1
|
A Aksenov A, Blacutt A, Ginnan N, Rolshausen PE, V Melnik A, Lotfi A, C Gentry E, Ramasamy M, Zuniga C, Zengler K, Mandadi KK, Dorrestein PC, Roper MC. Spatial chemistry of citrus reveals molecules bactericidal to Candidatus Liberibacter asiaticus. Sci Rep 2024; 14:20306. [PMID: 39218988 PMCID: PMC11366753 DOI: 10.1038/s41598-024-70499-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Huanglongbing (HLB), associated with the psyllid-vectored phloem-limited bacterium, Candidatus Liberibacter asiaticus (CLas), is a disease threat to all citrus production worldwide. Currently, there are no sustainable curative or prophylactic treatments available. In this study, we utilized mass spectrometry (MS)-based metabolomics in combination with 3D molecular mapping to visualize complex chemistries within plant tissues to explore how these chemistries change in vivo in HLB-infected trees. We demonstrate how spatial information from molecular maps of branches and single leaves yields insight into the biology not accessible otherwise. In particular, we found evidence that flavonoid biosynthesis is disrupted in HLB-infected trees, and an increase in the polyamine, feruloylputrescine, is highly correlated with an increase in disease severity. Based on mechanistic details revealed by these molecular maps, followed by metabolic modeling, we formulated and tested the hypothesis that CLas infection either directly or indirectly converts the precursor compound, ferulic acid, to feruloylputrescine to suppress the antimicrobial effects of ferulic acid and biosynthetically downstream flavonoids. Using in vitro bioassays, we demonstrated that ferulic acid and bioflavonoids are indeed highly bactericidal to CLas, with the activity on par with a reference antibiotic, oxytetracycline, recently approved for HLB management. We propose these compounds should be evaluated as therapeutics alternatives to the antibiotics for HLB treatment. Overall, the utilized 3D metabolic mapping approach provides a promising methodological framework to identify pathogen-specific inhibitory compounds in planta for potential prophylactic or therapeutic applications.
Collapse
Affiliation(s)
- Alexander A Aksenov
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California - San Diego, La Jolla, CA, USA.
- Arome Science Inc., Farmington, CT, USA.
- Department of Chemistry, University of Connecticut, Storrs, CT, USA.
| | - Alex Blacutt
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Nichole Ginnan
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- One Health Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Philippe E Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Alexey V Melnik
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California - San Diego, La Jolla, CA, USA
- Arome Science Inc., Farmington, CT, USA
| | - Ali Lotfi
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
| | - Emily C Gentry
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
- Department of Chemistry, Virginia Tech, Blacksburg, VA, USA
| | - Manikandan Ramasamy
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Cristal Zuniga
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Kranthi K Mandadi
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
- Institute for Advancing Health Through Agriculture, Texas A&M AgriLife, College Station, TX, USA
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California - San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - M Caroline Roper
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| |
Collapse
|
2
|
Robledo J, Welker S, Shtein I, Bernardini C, Vincent C, Levy A. Phloem and Xylem Responses Are Both Implicated in Huanglongbing Tolerance of Sugar Belle. PHYTOPATHOLOGY 2024; 114:441-453. [PMID: 37551959 DOI: 10.1094/phyto-05-23-0148-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Although huanglongbing (HLB) is a devastating citrus disease, improved tolerant cultivars, such as Sugar Belle (SB) mandarin, have been identified. To understand the responses that HLB-affected SB undergoes, we compared 14CO2 fixation, carbohydrate export, phloem callose accumulation, relative expression of plant defense activators, and anatomical changes between healthy and infected SB trees versus susceptible Pineapple (PA) sweet orange. Eight- to ten-week-old leaves of infected SB showed a 2.5-fold increase in 14CO2 fixation and a 13% decrease in 14C-carbohydrate export, whereas HLB-affected PA presented a decrease of 33 and 50%, respectively. The mean distance of a callose deposit to its closest neighbor was 36% smaller in infected SB versus healthy, whereas in HLB-affected PA, it was 33% higher. Expression of papain-like cysteine proteases (PLCPs) was upregulated in SB but downregulated in PA. Infected SB showed minor alterations in the number of xylem vessels, a 16% larger xylem vessel lumen area, and a 14% increase in the proportional area of the xylem. In contrast, PA showed a 2.4-fold increase in the xylem vessel number and a 2% increase in the proportional xylem area. Three complementary mechanisms of tolerance in SB are hypothesized: (i) increased carbohydrate availability induced by greater CO2 fixation, mild effect in carbohydrate export, and local accumulation of callose in the phloem; (ii) activation of defense response via upregulation of PLCPs, and (iii) increased investment in the xylem structure. Thus, phloem and xylem modifications seem to be involved in SB tolerance.
Collapse
Affiliation(s)
- Jacobo Robledo
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| | - Stacy Welker
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Ilana Shtein
- Eastern Region Research and Development Center, Ariel, Israel
| | - Chiara Bernardini
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Christopher Vincent
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, U.S.A
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| |
Collapse
|
3
|
Deng H, He R, Huang R, Pang C, Ma Y, Xia H, Liang D, Liao L, Xiong B, Wang X, Zhang M, Ao X, Yu B, Han D, Wang Z. Optimization of a static headspace GC-MS method and its application in metabolic fingerprinting of the leaf volatiles of 42 citrus cultivars. FRONTIERS IN PLANT SCIENCE 2022; 13:1050289. [PMID: 36570894 PMCID: PMC9772436 DOI: 10.3389/fpls.2022.1050289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Citrus leaves, which are a rich source of plant volatiles, have the beneficial attributes of rapid growth, large biomass, and availability throughout the year. Establishing the leaf volatile profiles of different citrus genotypes would make a valuable contribution to citrus species identification and chemotaxonomic studies. In this study, we developed an efficient and convenient static headspace (HS) sampling technique combined with gas chromatography-mass spectrometry (GC-MS) analysis and optimized the extraction conditions (a 15-min incubation at 100 ˚C without the addition of salt). Using a large set of 42 citrus cultivars, we validated the applicability of the optimized HS-GC-MS system in determining leaf volatile profiles. A total of 83 volatile metabolites, including monoterpene hydrocarbons, alcohols, sesquiterpene hydrocarbons, aldehydes, monoterpenoids, esters, and ketones were identified and quantified. Multivariate statistical analysis and hierarchical clustering revealed that mandarin (Citrus reticulata Blanco) and orange (Citrus sinensis L. Osbeck) groups exhibited notably differential volatile profiles, and that the mandarin group cultivars were characterized by the complex volatile profiles, thereby indicating the complex nature and diversity of these mandarin cultivars. We also identified those volatile compounds deemed to be the most useful in discriminating amongst citrus cultivars. This method developed in this study provides a rapid, simple, and reliable approach for the extraction and identification of citrus leaf volatile organic compound, and based on this methodology, we propose a leaf volatile profile-based classification model for citrus.
Collapse
Affiliation(s)
- Honghong Deng
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Runmei He
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Rong Huang
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Changqing Pang
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuanshuo Ma
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Hui Xia
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Dong Liang
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ling Liao
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Bo Xiong
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xun Wang
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Mingfei Zhang
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiang Ao
- Sichuan Dan Cheng Modern Fruit Industry Co., Ltd., Meishan, China
| | - Bo Yu
- Sichuan Dan Cheng Modern Fruit Industry Co., Ltd., Meishan, China
| | - Dongdao Han
- Ningbo Tian Yuan Mu Ge Agricultural Development Co., Ltd., Ningbo, China
| | - Zhihui Wang
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Chen Q, Min A, Luo S, He J, Wu R, Lin X, Wang Y, He W, Zhang Y, Lin Y, Li M, Zhang Y, Luo Y, Tang H, Wang X. Metabolomic Analysis Revealed Distinct Physiological Responses of Leaves and Roots to Huanglongbing in a Citrus Rootstock. Int J Mol Sci 2022; 23:ijms23169242. [PMID: 36012507 PMCID: PMC9409271 DOI: 10.3390/ijms23169242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 12/11/2022] Open
Abstract
Huanglongbing (HLB) is an obstinate disease in the citrus industry. No resistant citrus resources were currently available, but various degrees of Huanglongbing tolerance exist in different germplasm. Citrus junos is emerging as one of the popular rootstocks widely used in the citrus production. However, its responses to the HLB causal agent, Candidatus Liberibacter asiaticus (CLas), were still elusive. In the current study, we investigated the physiological, anatomical, and metabolomic responses of a C. junos rootstock ‘Pujiang Xiangcheng’ by a controlled CLas grafting inoculation. The summer flushes and roots were impaired at 15 weeks after inoculation, although typical leaf symptomatic phenotypes were not obvious. The chlorophyll pigments and the photosynthetic rate were compromised. The phloem sieve tubes were still working, despite the fact that the callose was deposited and the starch granules were accumulated in the phloem cells. A wide, targeted metabolomic analysis was carried out to explore the systematic alterations of the metabolites at this early stage of infection in the leaves and root system. The differentially accumulated metabolites in the CLas-affected leaves and roots compared with the mock-inoculation control tissues revealed that distinct responses were obvious. Besides the commonly observed alteration of sugar and amino acids, the active break down of starch in the roots was discovered. The different types of fatty acids were altered in the two tissues, with a more pronounced content decline in the roots. Our results not only provided fundamental knowledge about the response of the C. junos rootstock to the HLB disease, but also presented new insights into the host–pathogen interaction in the early stages.
Collapse
Affiliation(s)
- Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ailing Min
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Shu Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinwei He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Runqin Wu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ximeng Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural Universtiy, Chengdu 611130, China
| | - Wen He
- Institute of Pomology and Olericulture, Sichuan Agricultural Universtiy, Chengdu 611130, China
| | - Yunting Zhang
- Institute of Pomology and Olericulture, Sichuan Agricultural Universtiy, Chengdu 611130, China
| | - Yuanxiu Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural Universtiy, Chengdu 611130, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoru Tang
- Institute of Pomology and Olericulture, Sichuan Agricultural Universtiy, Chengdu 611130, China
- Correspondence: (H.T.); (X.W.)
| | - Xiaorong Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural Universtiy, Chengdu 611130, China
- Correspondence: (H.T.); (X.W.)
| |
Collapse
|
5
|
Yang B, Li X, Wu L, Chen Y, Zhong F, Liu Y, Zhao F, Ye D, Weng H. Citrus Huanglongbing detection and semi-quantification of the carbohydrate concentration based on micro-FTIR spectroscopy. Anal Bioanal Chem 2022; 414:6881-6897. [PMID: 35947156 DOI: 10.1007/s00216-022-04254-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022]
Abstract
Citrus Huanglongbing (HLB) is nowadays one of the most fatal citrus diseases worldwide. Once the citrus tree is infected by the HLB disease, the biochemistry of the phloem region in midribs would change. In order to investigate the carbohydrate changes in phloem region of citrus midrib, the semi-quantification models were established to predict the carbohydrate concentration in it based on Fourier transform infrared microscopy (micro-FTIR) spectroscopy coupled with chemometrics. Healthy, asymptomatic-HLB, symptomatic-HLB, and nutrient-deficient citrus midribs were collected in this study. The results showed that the intensity of the characteristic peak varied with the carbohydrate (starch and soluble sugar) concentration in citrus midrib, especially at the fingerprint regions of 1175-900 cm-1, 1500-1175 cm-1, and 1800-1500 cm-1. Furthermore, semi-quantitative prediction models of starch and soluble sugar were established using the full micro-FTIR spectra and selected characteristic wavebands. The least squares support vector machine regression (LS-SVR) model combined with the random frog (RF) algorithm achieved the best prediction result with the determination coefficient of prediction ([Formula: see text]) of 0.85, the root mean square error of prediction (RMSEP) of 0.36%, residual predictive deviation (RPD) of 2.54, and [Formula: see text] of 0.87, RMSEP of 0.37%, RPD of 2.76, for starch and soluble sugar concentration prediction, respectively. In addition, multi-layer perceptron (MLP) classification models were established to identify HLB disease, achieving the overall classification accuracy of 94% and 87%, based on the full-range spectra and the optimal wavenumbers selected by the random frog (RF) algorithm, respectively. The results demonstrated that micro-FTIR spectroscopy can be a valuable tool for the prediction of carbohydrate concentration in citrus midribs and the detection of HLB disease, which would provide useful guidelines to detect citrus HLB disease.
Collapse
Affiliation(s)
- Biyun Yang
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian Key Laboratory of Agricultural Information Sensing Technology, Fuzhou, 350002, China
| | - Xiaobin Li
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian Key Laboratory of Agricultural Information Sensing Technology, Fuzhou, 350002, China
| | - Lianwei Wu
- Fujian Institute of Testing Technology, Fuzhou, 350003, China
| | - Yayong Chen
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian Key Laboratory of Agricultural Information Sensing Technology, Fuzhou, 350002, China
| | - Fenglin Zhong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yunshi Liu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fei Zhao
- Fujian Institute of Testing Technology, Fuzhou, 350003, China
| | - Dapeng Ye
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Fujian Key Laboratory of Agricultural Information Sensing Technology, Fuzhou, 350002, China.
| | - Haiyong Weng
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Fujian Key Laboratory of Agricultural Information Sensing Technology, Fuzhou, 350002, China.
| |
Collapse
|
6
|
Yang C, Ancona V. An Overview of the Mechanisms Against " Candidatus Liberibacter asiaticus": Virulence Targets, Citrus Defenses, and Microbiome. Front Microbiol 2022; 13:850588. [PMID: 35391740 PMCID: PMC8982080 DOI: 10.3389/fmicb.2022.850588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/18/2022] [Indexed: 12/01/2022] Open
Abstract
Citrus Huanglongbing (HLB) or citrus greening, is the most destructive disease for citrus worldwide. It is caused by the psyllid-transmitted, phloem-limited bacteria "Candidatus Liberibacter asiaticus" (CLas). To date, there are still no effective practical strategies for curing citrus HLB. Understanding the mechanisms against CLas can contribute to the development of effective approaches for combatting HLB. However, the unculturable nature of CLas has hindered elucidating mechanisms against CLas. In this review, we summarize the main aspects that contribute to the understanding about the mechanisms against CLas, including (1) CLas virulence targets, focusing on inhibition of virulence genes; (2) activation of citrus host defense genes and metabolites of HLB-tolerant citrus triggered by CLas, and by agents; and (3) we also review the role of citrus microbiome in combatting CLas. Finally, we discuss novel strategies to continue studying mechanisms against CLas and the relationship of above aspects.
Collapse
Affiliation(s)
- Chuanyu Yang
- Department of Agriculture, Agribusiness, and Environmental Sciences, Citrus Center, Texas A&M University-Kingsville, Weslaco, TX, United States
| | - Veronica Ancona
- Department of Agriculture, Agribusiness, and Environmental Sciences, Citrus Center, Texas A&M University-Kingsville, Weslaco, TX, United States
| |
Collapse
|