1
|
Kumar V, Johnson BP, Mandal PS, Sheffield DR, Dimas DA, Das R, Maity S, Distefano MD, Singh S. The utility of Streptococcus mutans undecaprenol kinase for the chemoenzymatic synthesis of diverse non-natural isoprenoids. Bioorg Chem 2024; 151:107707. [PMID: 39128243 PMCID: PMC11365746 DOI: 10.1016/j.bioorg.2024.107707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/08/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Isoprene chemoenzymatic cascades (ICCs) overcome the complexity of natural pathways by leveraging a streamlined two-enzyme cascade, facilitating efficient synthesis of C5-isoprene diphosphate precursors from readily available alcohol derivatives. Despite the documented promiscuity of enzymes in ICCs, exploration of their potential for accessing novel compounds remains limited, and existing methods require additional enzymes for generating longer-chain diphosphates. In this study, we present the utility of Streptococcus mutans undecaprenol kinase (SmUdpK) for the chemoenzymatic synthesis of diverse non-natural isoprenoids. Using a library of 50 synthetic alcohols, we demonstrate that SmUdpK's promiscuity extends to allylic chains as small as four carbons and benzylic alcohols with various substituents. Subsequently, SmUdpK is utilized in an ICC with isopentenyl phosphate kinase and aromatic prenyltransferase to generate multiple non-natural isoprenoids. This work provides evidence that, with proper optimization, SmUdpK can act as the first enzyme in these ICCs, enhancing access to both valuable and novel compounds.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 1000, Norman, OK 73019, United States
| | - Bryce P Johnson
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 1000, Norman, OK 73019, United States
| | - Prashant S Mandal
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 1000, Norman, OK 73019, United States
| | - Daniel R Sheffield
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 1000, Norman, OK 73019, United States
| | - Dustin A Dimas
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 1000, Norman, OK 73019, United States
| | - Riki Das
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, United States
| | - Sanjay Maity
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, United States
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, United States
| | - Shanteri Singh
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 1000, Norman, OK 73019, United States.
| |
Collapse
|
2
|
Zhang X, Yao W, Tang Y, Ye J, Niu T, Yang L, Wang R, Wang Z. Coupling the Isopentenol Utilization Pathway and Prenyltransferase for the Biosynthesis of Licoflavanone in Recombinant Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15832-15840. [PMID: 38957132 DOI: 10.1021/acs.jafc.4c03655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Prenylflavonoids are promising candidates for food additives and functional foods due to their diverse biological activities and potential health benefits. However, natural prenylflavonoids are generally present in low abundance and are limited to specific plant species. Here, we report the biosynthesis of licoflavanone from naringenin and prenol by recombinant Escherichia coli. By investigating the activities of seven different sources of prenyltransferases overexpressed in E. coli toward various flavonoid substrates, the prenyltransferase AnaPT exhibits substrate preference when naringenin serves as the prenyl acceptor. Furthermore, licoflavanone production was successfully achieved by coupling the isopentenol utilization pathway and AnaPT in recombinant E. coli. In addition, the effects of fermentation temperatures, induction temperatures, naringenin concentrations, and substrate feeding strategies were investigated on the biosynthesis of licoflavanone in recombinant E. coli. Consequently, the recombinant E. coli strain capable of improved dimethylallyl diphosphate (DMAPP) supply and suitable for prenylflavonoid biosynthesis increased licoflavanone titers to 142.1 mg/L in a shake flask and to 537.8 mg/L in a 1.3 L fermentor, which is the highest yield for any prenylflavonoids reported to date. These strategies proposed in this study provide a reference for initiating the production of high-value prenylflavonoids.
Collapse
Affiliation(s)
- Xuxuan Zhang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weilin Yao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuanyuan Tang
- School of Pharmacy, Qinghai Nationalities University, Xining 810007, China
| | - Ju Ye
- School of Pharmacy, Qinghai Nationalities University, Xining 810007, China
| | - Tengfei Niu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rufeng Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
3
|
Johnson BP, Mandal PS, Brown SM, Thomas LM, Singh S. Ternary complexes of isopentenyl phosphate kinase from Thermococcus paralvinellae reveal molecular determinants of non-natural substrate specificity. Proteins 2024; 92:808-818. [PMID: 38333996 PMCID: PMC11147733 DOI: 10.1002/prot.26674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/18/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Isopentenyl phosphate kinases (IPKs) have recently garnered attention for their central role in biocatalytic "isoprenol pathways," which seek to reduce the synthesis of the isoprenoid precursors to two enzymatic steps. Furthermore, the natural promiscuity of IPKs toward non-natural alkyl-monophosphates (alkyl-Ps) as substrates has hinted at the isoprenol pathways' potential to access novel isoprenoids with potentially useful activities. However, only a handful of IPK crystal structures have been solved to date, and even fewer of these contain non-natural substrates bound in the active site. The current study sought to elucidate additional ternary complexes bound to non-natural substrates using the IPK homolog from Thermococcus paralvinellae (TcpIPK). Four such structures were solved, each bound to a different non-natural alkyl-P and the phosphoryl donor substrate/product adenosine triphosphate (ATP)/adenosine diphosphate (ADP). As expected, the quaternary, tertiary, and secondary structures of TcpIPK closely resembled those of IPKs published previously, and kinetic analysis of a novel alkyl-P substrate highlighted the potentially dramatic effects of altering the core scaffold of the natural substrate. Even more interesting, though, was the discovery of a trend correlating the position of two α helices in the active site with the magnitude of an IPK homolog's reaction rate for the natural reaction. Overall, the current structures of TcpIPK highlight the importance of continued structural analysis of the IPKs to better understand and optimize their activity with both natural and non-natural substrates.
Collapse
Affiliation(s)
- Bryce P. Johnson
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Prashant S. Mandal
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Sara M. Brown
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Leonard M. Thomas
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Shanteri Singh
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
4
|
Li W, Yan X, Xia W, Zhao L, Pei J. Enzymatic properties and immobilization of a thermostable prenyltransferase from Aspergillus fumigatiaffinis for the production of prenylated naringenin. Bioorg Chem 2024; 145:107183. [PMID: 38340474 DOI: 10.1016/j.bioorg.2024.107183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Prenyltransferases catalyze the synthesis of prenylated flavonoids, providing these with greater lipid solubility, biological activity, and availability. In this study, a thermostable prenyltransferase (AfPT) from Aspergillus fumigatiaffinis was cloned and expressed in Escherichia coli. By optimizing induction conditions, the expression level of AfPT reached 39.3 mU/mL, which was approximately 200 % of that before optimization. Additionally, we determined the enzymatic properties of AfPT. Subsequently, AfPT was immobilized on carboxymethyl cellulose magnetic nanoparticles (CMN) at a maximum load of 0.6 mg/mg. Optimal activity of CMN-AfPT was achieved at pH 8.0 and 55 °C. Thermostability assays showed that the residual activity of CMN-AfPT was greater than 50 % after incubation at 55 °C for 4 h. Km and Vmax of CMN-AfPT for naringenin were 0.082 mM and 5.57 nmol/min/mg, respectively. The Kcat/Km ratio of CMN-AfPT was higher than that of AfPT. Residual prenyltransferase activity of CMN-AfPT remained higher than 70 % even after 30 days of storage. Further, CMN-AfPT retained 68 % of its original activity after 10 cycles of reuse. Compared with free AfPT, CMN-AfPT showed higher catalytic efficiency, thermostability, metal ion tolerance, substrate affinity, storage stability, and reusability. Our study presents a thermostable prenyltransferase and its immobilized form for the production of prenylated flavonoids in vitro.
Collapse
Affiliation(s)
- Wenbo Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Xin Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Wenli Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China.
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China.
| |
Collapse
|
5
|
Zhang X, Wang X, Zhang Y, Wang F, Zhang C, Li X. Development of isopentenyl phosphate kinases and their application in terpenoid biosynthesis. Biotechnol Adv 2023; 64:108124. [PMID: 36863457 DOI: 10.1016/j.biotechadv.2023.108124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
Abstract
As the largest class of natural products, terpenoids (>90,000) have multiple biological activities and a wide range of applications (e.g., pharmaceutical, agricultural, personal care and food industries). Therefore, the sustainable production of terpenoids by microorganisms is of great interest. Microbial terpenoid production depends on two common building blocks: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In addition to the natural biosynthetic pathways, mevalonate and methyl-D-erythritol-4-phosphate pathways, IPP and DMAPP can be produced through the conversion of isopentenyl phosphate and dimethylallyl monophosphate by isopentenyl phosphate kinases (IPKs), offering an alternative route for terpenoid biosynthesis. This review summarizes the properties and functions of various IPKs, novel IPP/DMAPP synthesis pathways involving IPKs, and their applications in terpenoid biosynthesis. Furthermore, we have discussed strategies to exploit novel pathways and unleash their potential for terpenoid biosynthesis.
Collapse
Affiliation(s)
- Xinyi Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xun Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Fei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
An T, Feng X, Li C. Prenylation: A Critical Step for Biomanufacturing of Prenylated Aromatic Natural Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2211-2233. [PMID: 36716399 DOI: 10.1021/acs.jafc.2c07287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Prenylated aromatic natural products (PANPs) have received much attention due to their biomedical benefits for human health. The prenylation of aromatic natural products (ANPs), which is mainly catalyzed by aromatic prenyltransferases (aPTs), contributes significantly to their structural and functional diversity by providing higher lipophilicity and enhanced bioactivity. aPTs are widely distributed in bacteria, fungi, animals, and plants and play a key role in the regiospecific prenylation of ANPs. Recent studies have greatly advanced our understanding of the characteristics and application of aPTs. In this review, we comment on research progress regarding sources, evolutionary relationships, structural features, reaction mechanism, engineering modification, and application of aPTs. Particular emphasis is also placed on recent advances, challenges, and prospects about applications of aPTs in microbial cell factories for producing PANPs. Generally, this review could provide guidance for using aPTs as robust biocatalytic tools to produce various PANPs with high efficiency.
Collapse
Affiliation(s)
- Ting An
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xudong Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Department of Chemical Engineering, Key Lab for Industrial Biocatalysis, Ministry of Education, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Regiospecific 3’-C-prenylation of Naringenin by Nocardiopsis gilva Prenyltransferase. Enzyme Microb Technol 2022; 163:110154. [DOI: 10.1016/j.enzmictec.2022.110154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
|
8
|
Qiu C, Liu Y, Wu Y, Zhao L, Pei J. Functional Characterization and Screening of Promiscuous Kinases and Isopentenyl Phosphate Kinases for the Synthesis of DMAPP via a One-Pot Enzymatic Cascade. Int J Mol Sci 2022; 23:12904. [PMID: 36361694 PMCID: PMC9654404 DOI: 10.3390/ijms232112904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 06/29/2024] Open
Abstract
Dimethylallyl diphosphate (DMAPP) is a key intermediate metabolite in the synthesis of isoprenoids and is also the prenyl donor for biosynthesizing prenylated flavonoids. However, it is difficult to prepare DMAPP via chemical and enzymatic methods. In this study, three promiscuous kinases from Shigella flexneri (SfPK), Escherichia coli (EcPK), and Saccharomyces cerevisiae (ScPK) and three isopentenyl phosphate kinases from Methanolobus tindarius (MtIPK), Methanothermobacter thermautotrophicus str. Delta H (MthIPK), and Arabidopsis thaliana (AtIPK) were cloned and expressed in Escherichia coli. The enzymatic properties of recombinant enzymes were determined. The Kcat/Km value of SfPK for DMA was 6875 s-1 M-1, which was significantly higher than those of EcPK and ScPK. The Kcat/Km value of MtIPK for DMAP was 402.9 s-1 M-1, which was ~400% of that of MthIPK. SfPK was stable at pH 7.0-9.5 and had a 1 h half-life at 65 °C. MtIPK was stable at pH 6.0-8.5 and had a 1 h half-life at 50 °C. The stability of SfPK and MtIPK was better than that of the other enzymes. Thus, SfPK and MtIPK were chosen to develop a one-pot enzymatic cascade for producing DMAPP from DMA because of their catalytic efficiency and stability. The optimal ratio between SfPK and MtIPK was 1:8. The optimal pH and temperature for the one-pot enzymatic cascade were 7.0 and 35 °C, respectively. The optimal concentrations of ATP and DMA were 10 and 80 mM, respectively. Finally, maximum DMAPP production reached 1.23 mM at 1 h under optimal conditions. Therefore, the enzymatic method described herein for the biosynthesis of DMAPP from DMA can be widely used for the synthesis of isoprenoids and prenylated flavonoids.
Collapse
Affiliation(s)
- Cong Qiu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Yang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Yangbao Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| |
Collapse
|
9
|
Combinatorial Engineering of Upper Pathways and Carotenoid Cleavage Dioxygenase in Escherichia coli for Pseudoionone Production. Appl Biochem Biotechnol 2022; 194:5977-5991. [DOI: 10.1007/s12010-022-04078-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
|