1
|
Turocy T, Crawford JM. Bacterial small molecule metabolites implicated in gastrointestinal cancer development. Nat Rev Microbiol 2025; 23:106-121. [PMID: 39375475 DOI: 10.1038/s41579-024-01103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/09/2024]
Abstract
Numerous associations have been identified between cancer and the composition and function of the human microbiome. As cancer remains the second leading global cause of mortality, investigating the carcinogenic contributions of microbiome members could advance our understanding of cancer risk and support potential therapeutic interventions. Although fluctuations in bacterial species have been associated with cancer progression, studying their small molecule metabolites offers one avenue to establish support for causal relationships and the molecular mechanisms governing host-microorganism interactions. In this Review, we explore the expanding repertoire of small molecule metabolites and their mechanisms implicated in the risk of developing gastrointestinal cancers.
Collapse
Affiliation(s)
- Tayah Turocy
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT, USA.
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA.
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Ren P, Liu M, Wei B, Tang Q, Wang Y, Xue C. Fucoidan exerts antitumor effects by regulating gut microbiota and tryptophan metabolism. Int J Biol Macromol 2025; 300:140334. [PMID: 39870263 DOI: 10.1016/j.ijbiomac.2025.140334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/24/2024] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Fucoidan, a water-soluble polysaccharide derived from marine organisms, has garnered significant attention for its ability to regulate gut microbiota and its anti-tumor properties. However, the existence of a correlation between the anti-tumor effect of fucoidan and its regulation of the gut microbiota remains unknown. In pursuit of this objective, we culled the gut microbiota of mice with broad-spectrum antibiotics to generate pseudo-sterile tumor-bearing mice. Subsequently, fecal microbial transplants were introduced into the pseudo-sterile tumor-bearing mice. The antitumor effects of fucoidan were found to be dependent on the gut microbiota. Fucoidan promoted the proliferation of Akkermansia, Bifidobacterium and Lactobacillus, which have immunomodulatory effects. Furthermore, through regulation of gut microbiota, fucoidan influenced the metabolic process of tryptophan and facilitated its conversion to indole-3-acetic acid. In addition, fucoidan decreased the kynurenine/tryptophan ratio in serum, increased the proportion of CD8+ T cells, and suppressed the expression level of IDO1 in tumor tissues. Our results confirm that fucoidan enhances anti-tumor immune responses and subsequently exhibits anti-tumor effects by modulating the gut microbiota. Our research contributes to the comprehension of the mechanism of anti-tumor effects of fucoidan and facilitates the development of fucoidan as a dietary supplement for cancer patients.
Collapse
Affiliation(s)
- Pengfei Ren
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| | - Meng Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| | - Biqian Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| | - Qingjuan Tang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China.
| | - Yuming Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| |
Collapse
|
3
|
Ren P, Wei B, Qin W, Tang Q, Wang Y, Xue C. Impact of astaxanthin on the capacity of gut microbiota to produce tryptophan catabolites. Food Funct 2025; 16:524-538. [PMID: 39688008 DOI: 10.1039/d4fo04890c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
This study utilized in vitro colonic fermentation to examine the impact of astaxanthin on the microbial catabolism of tryptophan. Astaxanthin significantly altered the gut microbiota and raised the tryptophan catabolism metabolite levels in an in vitro human colonic fermentation system. To eliminate the influence of substrate availability, we conducted in vitro colonic fermentation of the gut microbiota of astaxanthin-domesticated mice. We observed that the capacity of astaxanthin-domesticated gut microbiota to catalyze the conversion of tryptophan to indole and derivatives was considerably augmented. Astaxanthin significantly increased the relative abundance of Akkermansia, Ruminococcus, Bacteroides and Lactobacillus and elevated the levels of indole-3-lactic acid and indole-3-propionic acid. These results demonstrated that astaxanthin regulates tryptophan metabolism by modifying gut microbiota and increasing the levels of indole metabolites, such as indole-3-lactic acid and indole-3-propionic acid. This study provides insights into the physiological activity of astaxanthin and sheds light on the potential for enhancing tryptophan metabolism through dietary manipulation of the gut microbiota.
Collapse
Affiliation(s)
- Pengfei Ren
- State Key Laboratory of Marine Food Processing &Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Biqian Wei
- State Key Laboratory of Marine Food Processing &Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Wanting Qin
- State Key Laboratory of Marine Food Processing &Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Qingjuan Tang
- State Key Laboratory of Marine Food Processing &Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Yuming Wang
- State Key Laboratory of Marine Food Processing &Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing &Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| |
Collapse
|
4
|
Goya-Jorge E, Gonza I, Bondue P, Druart G, Al-Chihab M, Boutaleb S, Douny C, Scippo ML, Thonart P, Delcenserie V. Evaluation of Four Multispecies Probiotic Cocktails in a Human Colonic Fermentation Model. Probiotics Antimicrob Proteins 2024; 16:2102-2115. [PMID: 37725305 DOI: 10.1007/s12602-023-10162-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 09/21/2023]
Abstract
Bacteriotherapy represents an attractive approach for both prophylaxis and treatment of human diseases. However, combining probiotic bacteria in "cocktails" is underexplored, despite its potential as an alternative multi-target therapy. Herein, three-strain probiotic mixtures containing different combinations of Bacillus (Bc.) coagulans [ATB-BCS-042], Levilactobacillus (Lv.) brevis [THT 0303101], Lacticaseibacillus (Lc.) paracasei [THT 031901], Bacillus subtilis subsp. natto [ATB-BSN-049], Enterococcus faecium [ATB-EFM-030], and Bifidobacterium (Bf.) animalis subsp. lactis [THT 010802] were prepared. Four cocktails (PA: Bc. coagulans + Lv. brevis + Lc. paracasei, PB: Bc. subtilis subsp. natto + Lv. brevis + Lc. paracasei, PC: E. faecium + Lv. brevis + Lc. paracasei, PD: Bc. coagulans + Lv. brevis + Bf. animalis subsp. lactis) were tested using a short-term (72 h) simulation of the human colonic microbiota in a final dose of 6 × 109 CFU. All these probiotic mixtures significantly increased butyrate production compared to the parallel control experiment. PA and PB promoted a bifidogenic effect and facilitated lactobacilli colonization. Furthermore, reporter gene assays using the AhR_HT29-Lucia cell line revealed that fermentation supernatants from PA and PB notably induced AhR transactivity. Subsequent examination of the metabolic outputs of PA and PB in intestinal epithelial models using cell culture inserts suggested no significant impact on the transepithelial electrical resistance (TEER). Assessment of the expression of proinflammatory and anti-inflammatory cytokines, as well as AhR-related target genes in the Caco-2 cell monolayers indicated that PB's metabolic output upregulated most of the measured endpoints. This in vitro investigation evaluated the potential impact of four multispecies probiotic mixtures in the human colonic microbiota and identified a promising formulation comprising a combination of Bc. subtilis subsp. natto, Lv. brevis, and Lc. paracasei as a promising formulation for further study.
Collapse
Affiliation(s)
- Elizabeth Goya-Jorge
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000, Liège, Belgium
| | - Irma Gonza
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000, Liège, Belgium
| | - Pauline Bondue
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000, Liège, Belgium
| | - Germain Druart
- Lacto Research Sprl, Rue Herman Méganck 21, 5032, Isnes-Gembloux, Belgium
| | - Mohamed Al-Chihab
- Lacto Research Sprl, Rue Herman Méganck 21, 5032, Isnes-Gembloux, Belgium
| | - Samiha Boutaleb
- Laboratory of Food Analysis, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000, Liège, Belgium
| | - Caroline Douny
- Laboratory of Food Analysis, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000, Liège, Belgium
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000, Liège, Belgium
| | - Philippe Thonart
- Lacto Research Sprl, Rue Herman Méganck 21, 5032, Isnes-Gembloux, Belgium
| | - Véronique Delcenserie
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000, Liège, Belgium.
| |
Collapse
|
5
|
Yan J, Chen D, Ye Z, Zhu X, Li X, Jiao H, Duan M, Zhang C, Cheng J, Xu L, Li H, Yan D. Molecular mechanisms and therapeutic significance of Tryptophan Metabolism and signaling in cancer. Mol Cancer 2024; 23:241. [PMID: 39472902 PMCID: PMC11523861 DOI: 10.1186/s12943-024-02164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
Tryptophan (Trp) metabolism involves three primary pathways: the kynurenine (Kyn) pathway (KP), the 5-hydroxytryptamine (serotonin, 5-HT) pathway, and the indole pathway. Under normal physiological conditions, Trp metabolism plays crucial roles in regulating inflammation, immunity, and neuronal function. Key rate-limiting enzymes such as indoleamine-2,3-dioxygenase (IDO), Trp-2,3-dioxygenase (TDO), and kynurenine monooxygenase (KMO) drive these metabolic processes. Imbalances in Trp metabolism are linked to various cancers and often correlate with poor prognosis and adverse clinical characteristics. Dysregulated Trp metabolism fosters tumor growth and immune evasion primarily by creating an immunosuppressive tumor microenvironment (TME). Activation of the KP results in the production of immunosuppressive metabolites like Kyn, which modulate immune responses and promote oncogenesis mainly through interaction with the aryl hydrocarbon receptor (AHR). Targeting Trp metabolism therapeutically has shown significant potential, especially with the development of small-molecule inhibitors for IDO1, TDO, and other key enzymes. These inhibitors disrupt the immunosuppressive signals within the TME, potentially restoring effective anti-tumor immune responses. Recently, IDO1 inhibitors have been tested in clinical trials, showing the potential to enhance the effects of existing cancer therapies. However, mixed results in later-stage trials underscore the need for a deeper understanding of Trp metabolism and its complex role in cancer. Recent advancements have also explored combining Trp metabolism inhibitors with other treatments, such as immune checkpoint inhibitors, chemotherapy, and radiotherapy, to enhance therapeutic efficacy and overcome resistance mechanisms. This review summarizes the current understanding of Trp metabolism and signaling in cancer, detailing the oncogenic mechanisms and clinical significance of dysregulated Trp metabolism. Additionally, it provides insights into the challenges in developing Trp-targeted therapies and future research directions aimed at optimizing these therapeutic strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zi Ye
- Department of Scientific Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuqiang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Henan Jiao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengjiao Duan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Chaoli Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Hongjiang Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
Ejima R, Mishima R, Sen A, Yamaguchi K, Mitsuyama E, Kaneko H, Kimura M, Arai S, Muto N, Hiraku A, Kato K, Kuwano Y, Maruyama H, Nakamura M, Iwabuchi N, Nakano M, Odamaki T, Tanaka M. The Impact of Fermented Milk Products Containing Bifidobacterium longum BB536 on the Gut Environment: A Randomized Double-Blind Placebo-Controlled Trial. Nutrients 2024; 16:3580. [PMID: 39519413 PMCID: PMC11547261 DOI: 10.3390/nu16213580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Probiotics, particularly those native to the gut microbiota, have a profound influence on the gut environment. In this study, we conducted a randomized placebo-controlled, double-blind, parallel-group comparison trial to investigate the effects of Bifidobacterium longum BB536 (B. longum BB536) on the fecal microbiota and metabolite compositions in healthy individuals. We compared the effects of fermented milk produced solely with Streptococcus thermophiles and Lactobacillus bulgaricus (placebo group) and fermented milk supplemented with B. longum BB536 (BY group). Our findings revealed a significantly greater relative abundance of Faecalibacterium in the BY group than in the placebo group by the 3rd day, a trend that persisted until the end of the trial on the 17th day. Additionally, the BY group presented significantly increased concentrations of tryptophan (Trp), Indole-3-lactic acid, and Indole-3-aldehyde on the 17th day. A significant positive correlation was observed between the relative abundance of Faecalibacterium and the number of viable B. longum BB536 bacteria in the feces. The concentrations of Trp and Indole-3-acetic acid were also significantly correlated with the number of viable B. longum BB536 bacteria in the feces. Our results suggest that B. longum BB536 intake can modulate the gut microbiota and metabolite profiles, which are general indicators for monitoring the gut environment, potentially conferring health benefits to the host.
Collapse
Affiliation(s)
- Ryuta Ejima
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Riko Mishima
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Akira Sen
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Kana Yamaguchi
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Eri Mitsuyama
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Hiroki Kaneko
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Madoka Kimura
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Satoshi Arai
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Natsumi Muto
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Akari Hiraku
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Kumiko Kato
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Yasuyuki Kuwano
- Food Research & Development Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Hiroshi Maruyama
- Food Research & Development Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Masahiko Nakamura
- Matsumoto City Hospital, 4417-180 Hata, Matsumoto 390-1401, Nagano, Japan
| | - Noriyuki Iwabuchi
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Manabu Nakano
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Toshitaka Odamaki
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Miyuki Tanaka
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| |
Collapse
|
7
|
Badawy AAB, Dawood S. Molecular Insights into the Interaction of Tryptophan Metabolites with the Human Aryl Hydrocarbon Receptor in Silico: Tryptophan as Antagonist and no Direct Involvement of Kynurenine. FRONT BIOSCI-LANDMRK 2024; 29:333. [PMID: 39344334 DOI: 10.31083/j.fbl2909333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND A direct link between the tryptophan (Trp) metabolite kynurenine (Kyn) and the aryl hydrocarbon receptor (AhR) is not supported by metabolic considerations and by studies demonstrating the failure of Kyn concentrations of up to 100 μM to activate the receptor in cell culture systems using the proxy system of cytochrome P-450-dependent metabolism. The Kyn metabolite kynurenic acid (KA) activates the AhR and may mediate the Kyn link. Recent studies demonstrated down regulation and antagonism of activation of the AhR by Trp. We have addressed the link between Kyn and the AhR by looking at their direct molecular interaction in silico. METHODS Molecular docking of Kyn, KA, Trp and a range of Trp metabolites to the crystal structure of the human AhR was performed under appropriate docking conditions. RESULTS Trp and 30 of its metabolites docked to the AhR to various degrees, whereas Kyn and 3-hydroxykynurenine did not. The strongest docking was observed with the Trp metabolite and photooxidation product 6-Formylindolo[3,2-b]carbazole (FICZ), cinnabarinic acid, 5-hydroxytryptophan, N-acetyl serotonin and indol-3-yllactic acid. Strong docking was also observed with other 5-hydroxyindoles. CONCLUSIONS We propose that the Kyn-AhR link is mediated by KA. The strong docking of Trp and its recently reported down regulation of the receptor suggest that Trp is an AhR antagonist and may thus play important roles in body homeostasis beyond known properties or simply being the precursor of biologically active metabolites. Differences in AhR activation reported in the literature are discussed.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, CF5 2YB Wales, UK
| | - Shazia Dawood
- Pharmacy and Allied Health Sciences, Iqra University, 7580 Karachi, Pakistan
| |
Collapse
|
8
|
Lu S, Zhao Q, Guan Y, Sun Z, Li W, Guo S, Zhang A. The communication mechanism of the gut-brain axis and its effect on central nervous system diseases: A systematic review. Biomed Pharmacother 2024; 178:117207. [PMID: 39067168 DOI: 10.1016/j.biopha.2024.117207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
Gut microbiota is involved in intricate and active metabolic processes the host's brain function, especially its role in immune responses, secondary metabolism, and symbiotic connections with the host. Gut microbiota can promote the production of essential metabolites, neurotransmitters, and other neuroactive chemicals that affect the development and treatment of central nervous system diseases. This article introduces the relevant pathways and manners of the communication between the brain and gut, summarizes a comprehensive overview of the current research status of key gut microbiota metabolites that affect the functions of the nervous system, revealing those adverse factors that affect typical communication between the brain-gut axis, and outlining the efforts made by researchers to alleviate these neurological diseases through targeted microbial interventions. The relevant pathways and manners of communication between the brain and gut contribute to the experimental design of new treatment plans and drug development. The factors that may cause changes in gut microbiota and affect metabolites, as well as current intervention methods are summarized, which helps improve gut microbiota brain dialogue, prevent adverse triggering factors from interfering with the gut microbiota system, and minimize neuropathological changes.
Collapse
Affiliation(s)
- Shengwen Lu
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Qiqi Zhao
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Yu Guan
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Zhiwen Sun
- Department of Gastroenterology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Wenhao Li
- School of Basic Medical Science of Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Sifan Guo
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China; INTI International University, Nilai 71800, Malaysia.
| |
Collapse
|
9
|
Lee J, Reiman D, Singh S, Chang A, Morel L, Chervonsky AV. Microbial influences on severity and sex bias of systemic autoimmunity. Immunol Rev 2024; 325:64-76. [PMID: 38716867 PMCID: PMC11338725 DOI: 10.1111/imr.13341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Commensal microbes have the capacity to affect development and severity of autoimmune diseases. Germ-free (GF) animals have proven to be a fine tool to obtain definitive answers to the queries about the microbial role in these diseases. Moreover, GF and gnotobiotic animals can be used to dissect the complex symptoms and determine which are regulated (enhanced or attenuated) by microbes. These include disease manifestations that are sex biased. Here, we review comparative analyses conducted between GF and Specific-Pathogen Free (SPF) mouse models of autoimmunity. We present data from the B6;NZM-Sle1NZM2410/AegSle2NZM2410/AegSle3NZM2410/Aeg-/LmoJ (B6.NZM) mouse model of systemic lupus erythematosus (SLE) characterized by multiple measurable features. We compared the severity and sex bias of SPF, GF, and ex-GF mice and found variability in the severity and sex bias of some manifestations. Colonization of GF mice with the microbiotas taken from B6.NZM mice housed in two independent institutions variably affected severity and sexual dimorphism of different parameters. Thus, microbes regulate both the severity and sexual dimorphism of select SLE traits. The sensitivity of particular trait to microbial influence can be used to further dissect the mechanisms driving the disease. Our results demonstrate the complexity of the problem and open avenues for further investigations.
Collapse
Affiliation(s)
- Jean Lee
- Committee on Cancer Biology, The University of Chicago, Chicago, Illinois, USA
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Derek Reiman
- Toyota Technological Institute at Chicago, Chicago, Illinois, USA
| | - Samara Singh
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Anthony Chang
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Laurence Morel
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Alexander V Chervonsky
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
- Committee on Immunology, The University of Chicago, Chicago, Illinois, USA
- Committee on Microbiology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
10
|
Zhang H, Xia Y, Wang G, Xiong Z, Wei G, Liao Z, Qian Y, Cai Z, Ai L. Lactobacillus plantarum AR495 improves colonic transport hyperactivity in irritable bowel syndrome through tryptophan metabolism. Food Funct 2024; 15:7416-7429. [PMID: 38899520 DOI: 10.1039/d4fo01087f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Lactobacillus plantarum AR495 is a widely used probiotic for the treatment of various digestive diseases, including irritable bowel syndrome (IBS). However, the specific mechanisms of L. plantarum AR495 in alleviating IBS remain unclear. Abnormal intestinal tryptophan metabolism can cause disordered immune responses, gastrointestinal peristalsis, digestion and sensation, which is closely related to IBS pathogenesis. The aim of this study is to explore the effects and mechanisms of L. plantarum AR495 in regulating tryptophan metabolism. Primarily, tryptophan and its related metabolites in patients with IBS and healthy people were analyzed, and an IBS rat model of acetic acid enema plus restraint stress was established to explore the alleviation pathway of L. plantarum AR495 in tryptophan metabolism. It was found that the 5-HT pathway was significantly changed, and the 5-HTP and 5-HT metabolites were significantly increased in the feces of patients with IBS, which were consistent with the results obtained for the IBS rat model. Maladjusted 5-HT could increase intestinal peristalsis and lead to an increase in the fecal water content and shapeless stool in rats. On the contrary, these two metabolites could be restored to normal levels via intragastric administration of L. plantarum AR495. Further study of the metabolic pathway showed that L. plantarum AR495 could effectively reduce the abundance of 5-HT by inhibiting the expression of enterochromaffin cells rather than promoting its decomposition. In addition, the results showed that L. plantarum AR495 did not affect the expression of SERT. To sum up, L. plantarum AR495 could restore the normal levels of 5-HT by inhibiting the abnormal proliferation of enterochromaffin cells and the excessive activation of TPH1 to inhibit the intestinal peristalsis in IBS. These findings provide insights for the use of probiotics in the treatment of IBS and other diarrheal diseases.
Collapse
Affiliation(s)
- Hongyun Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- Business school, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Guoliang Wei
- Business school, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhuan Liao
- Department of Gastroenterol, Digestive Endoscopy Center, Changhai Hospital, Shanghai, 200433, China
| | - Yangyan Qian
- Department of Gastroenterol, Digestive Endoscopy Center, Changhai Hospital, Shanghai, 200433, China
| | - Zongwei Cai
- State Key Laboratory of Environmental & Biological Analysis, Hong Kong Baptist University, Hong Kong Special Administrative region of China, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
11
|
Huang Z, Wells JM, Fogliano V, Capuano E. Microbial tryptophan catabolism as an actionable target via diet-microbiome interactions. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 38950607 DOI: 10.1080/10408398.2024.2369947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
In recent years, the role of microbial tryptophan (Trp) catabolism in host-microbiota crosstalk has become a major area of scientific interest. Microbiota-derived Trp catabolites positively contribute to intestinal and systemic homeostasis by acting as ligands of aryl hydrocarbon receptor and pregnane X receptor, and as signaling molecules in microbial communities. Accumulating evidence suggests that microbial Trp catabolism could be therapeutic targets in treating human diseases. A number of bacteria and metabolic pathways have been identified to be responsible for the conversion of Trp in the intestine. Interestingly, many Trp-degrading bacteria can benefit from the supplementation of specific dietary fibers and polyphenols, which in turn increase the microbial production of beneficial Trp catabolites. Thus, this review aims to highlight the emerging role of diets and food components, i.e., food matrix, fiber, and polyphenol, in modulating the microbial catabolism of Trp and discuss the opportunities for potential therapeutic interventions via specifically designed diets targeting the Trp-microbiome axis.
Collapse
Affiliation(s)
- Zhan Huang
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Edoardo Capuano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
12
|
Pan Y, Zhang J, Guo X, Li Y, Li L, Pan L. Recent Advances in Conductive Polymers-Based Electrochemical Sensors for Biomedical and Environmental Applications. Polymers (Basel) 2024; 16:1597. [PMID: 38891543 PMCID: PMC11174834 DOI: 10.3390/polym16111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Electrochemical sensors play a pivotal role in various fields, such as biomedicine and environmental detection, due to their exceptional sensitivity, selectivity, stability, rapid response time, user-friendly operation, and ease of miniaturization and integration. In addition to the research conducted in the application field, significant focus is placed on the selection and optimization of electrode interface materials for electrochemical sensors. The detection performance of these sensors can be significantly enhanced by modifying the interface of either inorganic metal electrodes or printed electrodes. Among numerous available modification materials, conductive polymers (CPs) possess not only excellent conductivity exhibited by inorganic conductors but also unique three-dimensional structural characteristics inherent to polymers. This distinctive combination allows CPs to increase active sites during the detection process while providing channels for rapid ion transmission and facilitating efficient electron transfer during reaction processes. This review article primarily highlights recent research progress concerning CPs as an ideal choice for modifying electrochemical sensors owing to their remarkable features that make them well-suited for biomedical and environmental applications.
Collapse
Affiliation(s)
- Youheng Pan
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Jing Zhang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Xin Guo
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yarou Li
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Lanlan Li
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
13
|
Rong L, Liu K, An M, Zhang L, Zhang D, Wu L, Li R. Fungal-Bacterial Mutualism: Species and Strain-Dependent Simultaneous Modulation of Branched-Chain Esters and Indole Derivatives in Fermented Sausages through Metabolite Cross-Feeding. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8749-8759. [PMID: 38579123 DOI: 10.1021/acs.jafc.3c08616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The precise impact of species and strain diversity on fungal-bacterial interactions and the overall community functioning has remained unclear. First, our study revealed how Debaryomyces hansenii influences diverse bacteria to accumulate key metabolites in a simulated fermented food system. For flavor, D. hansenii promoted the accumulation of branched-chain esters in Staphylococcus xylosus by promoting growth and facilitating the precursor branched-chain acids transformations but hindered the accumulation of Staphylococcus equorum. Furthermore, fungal-bacterial interactions displayed diversity among S. equorum strains. For bioactive compounds, species and strain diversity of lactic acid bacteria (LAB) also influences the production of indole derivatives. Then, we investigated specific metabolic exchanges under reciprocal interaction. Amino acids, rather than vitamins, were identified as the primary drivers of the bacterial growth promotion. Moreover, precursor transformations by D. hansenii played a significant role in branched-chain esters production. Finally, a synthetic community capable of producing high concentrations of branched-chain esters and indole derivatives was successfully constructed. These results provide valuable insights into understanding and designing synthetic communities for fermented sausages.
Collapse
Affiliation(s)
- Liangyan Rong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, Liaoning 121013, China
| | - Kaihao Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, Liaoning 121013, China
| | - Mairui An
- Zibo Institute for Food and Drug Control, Zibo, Shandong 255086, China
| | - Lan Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, Liaoning 121013, China
| | - Di Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, Liaoning 121013, China
| | - Liu Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, Liaoning 121013, China
| | - Ruren Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, Liaoning 121013, China
| |
Collapse
|
14
|
Zhu H, Yang X, Zhao Y. Recent Advances in Current Uptake Situation, Metabolic and Nutritional Characteristics, Health, and Safety of Dietary Tryptophan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6787-6802. [PMID: 38512048 DOI: 10.1021/acs.jafc.3c06419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Tryptophan (Trp) is an essential amino acid which is unable to be synthesized in the body. Main sources of Trp are uptake of foods such as oats and bananas. In this review, we describe the status of current dietary consumption, metabolic pathways and nutritional characteristics of Trp, as well as its ingestion and downstream metabolites for maintaining body health and safety. This review also summarizes the recent advances in Trp metabolism, particularly the 5-HT, KYN, and AhR activation pathways, revealing that its endogenous host metabolites are not only differentially affected in the body but also are closely linked to health. More attention should be paid to targeting its specific metabolic pathways and utilizing food molecules and probiotics for manipulating Trp metabolism. However, the complexity of microbiota-host interactions requires further exploration to precisely refine targets for innovating the gut microbiota-targeted diagnostic approaches and informing subsequent studies and targeted treatments of diseases.
Collapse
Affiliation(s)
- Haoyan Zhu
- Key Laboratory of the Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
15
|
Seeburger P, Forsman H, Bevilacqua G, Marques TM, Morales LO, Prado SBR, Strid Å, Hyötyläinen T, Castro-Alves V. From farm to fork… and beyond! UV enhances Aryl hydrocarbon receptor-mediated activity of cruciferous vegetables in human intestinal cells upon colonic fermentation. Food Chem 2023; 426:136588. [PMID: 37352713 DOI: 10.1016/j.foodchem.2023.136588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/25/2023]
Abstract
While the "farm to fork" strategy ticks many boxes in the sustainability agenda, it does not go far enough in addressing how we can improve crop nutraceutical quality. Here, we explored whether supplementary ultraviolet (UV) radiation exposure during growth of broccoli and Chinese cabbage can induce bioactive tryptophan- and glucosinolate-specific metabolite accumulation thereby enhancing Aryl hydrocarbon receptor (AhR) activation in human intestinal cells. By combining metabolomics analysis of both plant extracts and in vitro human colonic fermentation extracts with AhR reporter cell assay, we reveal that human colonic fermentation of UVB-exposed Chinese cabbage led to enhanced AhR activation in human intestinal cells by 23% compared to plants grown without supplementary UV. Thus, by exploring aspects beyond "from farm to fork", our study highlights a new strategy to enhance nutraceutical quality of Brassicaceae, while also providing new insights into the effects of cruciferous vegetables on human intestinal health.
Collapse
Affiliation(s)
- P Seeburger
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, 702 81 Örebro, Sweden
| | - H Forsman
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, 702 81 Örebro, Sweden
| | - G Bevilacqua
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 703 62 Örebro, Sweden; School of Human Health Sciences, University of Florence, 501 34 Florence, Italy
| | - T M Marques
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 703 62 Örebro, Sweden
| | - L O Morales
- Life Science Centre, School of Science and Technology, Örebro University, 702 81 Örebro, Sweden
| | - S B R Prado
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 703 62 Örebro, Sweden
| | - Å Strid
- Life Science Centre, School of Science and Technology, Örebro University, 702 81 Örebro, Sweden
| | - T Hyötyläinen
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, 702 81 Örebro, Sweden
| | - V Castro-Alves
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, 702 81 Örebro, Sweden.
| |
Collapse
|
16
|
Huang Z, Boekhorst J, Fogliano V, Capuano E, Wells JM. Impact of High-Fiber or High-Protein Diet on the Capacity of Human Gut Microbiota To Produce Tryptophan Catabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6956-6966. [PMID: 37126824 PMCID: PMC10176579 DOI: 10.1021/acs.jafc.2c08953] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This study investigated the effect of high-fiber-low-protein (HF) and high-protein-low-fiber (HP) diets on microbial catabolism of tryptophan in the proximal colon (PC) and distal colon(DC) compartments of the Simulator of the Human Intestinal Microbial Ecosystem. The microbiota in PC and DC was dominated by Bacteroidetes and Firmicutes, in which Bacteroidetes were more abundant in DC (∼60% versus 50%) and Firmicutes were more abundant in PC (∼40% versus 25%). Most of the tryptophan catabolites were determined at a higher concentration in PC samples than in DC samples, but the overall concentration of tryptophan catabolites was over 10-fold higher in DC samples than that in PC samples. Interestingly, indole-3-propionic acid and oxindole were only identified in DC samples. A two-week dietary intervention by the HF diet enriched the abundance of Firmicutes in PC, whereas the HP diet enriched the abundance of Proteobacteria. Compared to the HP diet, the HF diet favored the microbial production of indole-3-acetic acid, indole-3-lactic acid, indole-3-aldehyde, and indole-3-propionic acid in both PC and DC compartments. To conclude, these findings increase the understanding of the effect of diets on the microbial production of tryptophan catabolites in the colon.
Collapse
Affiliation(s)
- Zhan Huang
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Jos Boekhorst
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Edoardo Capuano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
17
|
Pan T, Pei Z, Fang Z, Wang H, Zhu J, Zhang H, Zhao J, Chen W, Lu W. Uncovering the specificity and predictability of tryptophan metabolism in lactic acid bacteria with genomics and metabolomics. Front Cell Infect Microbiol 2023; 13:1154346. [PMID: 36992687 PMCID: PMC10040830 DOI: 10.3389/fcimb.2023.1154346] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Tryptophan is metabolized by microorganisms into various indole derivatives that have been proven to alleviate diseases and promote human health. Lactic acid bacteria (LAB) are a broad microbial concept, some of which have been developed as probiotics. However, the capacity of most LAB to metabolize tryptophan is unknown. In this study, the aim is to reveal the rule of tryptophan metabolism in LAB by multi-omics. The findings showed that LAB were rich in genes for tryptophan catabolism and that multiple genes were shared among LAB species. Although the number of their homologous sequences was different, they could still form the same metabolic enzyme system. The metabolomic analysis revealed that LAB were capable of producing a variety of metabolites. Strains belonging to the same species can produce the same metabolites and have similar yields. A few strains showed strain-specificity in the production of indole-3-lactic acid (ILA), indole-3-acetic acid, and 3-indolealdehyde (IAld). In the genotype-phenotype association analysis, the metabolites of LAB were found to be highly consistent with the outcomes of gene prediction, particularly ILA, indole-3-propionic acid, and indole-3-pyruvic acid. The overall prediction accuracy was more than 87% on average, which indicated the predictability of tryptophan metabolites of LAB. Additionally, genes influenced the concentration of metabolites. The levels of ILA and IAld were significantly correlated with the numbers of aromatic amino acid aminotransferase and amidase, respectively. The unique indolelactate dehydrogenase in Ligilactobacillus salivarius was the primary factor contributing to its large production of ILA. In summary, we demonstrated the gene distribution and production level of tryptophan metabolism in LAB and explored the correlation between genes and phenotypes. The predictability and specificity of the tryptophan metabolites in LAB were proven. These results provide a novel genomic method for the discovery of LAB with tryptophan metabolism potential and offer experimental data for probiotics that produce specific tryptophan metabolites.
Collapse
Affiliation(s)
- Tong Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhangming Pei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhifeng Fang
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, China
- *Correspondence: Wenwei Lu,
| |
Collapse
|
18
|
Montgomery TL, Eckstrom K, Lile KH, Caldwell S, Heney ER, Lahue KG, D'Alessandro A, Wargo MJ, Krementsov DN. Lactobacillus reuteri tryptophan metabolism promotes host susceptibility to CNS autoimmunity. MICROBIOME 2022; 10:198. [PMID: 36419205 PMCID: PMC9685921 DOI: 10.1186/s40168-022-01408-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/01/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND Dysregulation of gut microbiota-associated tryptophan metabolism has been observed in patients with multiple sclerosis. However, defining direct mechanistic links between this apparent metabolic rewiring and individual constituents of the gut microbiota remains challenging. We and others have previously shown that colonization with the gut commensal and putative probiotic species, Lactobacillus reuteri, unexpectedly enhances host susceptibility to experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis. To identify underlying mechanisms, we characterized the genome of commensal L. reuteri isolates, coupled with in vitro and in vivo metabolomic profiling, modulation of dietary substrates, and gut microbiota manipulation. RESULTS The enzymes necessary to metabolize dietary tryptophan into immunomodulatory indole derivatives were enriched in the L. reuteri genomes, including araT, fldH, and amiE. Moreover, metabolite profiling of L. reuteri monocultures and serum of L. reuteri-colonized mice revealed a depletion of kynurenines and production of a wide array of known and novel tryptophan-derived aryl hydrocarbon receptor (AhR) agonists and antagonists, including indole acetate, indole-3-glyoxylic acid, tryptamine, p-cresol, and diverse imidazole derivatives. Functionally, dietary tryptophan was required for L. reuteri-dependent EAE exacerbation, while depletion of dietary tryptophan suppressed disease activity and inflammatory T cell responses in the CNS. Mechanistically, L. reuteri tryptophan-derived metabolites activated the AhR and enhanced T cell production of IL-17. CONCLUSIONS Our data suggests that tryptophan metabolism by gut commensals, such as the putative probiotic species L. reuteri, can unexpectedly enhance autoimmunity, inducing broad shifts in the metabolome and immunological repertoire. Video Abstract.
Collapse
Affiliation(s)
- Theresa L Montgomery
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Korin Eckstrom
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05401, USA
| | - Katarina H Lile
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Sydney Caldwell
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Eamonn R Heney
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Karolyn G Lahue
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, 80045, USA
| | - Matthew J Wargo
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05401, USA
| | - Dimitry N Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA.
| |
Collapse
|
19
|
Goya-Jorge E, Gonza I, Bondue P, Douny C, Taminiau B, Daube G, Scippo ML, Delcenserie V. Human Adult Microbiota in a Static Colon Model: AhR Transcriptional Activity at the Crossroads of Host–Microbe Interaction. Foods 2022; 11:foods11131946. [PMID: 35804761 PMCID: PMC9265634 DOI: 10.3390/foods11131946] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
Functional symbiotic intestinal microbiota regulates immune defense and the metabolic processing of xenobiotics in the host. The aryl hydrocarbon receptor (AhR) is one of the transcription factors mediating host–microbe interaction. An in vitro static simulation of the human colon was used in this work to analyze the evolution of bacterial populations, the microbial metabolic output, and the potential induction of AhR transcriptional activity in healthy gut ecosystems. Fifteen target taxa were explored by qPCR, and the metabolic content was chromatographically profiled using SPME-GC-MS and UPLC-FLD to quantify short-chain fatty acids (SCFA) and biogenic amines, respectively. Over 72 h of fermentation, the microbiota and most produced metabolites remained stable. Fermentation supernatant induced AhR transcription in two of the three reporter gene cell lines (T47D, HepG2, HT29) evaluated. Mammary and intestinal cells were more sensitive to microbiota metabolic production, which showed greater AhR agonism than the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) used as a positive control. Some of the SCFA and biogenic amines identified could crucially contribute to the potent AhR induction of the fermentation products. As a fundamental pathway mediating human intestinal homeostasis and as a sensor for several microbial metabolites, AhR activation might be a useful endpoint to include in studies of the gut microbiota.
Collapse
Affiliation(s)
- Elizabeth Goya-Jorge
- Laboratory of Food Quality Management, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 10 (B43b), 4000 Liege, Belgium; (E.G.-J.); (I.G.)
| | - Irma Gonza
- Laboratory of Food Quality Management, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 10 (B43b), 4000 Liege, Belgium; (E.G.-J.); (I.G.)
| | - Pauline Bondue
- Research & Development, ORTIS S.A., Hinter der Heck 46, 4750 Elsenborn, Belgium;
| | - Caroline Douny
- Laboratory of Food Analysis, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 10 (B43b), 4000 Liege, Belgium; (C.D.); (M.-L.S.)
| | - Bernard Taminiau
- Laboratory of Microbiology, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 180 (B42), 4000 Liege, Belgium; (B.T.); (G.D.)
| | - Georges Daube
- Laboratory of Microbiology, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 180 (B42), 4000 Liege, Belgium; (B.T.); (G.D.)
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 10 (B43b), 4000 Liege, Belgium; (C.D.); (M.-L.S.)
| | - Véronique Delcenserie
- Laboratory of Food Quality Management, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 10 (B43b), 4000 Liege, Belgium; (E.G.-J.); (I.G.)
- Correspondence: ; Tel.: +32-4-366-51-24
| |
Collapse
|
20
|
Wells JM, Gao Y, de Groot N, Vonk MM, Ulfman L, van Neerven RJJ. Babies, Bugs, and Barriers: Dietary Modulation of Intestinal Barrier Function in Early Life. Annu Rev Nutr 2022; 42:165-200. [PMID: 35697048 DOI: 10.1146/annurev-nutr-122221-103916] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The intestinal barrier is essential in early life to prevent infection, inflammation, and food allergies. It consists of microbiota, a mucus layer, an epithelial layer, and the immune system. Microbial metabolites, the mucus, antimicrobial peptides, and secretory immunoglobulin A (sIgA) protect the intestinal mucosa against infection. The complex interplay between these functionalities of the intestinal barrier is crucial in early life by supporting homeostasis, development of the intestinal immune system, and long-term gut health. Exclusive breastfeeding is highly recommended during the first 6 months. When breastfeeding is not possible, milk-based infant formulas are the only safe alternative. Breast milk contains many bioactive components that help to establish the intestinal microbiota and influence the development of the intestinal epithelium and the immune system. Importantly, breastfeeding lowers the risk for intestinal and respiratory tract infections. Here we review all aspects of intestinal barrier function and the nutritional components that impact its functionality in early life, such as micronutrients, bioactive milk proteins, milk lipids, and human milk oligosaccharides. These components are present in breast milk and can be added to milk-based infant formulas to support gut health and immunity. Expected final online publication date for the Annual Review of Nutrition, Volume 42 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jerry M Wells
- Host Microbe Interactomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Yifan Gao
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, The Netherlands
| | | | | | | | - R J Joost van Neerven
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, The Netherlands.,FrieslandCampina, Amersfoort, The Netherlands;
| |
Collapse
|