1
|
Sulaiman NS, Mohd Zaini H, Wan Ishak WR, Matanjun P, George R, Mantihal S, Ching FF, Pindi W. Duckweed protein: Extraction, modification, and potential application. Food Chem 2025; 463:141544. [PMID: 39388881 DOI: 10.1016/j.foodchem.2024.141544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Discovering alternative protein sources that are both nutritious and environmentally friendly is essential to meet the growing global population's needs. Duckweed offers promise due to its cosmopolitan distribution, rapid growth, high protein content, and scalability from household tanks to large lagoons without requiring arable land that competes for the major crops. Rich in essential amino acids, particularly branched-chain amino acids, duckweed supports human health. Extraction methods, such as ultrasound and enzymatic techniques, enhance protein yield compared to traditional methods. However, low protein solubility remains a challenge, addressed by protein modification techniques (physical, chemical, and biological) to broaden its applications. Duckweed proteins hold potential as functional food ingredients due to their unique physicochemical properties. This review also includes patents and regulations related to duckweed protein, filling a gap in current literature. Overall, duckweed presents a sustainable protein source with a lower environmental impact compared to conventional crops.
Collapse
Affiliation(s)
- Nurul Shaeera Sulaiman
- Faculty of Food Science and Nutrition, University Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Hana Mohd Zaini
- Faculty of Food Science and Nutrition, University Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Wan Rosli Wan Ishak
- School of Health Sciences, University Science Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Patricia Matanjun
- Food Security Laboratory Group, Faculty of Food Science and Nutrition, University Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Ramlah George
- Nutritional Biochemistry Research Group, Faculty of Food Science and Nutrition, University Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Sylvester Mantihal
- Food Security Laboratory Group, Faculty of Food Science and Nutrition, University Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Fui Fui Ching
- Higher Institution Centre of Excellence, Borneo Marine Research Institute, University Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Wolyna Pindi
- Food Security Laboratory Group, Faculty of Food Science and Nutrition, University Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
2
|
Guo Y, Liu G, Li S, Chen N, Zhang Z, Zhang P, Gao L. Co-production of plant- and microbial- proteins from waste tobacco leaves by optimizing alkaline extraction and strengthening pectin bioconversion. BIORESOURCE TECHNOLOGY 2024; 412:131370. [PMID: 39209229 DOI: 10.1016/j.biortech.2024.131370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The production of alternative proteins is of great significance in the mitigation of food problems. This study proposes an integrated approach including protein extraction, enzymatic hydrolysis, and fermentation to produce both plant proteins and single-cell proteins as alternative proteins from tobacco leaves, a highly-abundant and protein-rich agricultural waste. Alkaline extraction of proteins before polysaccharide hydrolysis was found to be preferable for increasing the yields of plant proteins and mono-sugars. The combined use of pectinase-rich enzymes from Aspergillus brunneoviolaceus and hemicellulase-rich enzymes from Penicillium oxalicum achieved the release of 80.7 % of the sugars after 72 h. Cutaneotrichosporon cutaneum could simultaneously utilize multiple sugars, including galacturonic acid, in the enzymatic hydrolysate to produce single-cell proteins. Via this approach, 43.54 g crude proteins of high protein contents and rich in essential amino acids can be produced from 100.00 g waste tobacco leaves, providing a promising strategy for its valorization.
Collapse
Affiliation(s)
- Yingjie Guo
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Sulei Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Na Chen
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Zhongfeng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Peng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Liwei Gao
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
3
|
Zhang C, He Z, Wang A, Zhang F. Effective collection of protein-enriched cells from green tea residue: An innovative process for leaf protein production. Curr Res Food Sci 2024; 9:100902. [PMID: 39555022 PMCID: PMC11568359 DOI: 10.1016/j.crfs.2024.100902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/19/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024] Open
Abstract
Green tea residue (GTR) contains a high protein content. However, the protein in GTR can't be effectively extracted using traditional methods. Thus, a novel method using ethylenediamine tetraacetic acid (EDTA), ammonium oxalate, or Celluclast® 1.5 L were used to disperse leaf tissues and to collect mesophyll cells to enrich the protein. Compared with EDTA or ammonium oxalate treatment, Celluclast® 1.5 L treatment achieved the highest amounts of mesophyll cells, about 2.7 × 106 g-1 of GTR. The number of collected mesophyll cells was positively and linearly correlated with the extraction rate of glucose and xylose, indicating that cellulose and hemicellulose were key components influencing cell collection. Celluclast® 1.5 L treatment enriched the protein content by 1.65 times in collected mesophyll cells to 50% protein content with a protein recovery of 88%, providing a novel scheme to obtain high-quality leaf protein for the food industry.
Collapse
Affiliation(s)
- Chen Zhang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, 350108, Fuzhou, China
- Fujian Center of Excellence for Food Biotechnology, 350108, Fuzhou, China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, 362200, Jinjiang, Fujian, China
| | - Ziyang He
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, 350108, Fuzhou, China
- Fujian Center of Excellence for Food Biotechnology, 350108, Fuzhou, China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, 362200, Jinjiang, Fujian, China
| | - Ankun Wang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, 350108, Fuzhou, China
| | - Feipeng Zhang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, 350108, Fuzhou, China
| |
Collapse
|
4
|
Grella Miranda C, Speranza P, Carla Kawazoe Sato A. Cassava leaves as an alternative protein source: Effect of alkaline parameters and precipitation conditions on protein extraction and recovery. Food Res Int 2024; 192:114807. [PMID: 39147471 DOI: 10.1016/j.foodres.2024.114807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
Alternative protein sources have been required to meet the significant plant protein demand. Agro-industrial by-products such as leaves have considerable potential as a source of macromolecules once they are mostly discarded as waste. The current study evaluated dried cassava leaves as a protein source. First, alkaline extraction parameters (solid-liquid ratio, pH, and temperature) were optimized and the run that result in the highest protein yield were acidified at pH 2.5 or 4. The influence of carbohydrate solubilized on protein precipitation was also evaluated by removing it via alcoholic extraction prior to precipitation. The experimental design showed that high pH and temperature conditions associated with a low solid-liquid ratio led to increased protein yields. The presence of carbohydrates in the supernatant significantly influenced protein precipitation. The protein concentrate had around 17.51% protein when it was obtained from a supernatant with carbohydrates, while protein content increased to 26.88% when it was obtained from carbohydrate-free supernatant. The precipitation pH also influenced protein content, whereas protein content significantly decreased when pH increased from 2.5 to 4. The natural interaction between carbohydrates and proteins from cassava leaves positively influenced the emulsion stability index and the foaming capacity and stability. Thus, the presented results bring insights into challenges in extracting and precipitation proteins from agro-industrial by-products.
Collapse
Affiliation(s)
- Cristiane Grella Miranda
- Department of Food Engineering, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Paula Speranza
- Proverde Processos Sustentáveis - Parque Científico e Tecnológico da Unicamp - Laboratório de biocombustíveis (LIB), Campinas, SP 13083-836, Brazil
| | - Ana Carla Kawazoe Sato
- Department of Food Engineering, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP 13083-862, Brazil.
| |
Collapse
|
5
|
Ducrocq M, Boire A, Bourlieu-Lacanal C, Barron C, Nawrocka A, Morel MH, Anton M, Micard V. In vitro protein digestibility of RuBisCO-enriched wheat dough: a comparative study with pea and gluten proteins. Food Funct 2024; 15:5132-5146. [PMID: 38682288 DOI: 10.1039/d3fo05652j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Growing demand for sustainable, plant-based protein sources has stimulated interest in new ingredients for food enrichment. This study investigates the nutritional and digestive implications of enriching wheat dough with RuBisCO, in comparison to pea protein-enriched and gluten-enriched doughs. The protein quality and digestibility of these enriched doughs were analysed through dough characterization, in vitro digestion experiments and biochemical analysis of digesta. Our findings indicate that an enrichment at 10% of RuBisCO or pea proteins improves the chemical score and the in vitro PDCAAS (IV-PDCAAS) score of wheat dough as compared to the control dough. Digestibility assays suggest that RuBisCO introduction modifies the protein hydrolysis kinetics: the nitrogen release is lower during gastric digestion but larger during intestinal digestion than other samples. The analysis of the protein composition of the soluble and insoluble parts of digesta, using size-exclusion chromatography, reveals that the protein network in RuBisCO-enriched dough is more resistant to gastric hydrolysis than the ones of other doughs. Indeed, non-covalently bound peptides and disulfide-bound protein aggregates partly composed of RuBisCO subunits remain insoluble at the end of the gastric phase. The digestion of these protein structures is then mostly performed during the intestinal phase. These results are also discussed in relation to the digestive enzymatic cleavage sites, the presence of potential enzyme inhibitors, the protein aggregation state and the secondary structures of the protein network in each dough type.
Collapse
Affiliation(s)
- Maude Ducrocq
- Univ. Montpellier, INRAE, Institut Agro, IATE, Montpellier, France.
- INRAE, UR1268 BIA, F-44300, Nantes, France
| | | | | | - Cécile Barron
- Univ. Montpellier, INRAE, Institut Agro, IATE, Montpellier, France.
| | - Agnieszka Nawrocka
- Institute of Agrophysics Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | | | - Marc Anton
- INRAE, UR1268 BIA, F-44300, Nantes, France
| | - Valérie Micard
- Univ. Montpellier, INRAE, Institut Agro, IATE, Montpellier, France.
| |
Collapse
|
6
|
Stødkilde L, Ingerslev AK, Ambye-Jensen M, Jensen SK. The composition and nutritional quality of biorefined lucerne protein depend on precipitation method. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3405-3412. [PMID: 38113290 DOI: 10.1002/jsfa.13226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Lucerne protein extract is a novel high-quality protein source with excellent amino acid (AA) composition of interest for human consumption. In this study, protein from screw-pressed lucerne juice was extracted by different precipitation methods to evaluate the effect on the chemical composition and nutritional quality of the extracted protein. Methods based on heat, acidification or fermentation were used for protein precipitation, and the nutritional value of protein was evaluated in a rat digestibility trial. RESULTS Heat precipitation at 85 °C produced a protein product with a crude protein (CP) content of 589 g kg-1 dry matter (DM), a balanced AA composition and a high standardized nitrogen (N) digestibility (82.8%). Precipitation by acidification, at a lower temperature (60 °C) or by fermentation, resulted in lower CP content (425-488 g kg-1 DM). Nitrogen digestibility for the pH-adjusted precipitate was equal to the 85 °C heat-precipitated protein, while the fermented and 60 °C precipitated proteins showed lower N digestibility (76.5% and 78.6%, respectively). By applying a two-step heat precipitation method (60 °C followed by 80 °C), a protein content of 712 g kg-1 DM and an N digestibility of 93.6% was reached, which are comparable to high-quality animal-based protein sources such as milk, whey, casein, and eggs, covering the AA requirements for children >6 months. CONCLUSION High-quality protein can be extracted from lucerne, but the future focus should be on increased yield as the current low yields of the refined product will challenge the environmental and economic sustainability of production. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lene Stødkilde
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
- CBIO, Centre for Circular Bioeconomy, Aarhus University, Tjele, Denmark
| | - Anne Krog Ingerslev
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
- CBIO, Centre for Circular Bioeconomy, Aarhus University, Tjele, Denmark
| | - Morten Ambye-Jensen
- CBIO, Centre for Circular Bioeconomy, Aarhus University, Tjele, Denmark
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Søren Krogh Jensen
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
- CBIO, Centre for Circular Bioeconomy, Aarhus University, Tjele, Denmark
| |
Collapse
|
7
|
Rinne M. Novel uses of ensiled biomasses as feedstocks for green biorefineries. J Anim Sci Biotechnol 2024; 15:36. [PMID: 38438873 PMCID: PMC10913225 DOI: 10.1186/s40104-024-00992-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/02/2024] [Indexed: 03/06/2024] Open
Abstract
Perennial forage plants are efficient utilizers of solar radiation and nutrients so that there is a lot of scope to increase the production of green biomass in many areas. Currently, grasses are mainly used as feeds for ruminants and equines, but there could be higher added value use for several components of the green biomass. Interest in green biorefining has risen recently motivated by the increased sustainability pressures and need to break the reliance on fossil fuels. Novel products derived from grass, such as paper and packaging, nanofibers, animal bedding, novel protein feeds, extracted proteins, biochemicals, nutraceuticals, bioactive compounds, biogas and biochar could create new sustainable business opportunities in rural areas. Most green biorefinery concepts focus on using fresh green biomass as the feedstock, but preservation of it by ensiling would provide several benefits such as all-year-around availability of the feedstock and increased stability of the press juice and press cake. The major difference between fresh and ensiled grass is the conversion of water soluble carbohydrates into fermentation end products, mainly lactic and acetic acids, that lower the pH of the silage so that it becomes stable in anaerobic conditions. This has some important consequences on the processability and quality of products, which are partly positive and partly negative, e.g., degradation of protein into peptides, amino acids and ammonia. These aspects are discussed in this review.
Collapse
Affiliation(s)
- Marketta Rinne
- Natural Resources Institute Finland (Luke), Jokioinen, Finland.
| |
Collapse
|
8
|
Hadidi M, Aghababaei F, Gonzalez-Serrano DJ, Goksen G, Trif M, McClements DJ, Moreno A. Plant-based proteins from agro-industrial waste and by-products: Towards a more circular economy. Int J Biol Macromol 2024; 261:129576. [PMID: 38253140 DOI: 10.1016/j.ijbiomac.2024.129576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
There is a pressing need for affordable, abundant, and sustainable sources of proteins to address the rising nutrient demands of a growing global population. The food and agriculture sectors produce significant quantities of waste and by-products during the growing, harvesting, storing, transporting, and processing of raw materials. These waste and by-products can sometimes be converted into valuable protein-rich ingredients with excellent functional and nutritional attributes, thereby contributing to a more circular economy. This review critically assesses the potential for agro-industrial wastes and by-products to contribute to global protein requirements. Initially, we discuss the origins and molecular characteristics of plant proteins derived from agro-industrial waste and by-products. We then discuss the techno-functional attributes, extraction methods, and modification techniques that are applied to these plant proteins. Finally, challenges linked to the safety, allergenicity, anti-nutritional factors, digestibility, and sensory attributes of plant proteins derived from these sources are highlighted. The utilization of agro-industrial by-products and wastes as an economical, abundant, and sustainable protein source could contribute towards achieving the Sustainable Development Agenda's 2030 goal of a "zero hunger world", as well as mitigating fluctuations in food availability and prices, which have detrimental impacts on global food security and nutrition.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria.
| | | | - Diego J Gonzalez-Serrano
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Turkey
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (CENTIV) GmbH, 28816 Stuhr, Germany; CENCIRA Agrofood Research and Innovation Centre, Ion Mester 6, 400650 Cluj-Napoca, Romania
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, 102 Holdsworth Way, Amherst, MA 01002, United States
| | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
9
|
Tanambell H, Danielsen M, Devold TG, Møller AH, Dalsgaard TK. In vitro protein digestibility of RuBisCO from alfalfa obtained from different processing histories: Insights from free N-terminal and mass spectrometry study. Food Chem 2024; 434:137301. [PMID: 37734151 DOI: 10.1016/j.foodchem.2023.137301] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023]
Abstract
Ribulose-1,5-bisphosphate-carboxylase/oxygenase (RuBisCO) from alfalfa is a potentially climate-friendly alternative protein with a promising amino acid composition. The balance between yield and purity is a challenge for alternative plant proteins, partly due to the naturally occurring antinutrients. Therefore, measuring the in vitro protein digestibility (IVPD) of RuBisCO with various purity levels is of interest. It was hypothesized that the digestibility of RuBisCO from alfalfa might vary with different processing histories and levels of refinement. To test this hypothesis, RuBisCO from alfalfa with 4 different processing histories were subjected to the INFOGEST IVPD protocol and measurement of free N-terminals and peptidomics. The result showed that the digestibility of RuBisCO was high regardless of the processing history and purity, as demonstrated by 77-99% sequence coverage in the gastric phase. In intestinal phase, increase of free N-terminals and lower sequence coverage (< 10%) indicated that the proteins were hydrolyzed to smaller peptides.
Collapse
Affiliation(s)
- Hartono Tanambell
- Department of Food Science, Faculty of Technical Sciences, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark; CiFOOD Aarhus University Centre for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | - Marianne Danielsen
- Department of Food Science, Faculty of Technical Sciences, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark; CBIO Aarhus University Centre for Circular Bioeconomy, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | - Tove Gulbrandsen Devold
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Anders Hauer Møller
- Department of Food Science, Faculty of Technical Sciences, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark; CiFOOD Aarhus University Centre for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark; CBIO Aarhus University Centre for Circular Bioeconomy, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | - Trine Kastrup Dalsgaard
- Department of Food Science, Faculty of Technical Sciences, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark; CiFOOD Aarhus University Centre for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark; CBIO Aarhus University Centre for Circular Bioeconomy, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark.
| |
Collapse
|
10
|
Zhang L, Luo X, Zhang G, Zang X, Wen D. Nitrogen and phosphorus addition promote invasion success of invasive species via increased growth and nutrient accumulation under elevated CO2. TREE PHYSIOLOGY 2024; 44:tpad150. [PMID: 38102760 DOI: 10.1093/treephys/tpad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
In the context of the resource allocation hypothesis regarding the trade-off between growth and defence, compared with native species, invasive species generally allocate more energy to growth and less energy to defence. However, it remains unclear how global change and nutrient enrichment will influence the competition between invasive species and co-occurring native species. Here, we tested whether nitrogen (N) and phosphorus (P) addition under elevated CO2 causes invasive species (Mikania micrantha and Chromolaena odorata) to produce greater biomass, higher growth-related compounds and lower defence-related compounds than native plants (Paederia scandens and Eupatorium chinense). We grew these native and invasive species with similar morphology with the addition of N and P under elevated CO2 in open-top chambers. The addition of N alone increased the relative growth rate (RGR) by 5.4% in invasive species, and its combination with P addition or elevated CO2 significantly increased the RGR of invasive species by 7.5 or 8.1%, respectively, and to a level higher than that of native species (by 14.4%, P < 0.01). Combined N + P addition under elevated CO2 decreased the amount of defence-related compounds in the leaf, including lipids (by 17.7%) and total structural carbohydrates (by 29.0%), whereas it increased the growth-related compounds in the leaf, including proteins (by 75.7%), minerals (by 9.6%) and total non-structural carbohydrates (by 8.5%). The increased concentrations of growth-related compounds were possibly associated with the increase in ribulose 1,5-bisphosphate carboxylase oxygenase content and mineral nutrition (magnesium, iron and calcium), all of which were higher in the invasive species than in the native species. These results suggest that rising atmospheric CO2 concentration and N deposition combined with nutrient enrichment will increase the growth of invasive species more than that of native species. Our result also suggests that invasive species respond more readily to produce growth-related compounds under an increased soil nutrient availability and elevated CO2.
Collapse
Affiliation(s)
- Lingling Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No.723, Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Xianzhen Luo
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No.723, Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Guihua Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No.723, Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Xiaowei Zang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No.723, Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Dazhi Wen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No.723, Xingke Road, Tianhe District, Guangzhou 510650, China
| |
Collapse
|
11
|
Muller T, Bernier MÈ, Bazinet L. Optimization of Water Lentil (Duckweed) Leaf Protein Purification: Identification, Structure, and Foaming Properties. Foods 2023; 12:3424. [PMID: 37761132 PMCID: PMC10529404 DOI: 10.3390/foods12183424] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Water lentil, commonly known as duckweed, is an aquatic plant with great agronomic potential, as it can double its biomass in less than 24 h and contains up to 45% leaf proteins on a dry matter basis. However, extracting proteins from leaves is an arduous process due to the complexity of the matrix, which limits their uses in the food industry. In this study, water lentil protein extraction by solubilization was maximized using response surface methodology. By heating at 80 °C at pH 11 with a water lentil powder concentration of 2% or 4% for 2 h, up to 77.8% of total proteins were solubilized. Then, by precipitating the solubilized proteins at pH 4, a protein purity of 57.6% combined with a total protein yield of 60.0% was achieved. To the best of our knowledge, this is the highest leaf protein extraction yield reported in the literature with such protein purity. Proteomics analyses showed that the protein concentrate was composed of around 85.0% RubisCO, and protein structure analyses using ATR-FTIR and DSC were linked to a high protein solubility in water at pH 7. Moreover, a 1.5% protein solution of the protein concentrate at pH 7 showed excellent foaming properties compared to a 10.3% protein egg white solution. It had a superior foaming capacity (194% vs. 122%, respectively) for the same foaming stability after 60 min, which confirms water lentil proteins' potential for human nutrition and food formulation.
Collapse
Affiliation(s)
- Tristan Muller
- Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Université Laval, Quebec, QC G1V 0A6, Canada; (T.M.); (M.-È.B.)
- Laboratoire de Transformation Alimentaire et Procédés Électro Membranaires (LTAPEM), Laboratory of Food Processing and Electro Membrane Processes, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Marie-Ève Bernier
- Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Université Laval, Quebec, QC G1V 0A6, Canada; (T.M.); (M.-È.B.)
- Laboratoire de Transformation Alimentaire et Procédés Électro Membranaires (LTAPEM), Laboratory of Food Processing and Electro Membrane Processes, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Laurent Bazinet
- Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Université Laval, Quebec, QC G1V 0A6, Canada; (T.M.); (M.-È.B.)
- Laboratoire de Transformation Alimentaire et Procédés Électro Membranaires (LTAPEM), Laboratory of Food Processing and Electro Membrane Processes, Université Laval, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
12
|
Gaffey J, Rajuaria G, McMahon H, Ravindran R, Dominguez C, Jensen MA, Souza MF, Meers E, Aragonés MM, Skunca D, Sanders JPM. Green Biorefinery systems for the production of climate-smart sustainable products from grasses, legumes and green crop residues. Biotechnol Adv 2023; 66:108168. [PMID: 37146921 DOI: 10.1016/j.biotechadv.2023.108168] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/10/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Grasses, legumes and green plant wastes represent a ubiquitous feedstock for developing a bioeconomy in regions across Europe. These feedstocks are often an important source of ruminant feed, although much remains unused or underutilised. In addition to proteins, these materials are rich in fibres, sugars, minerals and other components that could also be used as inputs for bio-based product development. Green Biorefinery processes and initiatives are being developed to better capitalise on the potential of these feedstocks to produce sustainable food, feed, materials and energy in an integrated way. Such systems may support a more sustainable primary production sector, enable the valorisation of green waste streams, and provide new business models for farmers. This review presents the current developments in Green Biorefining, focusing on a broad feedstock and product base to include different models of Green Biorefinery. It demonstrates the potential and wide applicability of Green Biorefinery systems, the range of bio-based product opportunities and highlights the way forward for their broader implementation. While the potential for new products is extensive, quality control approval will be required prior to market entry.
Collapse
Affiliation(s)
- James Gaffey
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Tralee V92 CX88, Ireland; BiOrbic Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, Ireland; Dept. of Environmental Engineering, University of Limerick, Castletroy, Limerick V94 T9PX, Ireland.
| | - Gaurav Rajuaria
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Tralee V92 CX88, Ireland; BiOrbic Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Helena McMahon
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Tralee V92 CX88, Ireland; BiOrbic Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Rajeev Ravindran
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Tralee V92 CX88, Ireland; BiOrbic Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Carmen Dominguez
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Tralee V92 CX88, Ireland; BiOrbic Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Morten Ambye Jensen
- Aarhus University, Department of Biological and Chemical Engineering, Nørregade 44, 8000 Aarhus C, Denmark
| | - Macella F Souza
- Laboratory of Bioresource Recovery (RE-SOURCE LAB), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Erik Meers
- Laboratory of Bioresource Recovery (RE-SOURCE LAB), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Marta Macias Aragonés
- Technological Corporation of Andalusia (CTA), C Albert Einstein S/N, INSUR building, 4th floor, 41092 Seville, Spain
| | - Dubravka Skunca
- Faculty of Business and Law, MB University, Teodora Drajzera 27, 11040 Belgrade, Serbia
| | - Johan P M Sanders
- Grassa BV, Villafloraweg 1, 5928, SZ Venlo, the Netherlands; Valorization of Plant Production Chains, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| |
Collapse
|
13
|
Pearce FG, Brunke JE. Is now the time for a Rubiscuit or Ruburger? Increased interest in Rubisco as a food protein. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:627-637. [PMID: 36260435 PMCID: PMC9833043 DOI: 10.1093/jxb/erac414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Much of the research on Rubisco aims at increasing crop yields, with the ultimate aim of increasing plant production to feed an increasing global population. However, since the identification of Rubisco as the most abundant protein in leaf material, it has also been touted as a direct source of dietary protein. The nutritional and functional properties of Rubisco are on a par with those of many animal proteins, and are superior to those of many other plant proteins. Purified Rubisco isolates are easily digestible, nutritionally complete, and have excellent foaming, gelling, and emulsifying properties. Despite this potential, challenges in efficiently extracting and separating Rubisco have limited its use as a global foodstuff. Leaves are lower in protein than seeds, requiring large amounts of biomass to be processed. This material normally needs to be processed quickly to avoid degradation of the final product. Extraction of Rubisco from the plant material requires breaking down the cell walls and rupturing the chloroplast. In order to obtain high-quality protein, Rubisco needs to be separated from chlorophyll, and then concentrated for final use. However, with increased consumer demand for plant protein, there is increased interest in the potential of leaf protein, and many commercial plants are now being established aimed at producing Rubisco as a food protein, with over US$60 million of funding invested in the past 5 years. Is now the time for increased use of Rubisco in food production as a nitrogen source, rather than just providing a carbon source?
Collapse
Affiliation(s)
| | - Joel E Brunke
- Biomolecular Interactions Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
14
|
Anoop AA, Pillai PKS, Nickerson M, Ragavan KV. Plant leaf proteins for food applications: Opportunities and challenges. Compr Rev Food Sci Food Saf 2023; 22:473-501. [PMID: 36478122 DOI: 10.1111/1541-4337.13079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 12/13/2022]
Abstract
Plant-based proteins are gaining a lot of attention for their health benefits and are considered as an alternative to animal proteins for developing sustainable food systems. Against the backdrop, ensuring a healthy diet supplemented with good quality protein will be a massive responsibility of governments across the globe. Increasing the yield of food crops has its limitations, including low acceptance of genetically modified crops, land availability for cultivation, and the need for large quantities of agrochemicals. It necessitates the sensible use of existing resources and farm output to derive the proteins. On average, the protein content of plant leaves is similar to that of milk, which can be efficiently tapped for food applications across the globe. There has been limited research on utilizing plant leaf proteins for food product development over the years, which has not been fruitful. However, the current global food production scenario has pushed some leading economies to reconsider the scope of plant leaf proteins with dedicated efforts. It is evident from installing pilot-scale demonstration plants for protein extraction from agro-food residues to cater to the protein demand with product formulation. The present study thoroughly reviews the opportunities and challenges linked to the production of plant leaf proteins, including its nutritional aspects, extraction and purification strategies, anti-nutritional factors, functional and sensory properties in food product development, and finally, its impact on the environment. Practical Application: Plant leaf proteins are one of the sustainable and alternative source of proteins. It can be produced in most of the agroclimatic conditions without requiring much agricultural inputs. It's functional properties are unique and finds application in novel food product formulations.
Collapse
Affiliation(s)
- A A Anoop
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prasanth K S Pillai
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Michael Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | - K V Ragavan
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
15
|
Zhou H, Vu G, McClements DJ. Formulation and characterization of plant-based egg white analogs using RuBisCO protein. Food Chem 2022; 397:133808. [PMID: 35914453 DOI: 10.1016/j.foodchem.2022.133808] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 11/04/2022]
Abstract
RuBisCO protein, which can be isolated from abundant and sustainable plant sources, can mimic some of the desirable functional attributes of egg white proteins. In this study, plant-based egg white analogs were successfully produced using 10 w% RuBisCO solutions (pH 8). These protein solutions had similar apparent viscosity-shear rate profiles, shear modulus-temperature profiles, gelling temperatures, and final gel strengths as egg white. However, there were some differences. RuBisCO protein gels were slightly darker than egg white, which was attributed to the presence of phenolic impurities. Moreover, RuBisCo proteins exhibited a single thermal transition temperature (∼66 °C) whereas egg white proteins exhibited two (∼66 and ∼81 °C). RuBisCO gels were more brittle but less chewy and resilient than egg white gels. This study provides valuable insights into the potential of RuBisCO protein for formulating plant-based egg white analogs.
Collapse
Affiliation(s)
- Hualu Zhou
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Giang Vu
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
16
|
Multi-Functional Development and Utilization of Rapeseed: Comprehensive Analysis of the Nutritional Value of Rapeseed Sprouts. Foods 2022; 11:foods11060778. [PMID: 35327200 PMCID: PMC8953081 DOI: 10.3390/foods11060778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
Rapeseed is the third largest oil crop in the world and the largest oil crop in China. The multi-functional development and utilization of rapeseed is an effective measure for the high-quality development of rapeseed industry in China. In this study, several basic nutrients of eight rapeseed sprouts and five bean sprouts (3–5 varieties each) were determined, including sugar, crude protein, crude fiber, vitamin E, minerals, fatty acids, amino acids, and glucosinolates. Data analysis revealed that compared with bean sprouts, rapeseed sprouts were nutritionally balanced and were richer in active nutrients such as glucose, magnesium, selenium, vitamin E, and glucosinolate. Moreover, rapeseed sprouts exhibited reasonable amino acid composition and abundant unsaturated fatty acids (accounting for 90.32% of the total fatty acids). All these results indicated the potential of rapeseed sprout as a functional vegetable. Subsequently, three dominant nutrients including vitamin E, glucosinolate, and selenium were investigated in seeds and sprouts of 44 B. napus L. varieties. The results showed that germination raised the ratio of α-tocopherol/γ-tocopherol from 0.53 in seeds to 9.65 in sprouts, greatly increasing the content of α-tocopherol with the strongest antioxidant activity among the eight isomers of vitamin E. Furthermore, germination promoted the conversion and accumulation of glucosinolate components, especially, glucoraphanin with strong anti-cancer activity with its proportion increased from 1.06% in seeds to 1.62% in sprouts. In addition, the contents of selenium, vitamin E, and glucosinolate in rapeseed sprouts were highly correlated with those in seeds. Furthermore, these three dominant nutrients varied greatly within B. napus varieties, indicating the great potential of rapeseed sprouts to be further bio-enhanced. Our findings provide reference for the multi-purpose development and utilization of rapeseed, lay a theoretical foundation for the development of rapeseed sprout into a functional vegetable, and provide a novel breeding direction.
Collapse
|