H, Obaidat R, Al-Shar’i N. Evaluation and Characterization of Curcumin-β-Cyclodextrin and Cyclodextrin-Based Nanosponge Inclusion Complexation. Polymers (Basel) 2021; 13:polym13234073. [PMID: 34883577 PMCID: PMC8658939 DOI: 10.3390/polym13234073] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 02/02/2023] Open
Abstract
Cyclodextrin polymers and cyclodextrin-based nanosponges have been widely investigated for increasing drug bioavailability. This study examined curcumin's complexation stability and solubilization with β-cyclodextrin and β-cyclodextrin-based nanosponge. Nanosponges were prepared through the cross-linking of β-cyclodextrin with different molar ratios of diphenyl carbonate. Phase solubility experiments were conducted to evaluate the formed complexes and evaluate the potential of using β-cyclodextrin and nanosponge in pharmaceutical formulations. Furthermore, physicochemical characterizations of the prepared complexes included PXRD, FTIR, NMR, and DSC. In addition, in vitro release studies were performed for the prepared formulations. The formation of β-cyclodextrin complexes enhanced curcumin solubility up to 2.34-fold compared to the inherent solubility, compared to a 2.95-fold increment in curcumin solubility when loaded in β-cyclodextrin-based nanosponges. Interestingly, the stability constant for curcumin nanosponges was (4972.90 M-1), which was ten times higher than that for the β-cyclodextrin complex, where the value was 487.34 M-1. The study results indicated a decrease in the complexation efficiency and solubilization effect with the increased cross-linker amount. This study's findings showed the potential of using cyclodextrin-based nanosponge and the importance of studying the effect of cross-linking density for the preparation of β-cyclodextrin-based nanosponges to be used for pharmaceutical formulations.
Collapse
Affiliation(s)
- Hadeia Mashaqbeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
- Correspondence: (H.M.); (R.O.)
| | - Rana Obaidat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
- Correspondence: (H.M.); (R.O.)
| | - Nizar Al-Shar’i
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan;
| |
Collapse
|
23
|
Guan T, Zhang G, Sun Y, Zhang J, Ren L. Preparation, characterization, and evaluation of HP-β-CD inclusion complex with alcohol extractives from star anise. Food Funct 2021; 12:10008-10022. [PMID: 34505612 DOI: 10.1039/d1fo02097h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The active compounds in star anise alcohol extractives (SAAE) have potent bioactivity. However, their poor solubility and stability limit their applications. In this study, SAAE/hydroxypropyl-β-cyclodextrin (HP-β-CD) inclusion complexes were prepared as a strategy to overcome the abovementioned disadvantages. The phase solubility results indicated that the solubility of the inclusion complex was enhanced. Complexation was confirmed by complementary methods, including Fourier-transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, scanning electron microscopy, and transmission electron microscopy, which proved to be extremely insightful for studying the inclusion formation phenomenon between SAAE and HP-β-CD. Despite there being no apparent improvements in the antioxidant capacity and antimicrobial activity, the results of the stability studies presented higher thermal, volatile, and photostability after encapsulation. Further, molecular modeling was used to investigate the factors influencing complex formation and provide the most stable molecular conformation. Thus, based on the obtained results, this study strongly demonstrates the potential of the SAAE/HP-β-CD inclusion complex in the food industry.
Collapse
Affiliation(s)
- Tianzhu Guan
- College of Food Science and Engineering, Jilin University, Changchun 130062, China. .,School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Guangjie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Yantong Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
24
|
Oleanolic Acid Nanofibers Attenuated Particulate Matter-Induced Oxidative Stress in Keratinocytes. Antioxidants (Basel) 2021; 10:antiox10091411. [PMID: 34573043 PMCID: PMC8469115 DOI: 10.3390/antiox10091411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Airborne particulate matter (PM) is one of the indicators of air pollution, and it is also the main factor causing oxidative stress in the skin. Oleanolic acid (OA), a natural terpenoid compound, effectively inhibited PM-induced skin aging; however, OA has poor water solubility and skin absorption, which limit its application in medicines and cosmetics. The aim of this study was to prepare oleanolic acid nanofibers (OAnf) and evaluate the effects of OA and OAnf in PM-treated keratinocytes. The results showed that OA dissolved in dissolved in dimethyl sulfoxide (DMSO) attenuated PM-induced reactive oxygen species overproduction, stress-activated protein kinase/Jun-amino-terminal kinase (SAPK/JNK) activation, and the expressions of inflammatory and skin-aging-related proteins. In addition, the nanofiber process of OA effectively improved the water solubility of OA more than 99,000-fold through changing its physicochemical properties, including a surface area increase, particle size reduction, amorphous transformation, and hydrogen bonding formation with excipients. The skin penetration ability of OAnf was consistently over 10-fold higher than that of OA. Moreover, when dissolved in PBS, OAnf displayed superior antioxidant, anti-inflammatory, and anti-skin aging activities in PM-treated keratinocytes than OA. In conclusion, our findings suggest that OAnf could be a topical antioxidant formulation to attenuate skin problems caused by PM.
Collapse
|
25
|
Suharyani I, Muchtaridi M, Mohammed AFA, Elamin KM, Wathoni N, Abdassah M. α-Mangostin/γ-Cyclodextrin Inclusion Complex: Formation and Thermodynamic Study. Polymers (Basel) 2021; 13:polym13172890. [PMID: 34502930 PMCID: PMC8434270 DOI: 10.3390/polym13172890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
α-Mangostin (α-M) has various biological activities, such as anti-cancer, antibacterial, anti-fungal, anti-tyrosin, anti-tuberculosis, anti-inflammatory, and antioxidant. However, it has very low solubility in water. The formulation of this compound requires high amounts of solubilizers, which limits its clinical application. In addition, its low solubility in water is a barrier to the distribution of this drug, thus affecting its potency. Cyclodextrin (CD) is widely used as a solubility enhancer of poorly soluble drugs. This study aimed to increase the solubility of α-M in water through complex formation with CD. The complex of α-Mangostin and γ-Cyclodextrin (α-M/γ-CD CX) was prepared by the solubilization method, resulting in a solubility improvement of α-M in water. Characterization of α-M/γ-CD CX by using FTIR-Spectrometry, XRD, H-, C-, and HMBC-NMR showed that α-M was able to form an inclusion complex with γ-CD. The complex yielded an entrapment efficiency of 84.25 and the thermodynamic study showed that the α-M/γ-CD CX was formed spontaneously, based on the negative values of Gibbs energy and ΔH. Interestingly, the solubility of α-M/γ-CD CX significantly increased by 31.74-fold compared with α-M. These results suggest that α-M/γ-CD CX has the potential in the formulation of water-based preparation for clinical applications.
Collapse
Affiliation(s)
- Ine Suharyani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- School of Pharmacy Muhammadiyah Cirebon, Cirebon 45153, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | | | - Khaled M. Elamin
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Correspondence: (N.W.); (M.A.); Tel.: +62-22-842-888-888 (N.W.)
| | - Marline Abdassah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Correspondence: (N.W.); (M.A.); Tel.: +62-22-842-888-888 (N.W.)
| |
Collapse
|