1
|
Lu YP, Wang XH, Xia B, Wu HW, Lei Y, Cai KW, Deng ZY, Tang C, Bai WB, Zhu T, Zheng ZH. C3G improves lipid droplet accumulation in the proximal tubules of high-fat diet-induced ORG mice. Pharmacol Res 2025; 211:107550. [PMID: 39675540 DOI: 10.1016/j.phrs.2024.107550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Obesity-related glomerulopathy (ORG) represents an escalating public health with no effective treatments currently available. Abnormal lipid metabolism and lipid droplet deposition in the kidneys are key contributors to ORG. Cyanidin-3-glucoside (C3G) has shown potential in regulating lipid metabolism and may offer reno-protective effects; however, its therapeutic efficacy and underlying mechanisms in ORG remain unclear. An ORG mouse model was established, followed by an 8-week C3G intervention. The mice were divided into three groups: normal control (CT) group, ORG group, and C3G treatment group. Fecal 16S rRNA sequencing, metabolomics of feces-serum-kidney, and kidney single-cell RNA sequencing (scRNA-seq) were performed to investigate the effects and mechanisms of C3G. Compared to CT mice, ORG mice exhibited elevated serum CHO, TG, Cys-C, UACR, urinary Kim-1, and NAG levels, along with glomerular hypertrophy and tubular injury. These biochemical and pathological indicators improved following C3G treatment. Fecal 16S analysis revealed reduced gut microbiota diversity in ORG mice compared to CT mice, while C3G intervention increased gut microbiota diversity. Metabolic profiling of feces, serum, and kidney indicated reprogramming of glycerophospholipid metabolism in ORG mice, ameliorated by C3G treatment. Further analysis demonstrated that abnormal glycerophospholipid metabolites correlated with blood lipids, urinary protein, urinary tubular injury markers, and gut microbiota, specifically Lachnospiraceae and Blautia. Additionally, scRNA-seq analysis identified activation of the PPARγ/CD36 pathway in proximal tubule cells (PTCs) of ORG mice. C3G improved abnormal glycerophospholipid metabolism and alleviated injury in PTCs by inhibiting the PPARγ/CD36 pathway. C3G reduces lipid droplet accumulation in the PTCs of ORG mice by modulating the gut microbiota and inhibiting the PPARγ/CD36 pathway. These findings offer new insights and therapeutic targets for ORG.
Collapse
Affiliation(s)
- Yong-Ping Lu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China; Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xiao-Hua Wang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Bin Xia
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China; Chinese Health Risk Management Collaboration (CHRIMAC), Shenzhen, Guangdong, China
| | - Hong-Wei Wu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yan Lei
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Kai-Wen Cai
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zi-Yan Deng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wei-Bin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China.
| | - Ting Zhu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Zhi-Hua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Chang R, Liu J, Ji F, Fu L, Xu K, Yang Y, Ma A. Hypoglycemic effect of recrystallized resistant starch on high-fat diet- and streptozotocin-induced type 2 diabetic mice via gut microbiota modulation. Int J Biol Macromol 2024; 261:129812. [PMID: 38302033 DOI: 10.1016/j.ijbiomac.2024.129812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
The hypoglycemic effects of two recrystallized resistant starches, A-type (ARS) and B-type (BRS), were investigated in type 2 diabetic mice. Mice were treated with low-, medium-, or high-dose ARS, high-dose BRS, or high-dose ARS combined with BRS (ABRS). After 10 weeks of continuous intervention, the medium-dose ARS group showed a significant reduction in fasting blood glucose, area under the curve of glucose, triglyceride (P < 0.01), and low-density lipoprotein (P < 0.05) levels compared to the model group and an increase in high-density lipoprotein levels (P < 0.01). The peptide YY and glucagon-like peptide-1 levels in the high-dose ARS, BRS, and ABRS groups and the butyric acid yield in the medium-dose ARS and BRS groups were significantly increased (P < 0.01) compared to those in the model group. Medium- and high-dose ARS intervention efficiently increased the relative abundance of beneficial Bacteroidetes, Lactobacillus, Lachnospiraceae_NK4A136_group, and Faecalibaculum, and lowered the ratio of Firmicutes to Bacteroidetes. Overall, ARS exhibited greater advantages than BRS in lowering blood sugar levels.
Collapse
Affiliation(s)
- Ranran Chang
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China; School of Public Health, Qingdao University, Qingdao 266021, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Jie Liu
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China; School of Public Health, Qingdao University, Qingdao 266021, China
| | - Fangfei Ji
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China; School of Public Health, Qingdao University, Qingdao 266021, China; Shanghai Municipal Minhang District Health Promotion Centre, Shanghai 201199, China
| | - Lili Fu
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China; School of Public Health, Qingdao University, Qingdao 266021, China
| | - Kunjie Xu
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China; School of Public Health, Qingdao University, Qingdao 266021, China
| | - Yuexin Yang
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China; School of Public Health, Qingdao University, Qingdao 266021, China; National Institute of Nutrition for Health, Chinese Center for Disease Control and Prevention, Beijing 100051, China
| | - Aiguo Ma
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China; School of Public Health, Qingdao University, Qingdao 266021, China
| |
Collapse
|
3
|
Zhang Y, Guo Z, Wang J, Yue Y, Yang Y, Wen Y, Luo Y, Zhang X. Qinlian hongqu decoction ameliorates hyperlipidemia via the IRE1-α/IKKB-β/NF-κb signaling pathway: Network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116856. [PMID: 37406747 DOI: 10.1016/j.jep.2023.116856] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qinlian Hongqu decoction (QLHQD) is a traditional Chinese medicine (TCM) formula. It has previously been found to mitigate hyperlipidemia, although its mechanism requires further clarification. AIM OF THE STUDY This study explored QLHQD's mechanism in treating hyperlipidemia based on network pharmacology and experimental validation. MATERIALS AND METHODS The components of QLHQD were analyzed by means of ultrahigh performanceliquid chromatography-quadrupole/orbitrapmass spectrometry (UHPLC-Q-Orbitrap-HRMS) and the targets of hyperlipidemia were predicted using the Swiss ADME, GeneCards, OMIM, DrugBank, TTD, and PharmGKB databases. A drug-component-target-disease network was constructed using Cytoscape v3.7.1. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses were performed using the Bioinformatics platform. Based on the KEGG results, the non-alcoholic fatty liver disease signaling pathways were selected for experimental validation in an animal model. RESULTS We identified 34 components of QLHQD, 94 targets of hyperlipidemia, and 18 lipid metabolism-related pathways from the KEGG analysis. The results of the animal experiment revealed that QLHQD alleviated lipid metabolism disorders, obesity, insulin resistance, and inflammation in rats with hyperlipidemia induced by high-fat diets. Additionally, it reduced the expression of IRE1-α, TRAF2, IKKB-β, and NF-κB proteins in the liver of hyperlipidemic rats. CONCLUSION QLHQD is able to significantly mitigate hyperlipidemia induced via high-fat diets in rats. The mechanism of action in this regard might involve regulating the IRE1-α/IKKB-β/NF-κB signaling pathway in the liver, thereby attenuating inflammatory responses and insulin resistance.
Collapse
Affiliation(s)
- Yong Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Zhiqing Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Jin Wang
- College of Computer Science, Chengdu University, Chengdu, Sichuan Province, China
| | - Yuanyuan Yue
- Department of Ultrasound, Chengdu First People's Hospital, Chengdu, Sichuan Province, China
| | - Yang Yang
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan Province, China
| | - Yueqiang Wen
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yaqi Luo
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan Province, China.
| | - Xiaobo Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China.
| |
Collapse
|
4
|
Zhang B, Jiang X, Yu Y, Cui Y, Wang W, Luo H, Stergiadis S, Wang B. Rumen microbiome-driven insight into bile acid metabolism and host metabolic regulation. THE ISME JOURNAL 2024; 18:wrae098. [PMID: 38836500 PMCID: PMC11193847 DOI: 10.1093/ismejo/wrae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/20/2024] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
Gut microbes play a crucial role in transforming primary bile acids (BAs) into secondary forms, which influence systemic metabolic processes. The rumen, a distinctive and critical microbial habitat in ruminants, boasts a diverse array of microbial species with multifaceted metabolic capabilities. There remains a gap in our understanding of BA metabolism within this ecosystem. Herein, through the analysis of 9371 metagenome-assembled genomes and 329 cultured organisms from the rumen, we identified two enzymes integral to BA metabolism: 3-dehydro-bile acid delta4,6-reductase (baiN) and the bile acid:Na + symporter family (BASS). Both in vitro and in vivo experiments were employed by introducing exogenous BAs. We revealed a transformation of BAs in rumen and found an enzyme cluster, including L-ribulose-5-phosphate 3-epimerase and dihydroorotate dehydrogenase. This cluster, distinct from the previously known BA-inducible operon responsible for 7α-dehydroxylation, suggests a previously unrecognized pathway potentially converting primary BAs into secondary BAs. Moreover, our in vivo experiments indicated that microbial BA administration in the rumen can modulate amino acid and lipid metabolism, with systemic impacts underscored by core secondary BAs and their metabolites. Our study provides insights into the rumen microbiome's role in BA metabolism, revealing a complex microbial pathway for BA biotransformation and its subsequent effect on host metabolic pathways, including those for glucose, amino acids, and lipids. This research not only advances our understanding of microbial BA metabolism but also underscores its wider implications for metabolic regulation, offering opportunities for improving animal and potentially human health.
Collapse
Affiliation(s)
- Boyan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Xianzhe Jiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Yue Yu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Yimeng Cui
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Hailing Luo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Sokratis Stergiadis
- Department of Animal Sciences, School of Agriculture Policy and Development, University of Reading, Reading RG6 6EU, United Kingdom
| | - Bing Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
5
|
Liu L, Lei S, Lin X, Ji J, Wang Y, Zheng B, Zhang Y, Zeng H. Lotus seed resistant starch and sodium lactate regulate small intestinal microflora and metabolite to reduce blood lipid. Int J Biol Macromol 2023; 233:123553. [PMID: 36740125 DOI: 10.1016/j.ijbiomac.2023.123553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023]
Affiliation(s)
- Lu Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Suzhen Lei
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoli Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yanbo Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
6
|
Fang WW, Wang KF, Zhou F, Ou-Yang J, Zhang ZY, Liu CW, Zeng HZ, Huang JA, Liu ZH. Oolong tea of different years protects high-fat diet-fed mice against obesity by regulating lipid metabolism and modulating the gut microbiota. Food Funct 2023; 14:2668-2683. [PMID: 36883322 DOI: 10.1039/d2fo03577d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Long-term stored oolong tea has recently attracted considerable attention concerning its salutary effect. In this study, the anti-obesity effect of different years' oolong tea on high-fat diet-fed mice was compared. Wuyi rock tea of 2001, 2011, and 2020 were chosen to be the representative samples of oolong tea. The results showed that eight-week administration of 2001 Wuyi rock tea (WRT01), 2011 Wuyi rock tea (WRT11), and 2020 Wuyi rock tea (WRT20) extracts (400 mg per kg per d) significantly decreased the body weight and attenuated the obesity in high-fat diet-fed mice. 2001 and 2011 Wuyi rock teas reduced obesity mainly through regulating lipid metabolism and activating the AMPK/SREBP-1 pathway, downregulating the expression of SREBP-1, FAS, and ACC and upregulating CPT-1a expression; while the 2011 and 2020 Wuyi rock teas by moderating the gut microbiota dysbiosis, reshaping the gut microbiota, and promoting the growth of beneficial bacteria, especially Akkermansia. 2011 Wuyi rock tea was proven to be more effective in reducing body weight gain and liver oxidative stress than the others. Collectively, all three Wuyi rock teas of different years alleviated high-fat diet-induced obesity by regulating lipid metabolism and modulating gut microbiota, whereas the emphasis of their internal mechanism is different with different storage ages.
Collapse
Affiliation(s)
- Wen-Wen Fang
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Kuo-Fei Wang
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Fang Zhou
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Jie Ou-Yang
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Zi-Ying Zhang
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Chang-Wei Liu
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Hong-Zhe Zeng
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Jian-An Huang
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Zhong-Hua Liu
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
7
|
Effect of lotus seed resistant starch on small intestinal flora and bile acids in hyperlipidemic rats. Food Chem 2023; 404:134599. [DOI: 10.1016/j.foodchem.2022.134599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/21/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
|
8
|
Xu M, Lan R, Qiao L, Lin X, Hu D, Zhang S, Yang J, Zhou J, Ren Z, Li X, Liu G, Liu L, Xu J. Bacteroides vulgatus Ameliorates Lipid Metabolic Disorders and Modulates Gut Microbial Composition in Hyperlipidemic Rats. Microbiol Spectr 2023; 11:e0251722. [PMID: 36625637 PMCID: PMC9927244 DOI: 10.1128/spectrum.02517-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hyperlipidemia is a risk factor and key indicator for cardiovascular diseases, and the gut microbiota is highly associated with hyperlipidemia. Bacteroides vulgatus is a prevalent mutualist across human populations and confers multiple health benefits such as immunoregulation, antiobesity, and coronary artery disease intervention. However, its role in antihyperlipidemia has not been systematically characterized. This study sought to identify the effect of B. vulgatus Bv46 on hyperlipidemia. Hyperlipidemic rats were modeled by feeding them a high-fat diet for 6 weeks. The effect of B. vulgatus Bv46 supplementation was evaluated by measuring anthropometric parameters, lipid and inflammation markers, and the liver pathology. Multi-omics was used to explore the underlying mechanisms. The ability of B. vulgatus Bv46 to produce bile salt hydrolase was confirmed by gene annotation and in vitro experiments. Oral administration of B. vulgatus Bv46 in hyperlipidemic rats significantly reduced the body weight gain, food efficiency, and liver index, improved the serum lipid profile, lowered the levels of serum inflammatory cytokines, promoted the loss of fecal bile acids (BAs), and extended the fecal pool of short-chain fatty acids (SCFAs), especially propionate and butyrate. B. vulgatus Bv46 induced compositional shifts of the gut microbial community of hyperlipidemic rats, characterized by a lower ratio of Firmicutes to Bacteroidetes with an increase of genera Bacteroides and Parabacteroides. After intervention, serum metabolite profiling exhibited an adaptation in amino acids and glycerophospholipid metabolism. Transcriptomics further detected altered biological processes, including primary bile acid biosynthesis and fatty acid metabolic process. Taken together, the findings suggest that B. vulgatus Bv46 could be a promising candidate for interventions against hyperlipidemia. IMPORTANCE As a core microbe of the human gut ecosystem, Bacteroides vulgatus has been linked to multiple aspects of metabolic disorders in a collection of associative studies, which, while indicative, warrants more direct experimental evidence to verify. In this study, we experimentally demonstrated that oral administration of B. vulgatus Bv46 ameliorated the serum lipid profile and systemic inflammation of high-fat diet-induced hyperlipidemic rats in a microbiome-regulated manner, which appears to be associated with changes of bile acid metabolism, short-chain fatty acid biosynthesis, and serum metabolomic profile. This finding supports the causal contribution of B. vulgatus in host metabolism and helps to form the basis of novel therapies for the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Mingchao Xu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Lei Qiao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoying Lin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dalong Hu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Suping Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Juan Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhihong Ren
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xianping Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guoxing Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianguo Xu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
- Institute of Public Health, Nankai University, Tianjin, China
| |
Collapse
|
9
|
Oral Administration of Lotus-Seed Resistant Starch Protects against Food Allergy. Foods 2023; 12:foods12040737. [PMID: 36832810 PMCID: PMC9956242 DOI: 10.3390/foods12040737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Food allergy is a serious food safety and public health issue. However, the medical interventions for allergy treatment are still suboptimal. Recently, the gut microbiome-immune axis has been considered as a promising target to reduce the symptoms of food allergy. In this study, we explore the oral administration of lotus-seed resistant starch as a means to protect against food allergy using an ovalbumin (OVA) sensitization and challenge rodent model. The results obtained showed that lotus-seed resistant starch intervention alleviated the food allergy symptoms (such as reductions in body temperature and allergic diarrhea). Furthermore, lotus-seed resistant starch also attenuated the increase in OVA-specific immunoglobulins and improved Th1/Th2 imbalance in OVA-sensitized mice. These anti-allergic effects might be associated with the actions of lotus-seed resistant starch on intestinal microbiota. Taken together, our findings suggest that daily ingestion of lotus-seed resistant starch might be effective for the alleviation of food allergy.
Collapse
|
10
|
Chen D, Su M, Zhu H, Zhong G, Wang X, Ma W, Wanapat M, Tan Z. Using Untargeted LC-MS Metabolomics to Identify the Association of Biomarkers in Cattle Feces with Marbling Standard Longissimus Lumborum. Animals (Basel) 2022; 12:2243. [PMID: 36077963 PMCID: PMC9455031 DOI: 10.3390/ani12172243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Background: To improve the grade of beef marbling has great economic value in the cattle industry since marbling has the traits of high quality and comprehensive nutrition. And because of the marbling’s importance and complexity, it is indispensable to explore marbled beef at multiple levels. This experiment studied the relationship between fecal metabolites and marbling characters, and further screened biomarkers. Results: We performed fecal metabolomics analysis on 30 individuals selected from 100 crossbreed cattle (Luxi Yellow cattle ♀ × Japanese Wagyu cattle ♂), 15 with an extremely high-grade marbling beef and 15 with an extremely low-grade marbling beef. A total of 9959 and 8389 m/z features were detected in positive ionization and negative ionization mode by liquid chromatography-mass spectrometry (LC-MS). Unfortunately, the sample separation in the PCA is not obvious, and the predictive ability of the orthogonal partial least squares discrimination analysis (OPLS-DA) model is not good. However, we got six differential metabolites filtered by VIP > 1 and p < 0.05. After that, we used weighted correlation network analysis (WGCNA) and found out a module in each positive and negative mode most related to the trait of marbling beef, and then identified three metabolites in positive mode. By further annotation of the Kyoto encyclopedia of genes and genomes (KEGG), it was found that these metabolites involved a variety of metabolic ways, including sphingomyelin metabolism, linoleic acid metabolism, glycerophospholipid metabolism, and so on. Finally, receiver operating characteristic (ROC) analysis was used to evaluate the predictability of metabolites, and the result showed that SM(d18:0/16:1(9Z)) (AUC = 0.72), PC(15:0/18:2(9Z,12Z)) (AUC = 0.72), ADP (AUC = 0.71), PC(16:0/16:0) (AUC = 0.73), and 3-O-Sulfogalactosylceramide (d18:1/18:0) (AUC = 0.69) have an accuracy diagnosis. Conclusions: In conclusion, this study supports new opinions for the successive evaluation of marbling beef through metabolites. Furthermore, six non-invasive fecal metabolites that can evaluate beef marbling grade were found, including SM(d18:0/16:1(9Z)), PC(15:0/18:2(9Z,12Z)), ADP, PC(16:0/16:0), and 3-O-Sulfogalactosylceramide.
Collapse
Affiliation(s)
- Dong Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Minchao Su
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - He Zhu
- College of Food Science and Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China
- National Engineering Laboratory for Rice and By-Products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
- Technology Center of Gaoqing Black Cattle Product Processing and Quality Improvement, Zibo 255000, China
| | - Gang Zhong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoyan Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Weimin Ma
- Technology Center of Gaoqing Black Cattle Product Processing and Quality Improvement, Zibo 255000, China
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Facully of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Zhiliang Tan
- Institute of Subtropical Agriculture of the Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
11
|
Fu Q, Huang H, Ding A, Yu Z, Huang Y, Fu G, Huang Y, Huang X. Portulaca oleracea polysaccharides reduce serum lipid levels in aging rats by modulating intestinal microbiota and metabolites. Front Nutr 2022; 9:965653. [PMID: 35983485 PMCID: PMC9378863 DOI: 10.3389/fnut.2022.965653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Metabolic diseases characterized by dyslipidemia are common health problems for elderly populations. Dietary fiber intake is inversely associated with the risk of dyslipidemia. This study investigated the effects of Portulaca oleracea polysaccharide (POP) on the intestinal microbiota and its metabolites in aging rats using 16S rRNA sequencing and metabolomics techniques. Our results showed that POPs reduced the ratio of Firmicutes/Bacteroidetes (F/B), relative abundance of Fusobacteria, and levels of triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), alanine aminotransferase (ALT), and gamma-glutamyl transferase (γ-GT) in the serum of aging rats. POP supplementation also reduced 5beta-cholestane-3alpha,7alpha,12alpha,25-tetrol, and vaccenic acid concentrations in lipids and lipoid-like molecules, while soyasapogenol E and monoacylglycerol (MG) (24:0/0:0/0:0) levels increased. This study demonstrated that POP’s beneficial effects on lipid levels in aging rats might be partially attributable to the modification of gut microbiota and related metabolites.
Collapse
Affiliation(s)
- Qiang Fu
- College of Medicine, Jinggangshan University, Ji'an, China.,Institute of Spinal Diseases, Jinggangshan University, Ji'an, China
| | - Hui Huang
- College of Medicine, Jinggangshan University, Ji'an, China
| | - Aiwen Ding
- College of Medicine, Jinggangshan University, Ji'an, China
| | - Ziqi Yu
- College of Medicine, Jinggangshan University, Ji'an, China
| | - Yuping Huang
- Department of Biochemistry and Molecular Biology, Gannan Medical University, Ganzhou, China
| | - Guiping Fu
- College of Medicine, Jinggangshan University, Ji'an, China
| | - Yushan Huang
- Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoliu Huang
- College of Medicine, Jinggangshan University, Ji'an, China.,Institute of Spinal Diseases, Jinggangshan University, Ji'an, China
| |
Collapse
|