1
|
Xu Y, Wang J, Han R, Du X, Hai X, Zhang J, Wang J. Colorimetric and fluorescent probes for cysteine detection: Applications in food safety and cellular imaging. Food Chem 2025; 463:141044. [PMID: 39236386 DOI: 10.1016/j.foodchem.2024.141044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/01/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
In this study, three BODIPY-based fluorescent probes were designed and synthesized. The ultraviolet-visible spectra, fluorescence spectra, smartphone color recognition application and bioimaging were utilized to evaluate the capacity of the probes. By comparing key parameters, BDP-SIN had optimal performances including fastest response (10 min), highest signal-to-noise ratio (815 times) and lowest limit of detection (LOD = 49 nM). The recovery rate ranged from 92.04 % to 103.25 %. Meanwhile, BDP-SIN was triumphantly employed for determination of Cys in different daily food samples. Moreover, the test strips and microporous filter membrane loaded with BDP-SIN were developed for the portable real-time visualization and quantitative detection of Cys in food samples, which the contents ranged from 0.27 μM to 0.49 μM. Besides, BDP-SIN could image Cys in the living cells and mice. The novelty of this work was that developed an effective tool for researching the roles of Cys in food industry and living organisms.
Collapse
Affiliation(s)
- Yingying Xu
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, PR China
| | - Jiamin Wang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, PR China.
| | - Ruiqi Han
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineening, Henan University, Kaifeng 475004, PR China
| | - Xiaolin Du
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, PR China
| | - Xue Hai
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, PR China
| | - Jian Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineening, Henan University, Kaifeng 475004, PR China.
| | - Jianhong Wang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, PR China.
| |
Collapse
|
2
|
Hu X, Duan R, Wang J, Li M, Chen H, Zhang J, Zeng L. Simultaneous detection of cysteine and glutathione in food with a two-channel near-infrared fluorescent probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125098. [PMID: 39255549 DOI: 10.1016/j.saa.2024.125098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
L-Cysteine (Cys) and glutathione (GSH) are closely related biological species that widely exist in food and living cells. To simultaneously detect Cys and GSH from different emission channels, we developed a fluorescent probe (BDP-NBD) based on near-infrared BODIPY and 7-nitrobenzofurazan (NBD). Upon nucleophilic substitution reaction with GSH, BDP-NBD generated an emission band at 713 nm, which can be used to determine GSH (0-100 μM) with a low detection limit (34 nM). Different from GSH, BDP-NBD underwent a nucleophilic substitution-rearrangement reaction with Cys, affording two emission bands at 550 nm and 713 nm, respectively. BDP-NBD was successfully employed to quantify Cys and GSH in various food samples with good recoveries (86.6%-104.6%). Besides, BDP-NBD can image Cys and GSH in living cells from two emission channels. Therefore, this work developed a tool for the simultaneous determination of Cys and GSH in both food and living cells so as to ensure food safety and human health.
Collapse
Affiliation(s)
- Xichao Hu
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Ruizhe Duan
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jiali Wang
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Mingchao Li
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Hong Chen
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Jin Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Lintao Zeng
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
3
|
Su Y, Li L, Xiang P, Liu N, Huang J, Zhou H, Deng Y, Peng C, Cao Z, Fang Y. The first ER-targeting flavone-based fluorescent probe for Cys: Applications in real-time tracking in an epilepsy model and food analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124975. [PMID: 39154402 DOI: 10.1016/j.saa.2024.124975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Epilepsy is one of the most commonly-seen neurological disorders, and both endoplasmic reticulum stress (ERS) and oxidative stress (OS) have been demonstrated to be associated with epileptic seizures. As one of the three endogenous thiol-containing amino acids, cysteine (Cys) is recognized not only as an important biomarker of various biological processes but also widely used as a significant additive in the food industry. However, the exact role that Cys plays in ERS has not been well answered up to now. In this paper, we reported the first flavone-based fluorescent probe (namely BFC) with nice endoplasmic reticulum (ER)-targeting ability, which was capable of monitoring Cys in a fast response (3.0 min), large stokes shift (130 nm) and low detection limit (10.4 nM). The recognition mechanism of Cys could be attributed to the addition-cyclization reaction involving a Cys residue and an acrylate group, resulting in the release of the strong excited-state intramolecular proton transfer (ESIPT) emission molecule of benzoflavonol (BF). The low cytotoxicity and good biocompatibility of the probe BFC allowed for monitoring the fluctuation of endogenous Cys levels under both ERS and OS processes, as well as in zebrafish models of epilepsy. Quantitative determination of Cys with the probe BFC was also achieved in three different food samples. Additionally, a probe-immersed test strips integrated with a smartphone device was successfully constructed for on-site colorimetric detection of Cys. Undoubtedly, our work provided a valuable tool for tracking Cys levels in both an epilepsy model and real food samples.
Collapse
Affiliation(s)
- Yuting Su
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Longxuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peini Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Nianjia Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jianjun Huang
- Department of Chemistry, KU Leuven, Celestijnenlaan 200f-bus 02404, 3001 Leuven, Belgium.
| | - Houcheng Zhou
- Sichuan New Green Pharmaceutical Technology Development Co. Ltd., Chengdu 611930, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yuyu Fang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Sichuan New Green Pharmaceutical Technology Development Co. Ltd., Chengdu 611930, China.
| |
Collapse
|
4
|
Yang Z, Kang X, Li J, Li L, Ye X, Liu X, Chen K, Deng Y, Peng C, Ren B, Cao Z, Fang Y. A novel LD-targeting cysteine-activated fluorescent probe for diagnosis of APAP-induced liver injury and its application in food analysis. Food Chem 2024; 456:140064. [PMID: 38878548 DOI: 10.1016/j.foodchem.2024.140064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 07/24/2024]
Abstract
Cysteine (Cys) not only plays an indispensable role in maintaining the redox balance in organisms, but is also an important nutrient in the food industry. Fluorescence-based detection systems have emerged as an effective method to track the locations and concentrations of different species. To achieve efficient monitoring of Cys in both food samples and biological systems, a novel lipid droplet (LD) targeted fluorescent probe (namely NIT-Cys) was constructed for the turn-on detection of Cys, characterized by a large Stokes shift (142 nm), a short response time (<8 min), and a low Cys detection limit (39 nM). Furthermore, the NIT-Cys probe has been successfully used not only to quantify the amounts of Cys in selected food samples, but also to enable the visualization of endogenous Cys in acetaminophen (APAP)-induced drug-induced liver injury cells, zebrafish larvae and mice models. Consequently, the work presented here provides an efficient tool for monitoring Cys.
Collapse
Affiliation(s)
- Zhiqiang Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Kang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Longxuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaoping Ye
- Department of Oncology and Ultrasound, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaoya Liu
- Department of Oncology and Ultrasound, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Kun Chen
- Department of Urology, Traditional Chinese Medicine Hospital of Pidu District, Chengdu 611730, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bo Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yuyu Fang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Sichuan New Green Pharmaceutical Technology Development Co. Ltd., Chengdu 611930, China.
| |
Collapse
|
5
|
Zhou M, Liu C, Lin Y, Bai T, Ye T, Qian Z, Li L, Guo L, Liu H, Wang J. Novel near-infrared fluorescent probe with large stokes shift for detection of cysteine in food sample and living cells. Food Chem 2024; 464:141755. [PMID: 39471557 DOI: 10.1016/j.foodchem.2024.141755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/24/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Cysteine (Cys) plays a pivotal role in numerous physiological processes and holds significant importance in food analysis. In this study, we designed a novel near-infrared (NIR) fluorescent probe TF for specifically detecting Cys, derived from benzo[e]indole-conjugated tetrahydro-acridine salt. Leveraging the electron-withdrawing properties of the 3,5-bis(trifluoromethyl)benzenethiol group, the probe exhibits a distinctive colorimetric response and a notable enhancement in NIR emission, featuring a substantial Stokes shift of 135 nm, facilitating precise Cys detection. The detection mechanism was elucidated through comprehensive analyses including NMR, MS spectral, and quantum theory calculations. Moreover, the probe demonstrates exceptional attributes such as rapid response (8 min), exceptional selectivity, and sensitivity (with a detection limit as low as 74 nM). The probe's NIR fluorescent response, coupled with its large Stokes shift, enables accurate quantification of Cys in real food samples and facilitates imaging for monitoring both exogenous and endogenous Cys levels in living cells.
Collapse
Affiliation(s)
- Min Zhou
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; College of Chemistry and Material Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Chunyan Liu
- College of Chemistry and Material Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yanfei Lin
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Tianwen Bai
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Tianqing Ye
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Zhaosheng Qian
- College of Chemistry and Material Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lei Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Longhua Guo
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| | - Jianbo Wang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
6
|
Liu C, Lin Y, Chen Z, Ye T, Qian Z, Li L, Guo L, Liu H, Wang J. Novel Colorimetric and Near-Infrared Ratiometric Fluorescent Probe for Sensing Cysteine in Food Samples, Plants, and Living Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23580-23591. [PMID: 39380141 DOI: 10.1021/acs.jafc.4c06381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Cysteine (Cys) is a crucial biothiol that acts a significant function in food samples and biological systems, including plant roots and living cells. Hence, we developed a novel colorimetric and near-infrared ratiometric fluorescent probe (CT), composed of coumarin and tetrahydroacridine-conjugated indole salt, for the detection of Cys. Upon reaction with Cys, the probe undergoes a specific N-substitution reaction, resulting in a notable colorimetric change and a significant ratiometric fluorescent response in both visible and near-infrared emission channels. These dual-channel ratiometric fluorescence changes are completely independent, enabling the probe to obtain great selectivity, sensitivity, and exceptional detection accuracy. Leveraging these attributes, the probe was employed to provide accurate quantitative analysis of Cys in food samples. Furthermore, confocal imaging demonstrated that the probe could monitor both exogenous and endogenous Cys levels in living cells and track Cys changes in plant roots under heavy metal stress. This work presents a dependable and accurate imaging solution for tracking and identifying Cys of real food, plants, and living cells.
Collapse
Affiliation(s)
- Chunyan Liu
- College of Chemistry and Material Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yanfei Lin
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Zhixiang Chen
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Tianqing Ye
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Zhaosheng Qian
- College of Chemistry and Material Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lei Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Longhua Guo
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Jianbo Wang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
7
|
Liu C, Li X, Zhu H, Wang K, Rong X, Ma L, Zhang X, Liu M, Li W, Sheng W, Zhu B. A simple mitochondria-immobilized fluorescent probe for the detection of hydrogen peroxide. Talanta 2024; 275:126091. [PMID: 38678922 DOI: 10.1016/j.talanta.2024.126091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024]
Abstract
Hydrogen peroxide (H2O2), as one of reactive oxygen species (ROS) widely present in the human body, is involved in a variety of physiological activities. Many human diseases are associated with abnormal levels of H2O2 in the body. Mitochondria are the main organelles producing H2O2 in the human body, and monitoring the level of H2O2 in mitochondria can help to deepen the understanding of the detailed functions of H2O2 in physiological activities. However, due to the highly dynamic nature of the cells, real-time quantitative monitoring of H2O2 levels in mitochondria remains an ongoing challenge. Herein, a novel highly immobilized mitochondria-targeting fluorescent probe (QHCl) for detection of H2O2 was reasonably constructed based on quinolinium dye containing benzyl chloride moiety. Spectral experimental results demonstrated QHCl possessed outstanding selectivity toward H2O2 (λex/em = 380/513 nm). In addition, QHCl can quantitatively detect H2O2 in the concentration range of 0-20 μM with excellent sensitivity (LOD = 0.58 μM) under the PBS buffer solution (10 mM, pH = 7.4). Finally, bioimaging experiments demonstrated that the probe QHCl was able to be used for accurately detecting both endogenous and exogenous H2O2 in the mitochondria of living cells and zebrafish by its unique mitochondrial immobilization.
Collapse
Affiliation(s)
- Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Xinke Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Lixue Ma
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xiaohui Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Mengyuan Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Wenzhai Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
8
|
Xu L, Liu X, Zhao J, Deng X, Peng H. Turn-on mode probe based on the sustainable xanthohumol extract for the efficient viscosity response in a liquid system. RSC Adv 2024; 14:17824-17831. [PMID: 38836167 PMCID: PMC11148481 DOI: 10.1039/d4ra02612h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024] Open
Abstract
Viscosity is a typical physical parameter and plays an important role in nutrient transferring, diffusion process regulating and safety warning. Aberrant mitochondrial viscosity is closely associated with an imbalance in a liquid system. Nevertheless, there is currently a lack of convenient and efficient tools for the mutation of viscosity detection at the molecular level. Herein, a natural product xanthohumol (XTH) was extracted from Humulus lupulus and used to measure the microenvironmental viscosity. Due to the existence of carbonyl and phenolic hydroxyl groups, a typical twisted intramolecular charge transfer (TICT) was formed. The conjugated single and double bonds can be employed as the rotatable site. Consequently, a turn-on method based on viscosity response is developed. High sensitivity (x = 0.56) with a remarkable enhancement (55-fold) toward viscosity and a visualized fluorescent signal can be found. In addition, it displays a single selectivity with excellent photostability and pH stability in the complex liquid system. Using the extracted XTH, a typical application toward the liquid spoilage process was performed and a positive correlation was noted. Given the comprehensive properties of XTH, liquid safety inspection at a molecular level with natural source-extracted products can be obtained.
Collapse
Affiliation(s)
- Lingfeng Xu
- Key Laboratory of Jiangxi Province for Special Optoelectronic Artificial Crystal Materials, Jinggangshan University Ji'an Jiangxi 343009 China
- State Key Laboratory of Luminescent Materials & Devices, College of Materials Science & Engineering, South China University of Technology Guangzhou 510640 China
- School of Chemistry and Chemical Engineering, Nanchang University Nanchang Jiangxi 330036 China
| | - Xinya Liu
- Key Laboratory of Jiangxi Province for Special Optoelectronic Artificial Crystal Materials, Jinggangshan University Ji'an Jiangxi 343009 China
| | - Jingyi Zhao
- Key Laboratory of Jiangxi Province for Special Optoelectronic Artificial Crystal Materials, Jinggangshan University Ji'an Jiangxi 343009 China
| | - Xinmin Deng
- Key Laboratory of Jiangxi Province for Special Optoelectronic Artificial Crystal Materials, Jinggangshan University Ji'an Jiangxi 343009 China
| | - Hui Peng
- Key Laboratory of Jiangxi Province for Special Optoelectronic Artificial Crystal Materials, Jinggangshan University Ji'an Jiangxi 343009 China
| |
Collapse
|
9
|
Luo L, Guo R, Wang L, Song X, Wang Z, Wu J. A novel fluorescent probe with a large Stokes shift for colorimetric and selective detection of cysteine in water, milk, cucumber, pear and tomato. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2322-2329. [PMID: 38533729 DOI: 10.1039/d3ay02322b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Cysteine is an important amino acid that is related to human health and food safety. How to effectively detect Cys in food has received widespread attention. Compared with other methods, fluorescent probes have the advantages of simple operation, high sensitivity, and good selectivity. Therefore, a selective fluorescence probe 2 for Cys in food was designed and synthesized. Probe 2 employed the acrylate group as a thiol-recognition site for Cys, which endowed probe 2 with better selectivity for Cys over Hcy and GSH. The recognition pathway underwent Michael addition, intramolecular cyclization, and concomitant release of the piperideine-based fluorophore, along with a chromogenic change from yellow to orange. This pathway was supported by 1H NMR analysis and DFT calculations. In addition, probe 2 displays a linear response to Cys concentrations (0-30 μM), low detection limit (0.89 μM), and large Stokes shift (125 nm). Overall, probe 2 showed great application potential for the quantitative determination of Cys in water, milk, cucumber, pear and tomato.
Collapse
Affiliation(s)
- Lin Luo
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China.
| | - Ranran Guo
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China.
| | - Lianjie Wang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China.
| | - Xixi Song
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China.
| | - Zhao Wang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China.
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, P. R. China.
| | - Junliang Wu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China.
| |
Collapse
|
10
|
Jia D, Li Z, Ma H, Ji H, Qi H, Zhang C. Near-Infrared Fluorescence Probe with a New Recognition Moiety for the Specific Detection of Cysteine to Study the Corresponding Physiological Processes in Cells, Zebrafish, and Arabidopsis thaliana. Anal Chem 2024; 96:6030-6036. [PMID: 38569068 DOI: 10.1021/acs.analchem.4c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Cysteine (Cys), as one of the biological thiols, is related to many physiological and pathological processes in humans and plants. Therefore, it is necessary to develop a sensitive and selective method for the detection and imaging of Cys in biological organisms. In this work, a novel near-infrared (NIR) fluorescent probe, Probe-Cys, was designed by connecting furancarbonyl, as a new recognition moiety, with Fluorophore-OH via the decomposition of IR-806. The use of the furan moiety is anticipated to produce more effective fluorescence quenching because of the electron-donating ability of the O atom. Probe-Cys has outstanding properties, such as a new recognition group, an emission wavelength in the infrared region at 710 nm, a linear range (0-100 μM), a low detection limit of 0.035 μM, good water solubility, excellent sensitivity, and selectivity without the interference of Hcy, GSH, and HS-. More importantly, Probe-Cys could achieve the detection of endogenous Cys by reacting with the stimulant 1,4-dimercaptothreitol (DTT) and the inhibitor N-ethylmaleimide (NEM) in HepG2 cells and zebrafish. Ultimately, it was successfully applied to obtain images of Arabidopsis thaliana, revealing that the content of Cys in the meristematic zone was higher than that in the elongation zone, which was the first time that the NIR fluorescence probe was used to obtain images of Cys in A. thaliana. The superior properties of the probe exhibit its great potential for use in biosystems to explore the physiological and pathological processes associated with Cys.
Collapse
Affiliation(s)
- Dongli Jia
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Hongyu Ma
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Haiyang Ji
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
11
|
Zeng M, Chen L, Hou X, Jin J, Yao Q, Ye T, Guo Z, Chen X, Chen X. Metal-assisted core-shell plasmonic nanoparticles for small molecule biothiol analysis and enantioselective recognition. NANOSCALE 2024; 16:5232-5241. [PMID: 38358089 DOI: 10.1039/d3nr05984g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Cysteine (Cys) enantiomorphs, important small-molecule biothiols, participate in various antioxidative, flavoring, and poison-removing processes in the food industry. Current cysteine enantiomorph analysis methods require effective strategies for distinguishing them due to their similar structures and reactivity. Herein, we present a metal ion-assisted enantiomorph-selective surface-enhanced Raman scattering (SERS) biosensor based on an amphiphilic polymer matrix (APM), which can promote cysteine enantiomorph (L/D-Cys) identification. The highly selective molecular orientation is perhaps caused by the intermolecular hydrogen bonding with chiral isomers (metal centers). The experimental results show that the SERS biosensor has a sensitivity-distincting factor toward L-Cys and D-Cys. The linear range is from 1 mmol L-1 to 1 nmol L-1, along with a low limit of detection of 0.77 pmol L-1. Moreover, the fabricated Cu-APM biosensor exhibits remarkable stability and high repeatability, with an RSD of 3.7%. Real food cysteine enantiomorph detection was performed with L-Cys-containing samples of onion, cauliflower, garlic, and apple, and D-Cys-containing samples of vinegar, black garlic, cheese, and beer. The results show that the Cu-APM biosensor can be utilized as a powerful tool for real-time determination of Cys enantiomorphs in different food samples. Thus, the metal-ion-assisted enantiomorph-selective SERS biosensor has potential as an adaptable tool for enantiomorph detection and food sample analysis.
Collapse
Affiliation(s)
- Meihuang Zeng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| | - Linmin Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| | - Xiaocong Hou
- Institute of Analytical Technology and Smart Instruments and Colleague of Environment and Public Healthy, Xiamen Huaxia University, Xiamen 361024, China.
| | - Jingwen Jin
- Institute of Analytical Technology and Smart Instruments and Colleague of Environment and Public Healthy, Xiamen Huaxia University, Xiamen 361024, China.
| | - Qiuhong Yao
- Institute of Analytical Technology and Smart Instruments and Colleague of Environment and Public Healthy, Xiamen Huaxia University, Xiamen 361024, China.
| | - Tingxiu Ye
- College of Pharmacy, Xiamen Medicine College, Xiamen 361005, China
| | - Zhiyong Guo
- Institute of Analytical Technology and Smart Instruments and Colleague of Environment and Public Healthy, Xiamen Huaxia University, Xiamen 361024, China.
- Xiamen Environmental Monitoring Engineering Technology Research Center, Xiamen 361024, China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| | - Xi Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
12
|
Xu L, Zhong M, Tian Z, Zeng H, Huang Y. Caffeic acid, a natural extract, as an activatable molecular probe for viscosity detection in a liquid system. RSC Adv 2023; 13:35209-35215. [PMID: 38053681 PMCID: PMC10694789 DOI: 10.1039/d3ra05423c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023] Open
Abstract
Liquids, functioning as nutrients and energy systems, regulate various functions during storage programs. Microenvironmental viscosity is one of the most important physical parameters associated with the extent of deterioration, and it is crucial to monitor the mutation of viscosity at a molecular level. Herein, we utilized caffeic acid (CaC), a natural product extracted from thistles, as a molecular probe for viscosity sensing. CaC contains phenol hydroxyl (electron-donor) and carboxyl (electron-acceptor) groups, with both moieties connected by conjugated single and double bonds, forming a typical twisted intramolecular charge transfer system. The fluorescent probe CaC, obtained from a natural product without any chemical processing, exhibits high sensitivity (x = 0.43) toward viscosity, with an obvious visualized turn-on signal. Moreover, it displays good photostability, selectivity, and wide universality in commercial liquids. Utilizing CaC, we have successfully visualized viscosity enhancement during the spoilage process, with a positive correlation between the degree of liquid spoilage and microenvironmental viscosity. Thus, this study will provide a convenient and efficient molecular probe for food safety inspection across the boundaries of traditional biological applications.
Collapse
Affiliation(s)
- Lingfeng Xu
- Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Jinggangshan University Ji'an Jiangxi 343009 China
- State Key Laboratory of Luminescent Materials & Devices, College of Materials Science & Engineering, South China University of Technology Guangzhou 510640 China
- School of Chemistry and Chemical Engineering, Nanchang University Nanchang Jiangxi 330036 China
| | - Min Zhong
- Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Jinggangshan University Ji'an Jiangxi 343009 China
| | - Ziyin Tian
- Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Jinggangshan University Ji'an Jiangxi 343009 China
| | - Huilei Zeng
- Ji'an Central People's Hospital Ji'an Jiangxi 343099 China
| | - Yanrong Huang
- School of Modern Agriculture and Forestry Engineering, Ji'an Vocational and Technique College Ji'an Jiangxi 343009 China
| |
Collapse
|
13
|
Yang Z, Li J, Li S, Zhou J, Cao Z, Li L, Zheng D, Zhao X, Wang W, Deng Y, Fang Y. Real-time monitoring of endogenous cysteine in LPS-induced oxidative stress process with a novel lysosome-targeted fluorescent probe. Anal Chim Acta 2023; 1279:341819. [PMID: 37827641 DOI: 10.1016/j.aca.2023.341819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
Cysteine (Cys), one of essential small-molecule-based biothiols in the human body, contributes to the regulation of redox reactions and is closely associated with many physiological and pathological metabolic processes. Herein, a novel fluorescent probe, hydroxyphenyl-conjugated benzothiazole (HBT-Cys) capable of detecting Cys was constructed, where acrylate served as the recognition group and hydroxyphenyl-linked benzothiazole acted as the fluorophore. The fluorescence of the probe was negligible in the absence of Cys, and an intense blue fluorescence was observed upon addition of Cys. The Cys-sensing mechanism could be ascribed to the Cys-involved hydrolysis reaction with acrylate, leading to light up the emission at 430 nm with about 80-fold enhancement. In addition, HBT-Cys exhibited a fast response time, remarkable selectivity and low detection limit. HBT-Cys also worked well in real-time monitoring of Cys in three different food samples (wolfberry, hawthorn, and red dates). Importantly, our probe had an excellent lysosomes-targeted ability, which was successfully employed to real-time visualize the fluctuation of both exogenous and endogenous Cys in living cells and zebrafish under lipopolysaccharide (LPS)-induced oxidative stress. Hopefully, the work shown here provides a potent candidate for the real-time tracking of Cys fluctuations in various biological samples.
Collapse
Affiliation(s)
- Zhiqiang Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Sining Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingxi Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Longxuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dongbin Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xuan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Chengdu Institute of Food Inspection, Chengdu, 611130, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yuyu Fang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Sichuan New Green Pharmaceutical Technology Development Co. Ltd., Chengdu, 611930, China.
| |
Collapse
|
14
|
Zhu H, Liu M, Liu C, Li X, Wang K, Yu M, Sheng W, Zhu B. A reversible and ratiometric fluorescent probe based on rhodol derivative with an ESIPT unit for monitoring copper ion content and in situ evaluation of related drugs in cells. Bioorg Chem 2023; 139:106733. [PMID: 37517156 DOI: 10.1016/j.bioorg.2023.106733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
The amount of copper ions in the environment has an immediate effect on ecology and food safety, Menkes syndrome and Wilson's disease cause accumulation and deficiency of copper ions in the body, respectively, and neurodegenerative diseases are also closely related to copper ion levels. However, the current copper ion detection technology has a high cost, complex operation, and other disadvantages. In this study, a ratiometric fluorescent probe (RB-DH) was rationally constructed to detect copper ions by coupling benzothiazole to rhodol derivatives. It can be used to determine copper ion concentrations in water samples, agricultural products, cells, and zebrafish. Importantly, due to the reversible response of RB-DH to copper ions, the fluctuation of intracellular copper ion content during the release of copper ion-related drugs (Copper gluconate and D-penicillamine) was successfully monitored with RB-DH for the first time. This study demonstrates RB-DH's potential application in the evaluation of related drug release effects and serves as a guide for the establishment of portable detection techniques for other important substances.
Collapse
Affiliation(s)
- Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Mengyuan Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Xinke Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Miaohui Yu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| |
Collapse
|
15
|
Liang H, Li D, Zhang X, Zhen D, Li Y, Luo Y, Zhang Y, Xu D, Chen L. Target-triggered 'colorimetric-fluorescence' dual-signal sensing system based on the versatility of MnO 2 nanosheets for rapid detection of uric acid. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4059-4065. [PMID: 37526244 DOI: 10.1039/d3ay00950e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
A simple dual-signal assay that combined colorimetric and fluorometric strategy for uric acid (UA) rapid detection was designed based on the versatility of facile synthesized MnO2 nanosheet. The oxidization of 3,3',5,5'-tetramethylbenzidine (TMB) and the fluorescence quenching of quantum dots (QDs) occurred simultaneously in the presence of MnO2 nanosheet. UA could decompose MnO2 nanosheet into Mn2+, resulting in the fluorescence recovery of QDs, along with the fading of the blue color of ox TMB. Based on the principles above, the detection of UA could be realized by the change of the dual signals (colorimetric and fluorometric). The linear range of the colorimetric mode was 5-60 μmol L-1, and the limit of detection (LOD) was 2.65 μmol L-1; the linear range of the fluorescence mode was wide at 5-120 μmol L-1, and the LOD could be as low as 1.33 μmol L-1. The method was successfully used for analyzing UA levels in human serum samples, indicating that this new dual-signal method could be applied in clinical diagnosis.
Collapse
Affiliation(s)
- Hao Liang
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| | - Danliang Li
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
- Zhuzhou Hetang District Center for Disease Control and Prevention, Zhuzhou, Hunan, China
| | - Xuebing Zhang
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| | - Deshuai Zhen
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| | - Yunfei Li
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| | - Yuchen Luo
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| | - Yuyun Zhang
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| | - Dongyun Xu
- Hengyang Center for Disease Control and Prevention, Hengyang, Hunan, China
| | - Lili Chen
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
16
|
Yang X, Wang J, Zhang Z, Zhang B, Du X, Zhang J, Wang J. BODIPY-based fluorescent probe for cysteine detection and its applications in food analysis, test strips and biological imaging. Food Chem 2023; 416:135730. [PMID: 36889014 DOI: 10.1016/j.foodchem.2023.135730] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Cysteine, as one of semi-essential amino acids, which is absorbed from protein-rich foods and acts considerable role in various physiological processes. Here, we designed and synthesized a BODIPY-based turn-on fluorescent probe BDP-S for detecting Cys. The probe displayed short reaction time (10 min), distinct color response (from blue to pink), large signal noise ratio (3150-fold), high selectivity and sensitivity (LOD = 11.2 nM) toward Cys. Moreover, BDP-S could not only be used for quantitative determination of Cys in food samples, but also be conveniently deposited on the test strips for qualitative detection of Cys. Notably, BDP-S was successfully used for imaging Cys in living cells and in vivo. Consequently, this work provided a hopefully powerful tool for detecting Cys in food samples and complex biological systems.
Collapse
Affiliation(s)
- Xiaokun Yang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, PR China
| | - Jiamin Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, PR China.
| | - Zunlong Zhang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, PR China
| | - Bo Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University Kaifeng 475004, PR China
| | - Xiaolin Du
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, PR China
| | - Jian Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University Kaifeng 475004, PR China.
| | - Jianhong Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, PR China.
| |
Collapse
|
17
|
Xu L, Peng H, Huang Y, Huang C, Xie C, He G. Green extract rosemary acid as a viscosity-sensitive molecular sensor in liquid systems. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1881-1887. [PMID: 36974992 DOI: 10.1039/d3ay00112a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The liquid micro-environment plays a momentous role in the regulation of various activities, and the abnormal changes are often closely related to the deterioration phenomena in multiple beverages. The local viscosity fluctuation has long been regarded as a key indicator to reflect the micro-environmental status changes. Herein, we proposed a versatile optical sensor, rosmarinic acid (RA), one kind of green natural product extracted from rosemary, for monitoring liquid micro-environmental viscosity alterations. RA displays a larger Stokes shift (123.8 nm) with narrow-band energy and exhibits wide adaptability, high selectivity, good sensitivity, and excellent photostability in various commercial liquids. When in high viscous media, a bright fluorescent signal of RA is specifically activated, and a high signal-to-noise ratio signal was released (58-fold). With the assistance of the fluorescence analytical technique, we have successfully achieved tracking the viscosity fluctuations during the deterioration stage of liquids via an in situ and visualization method. Our study will spur additional research on the molecular tools extracted from natural products for liquid safety inspection, and a convenient and sustainable application pathway has been established.
Collapse
Affiliation(s)
- Lingfeng Xu
- Key Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province, Jinggangshan University, Ji'an, Jiangxi 343009, China.
- State Key Laboratory of Luminescent Materials & Devices, College of Materials Science & Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hui Peng
- Key Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province, Jinggangshan University, Ji'an, Jiangxi 343009, China.
| | - Yanrong Huang
- School of Modern Agriculture and Forestry Engineering, Ji'an Vocational and Technical College, Ji'an, Jiangxi 343009, China
| | - Chunfang Huang
- Key Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province, Jinggangshan University, Ji'an, Jiangxi 343009, China.
| | - Chengning Xie
- College of Mechanical and Electrical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Genhe He
- Key Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province, Jinggangshan University, Ji'an, Jiangxi 343009, China.
| |
Collapse
|
18
|
Xu L, Huang Y, Peng H, Xu W, Yi X, He G. Triphenylamine-Modified Cinnamaldehyde Derivate as a Molecular Sensor for Viscosity Detection in Liquids. ACS OMEGA 2023; 8:13213-13221. [PMID: 37065079 PMCID: PMC10099141 DOI: 10.1021/acsomega.3c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Liquid safety is considered a serious public health problem; a convenient and effective viscosity determination method has been regarded as one of the powerful means to detect liquid safety. Herein, one kind of triphenylamine-modified cinnamaldehyde-based fluorescent sensor (3-(4'-(diphenylamino)-[1,1'-biphenyl]-4-yl)acrylaldehyde (DPABA)) has been developed for sensing viscosity fluctuations in a liquid system, where a cinnamaldehyde derivative was extracted from one kind of natural plant cinnamon and acted as an acceptor, which has been combined with a triphenylamine derivate via the Suzuki coupling reaction within one facile step. Twisted intramolecular charge transfer (TICT) was observed, and the rotation could be restricted in the high-viscosity microenvironment; thus, the fluorescent signal was released at 548 nm. Featured with a larger Stokes shift (223.8 nm in water, 145.0 nm in glycerol), high adaptability, sensitivity, selectivity, and good photostability, the capability of high signal-to-noise ratio sensing was achieved. Importantly, this sensor DPABA has achieved noninvasively identifying thickening efficiency investigation, and viscosity fluctuations during the liquid deterioration program have been screened as well. We believed that this unique strategy can accelerate intelligent molecular platforms toward liquid quality and safety inspection.
Collapse
Affiliation(s)
- Lingfeng Xu
- Key
Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province, Jinggangshan University, Ji’an 343009, Jiangxi, China
- State
Key Laboratory of Luminescent Materials & Devices, College of
Materials Science & Engineering, South
China University of Technology, Guangzhou 510640, China
| | - Yanrong Huang
- School
of Modern Agriculture and Forestry Engineering, Ji’an Vocational and Technical College, Ji’an 343009, Jiangxi, China
| | - Hui Peng
- Key
Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province, Jinggangshan University, Ji’an 343009, Jiangxi, China
| | - Wenyan Xu
- Key
Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province, Jinggangshan University, Ji’an 343009, Jiangxi, China
| | - Xiuguang Yi
- School
of Chemistry and Chemical Engineering, Jinggangshan
University, Ji’an 343009, Jiangxi, China
| | - Genhe He
- Key
Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province, Jinggangshan University, Ji’an 343009, Jiangxi, China
| |
Collapse
|
19
|
Xu L, Xu W, Tian Z, Deng F, Huang Y. Sustainable natural chlorogenic acid as a functional molecular sensor toward viscosity detection in liquids. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023:10.1007/s43630-023-00365-w. [PMID: 36694012 DOI: 10.1007/s43630-023-00365-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023]
Abstract
Liquids are perishable at ease during the long-term transportation and storage processes, non-invasive and in situ inspection method is urgent to be developed. In consideration of the important role of viscosity, one kind of sustainable natural product chlorogenic acid (CA) extracted from honeysuckle has been used as a versatile optical sensor for viscosity determination during the liquid spoilage process. The natural molecule was conducted by the O-diphenyl and carboxylic acid ester groups in coincidence, a typical twisted intramolecular charge transfer phenomenon was formed. This sensor features wide adaptability, high selectivity, good sensitivity, and excellent photo stability in various liquids. And CA displays a larger Stokes shift, high viscosity sensitive coefficient (0.62), and narrower energy band. The rotatable conjugate structure can be acted as the recognition site, and the bright fluorescent signal of CA is specifically activated when in the high viscous micro-environment. Inspired by this objective phenomenon, CA has been applied to detect the thickening efficiency of various food thickeners. More importantly, the viscosity fluctuations during the deterioration stage of liquids can be screened through non-invasive and in situ monitoring. We expected that more natural products can be developed as molecular tools for liquids safety investigation, and fluorescent analytical methods can be expanded toward interdisciplinary research.
Collapse
Affiliation(s)
- Lingfeng Xu
- Key Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province, Jinggangshan University, Ji'an, 343009, Jiangxi, China. .,State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Wenyan Xu
- Key Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Ziyin Tian
- Key Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Fei Deng
- Key Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Yanrong Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
20
|
Qi X, Kan W, Zhao B, Du J, Ding L, Wang L, Song B. Two phenanthro[9,10-d]imidazole-based fluorescence probes for distinguishable detection of Cys and Fe3+ and their applications in food and water as well as living cells monitoring. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Gong S, Qin A, Zhang Y, Li M, Chen X, Liang Y, Xu X, Wang Z, Wang S. A new ratiometric AIE fluorescent probe for detecting cysteine in food samples and imaging in the biological system. Food Chem 2023; 400:134108. [DOI: 10.1016/j.foodchem.2022.134108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022]
|
22
|
Cao YY, Guo MY, Liu XJ, Wang BZ, Jiao QC, Zhu HL. A highly chromogenic selective Rhodamine-chloride-based fluorescence probe activated by cysteine and application in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121635. [PMID: 36007345 DOI: 10.1016/j.saa.2022.121635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Cysteine (Cys), one of the biological thiols, which plays critical roles in biological system regulating the balance of redox homeostasis. In order to monitor the level of Cys in the living cells and organisms, a chromogenic fluorescence probe Rhocl-Cys based on Rhodamine chloride exhibiting the preferable performance of fluorescence turn-on response reacting with Cys was presented. Rhocl-Cys responded rapidly to Cys within 20 min, and had stable fluorescence intensity within pH 6.0-10.0, high selectivity towards Cys and the anti-inference capability with a low detection limit of 0.80 μM. In particular, Rhocl-Cys could qualitatively and quantitatively monitor the level of endogenous and exogenous Cys in living cells and successfully apply to zebrafish detecting Cys. Therefore, these results might further provide the basis exploring the role of Cys in biological system and facilitate as clinical diagnostic molecular tools.
Collapse
Affiliation(s)
- Yu-Yao Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Meng-Ya Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiao-Jing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Bao-Zhong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Qing-Cai Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
23
|
Gong S, Qin A, Zhang Y, Li M, Liang Y, Xu X, Wang Z, Wang S. A novel flavonol-based fluorescent probe for rapid detection of Cysteine in food samples and its applications in bioimaging systems. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Nagarajan R, Kamaraj E, Kim CH, Lee KH. Novel bis naphthalene-2-ol based colorimetric chemosensor for the detection of Fe2+ in physiological pH and its DFT calculation studies. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
25
|
Mandal M, Guria UN, Halder S, Karak A, Banik D, Jana K, Kar A, Mahapatra AK. A dual-channel chemodosimetric sensor for discrimination between hypochlorite and nerve-agent mimic DCP: application on human breast cancer cells. Org Biomol Chem 2022; 20:4803-4814. [PMID: 35647766 DOI: 10.1039/d2ob00721e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A styryl bridge containing a triphenylamine-thioimidazole hydrazine-based dual-analyte-responsive fluorescent sensor was designed and synthesized for the detection of the nerve gas simulant diethyl chlorophosphate (DCP) and hypochlorite (OCl-) for the first time. Hypochlorite induces oxidative intramolecular cyclization to give a triazole structure, which exhibited blue fluorescence with excellent selectivity and a low detection limit (8.05 × 10-7 M) in solution. Conversely, the probe forms a phosphorylated intermediate with diethyl chlorophosphate, which undergoes further hydrolyzation and presents green fluorescence in a ratiometric mode with a low detection limit (3.56 × 10-8 M). Additionally, the as-designed sensor was utilized to construct a portable kit for real-time monitoring of DCP in a discriminatory, simple and safe manner. Lastly, the probe was also productively employed for in situ imaging of OCl- and DCP in the living cell.
Collapse
Affiliation(s)
- Moumi Mandal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, India.
| | - Uday Narayan Guria
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, India.
| | - Satyajit Halder
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata-700 054, India
| | - Anirban Karak
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, India.
| | - Dipanjan Banik
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, India.
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata-700 054, India
| | - Arik Kar
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, India.
| | - Ajit Kumar Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, India.
| |
Collapse
|
26
|
Xu L, Xiong F, Kang M, Huang Y, Wu K. Triphenylamine indanedione as an AIE-based molecular sensor with one-step facile synthesis toward viscosity detection of liquids. Analyst 2022; 147:4132-4140. [DOI: 10.1039/d2an00850e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AIE-based triphenylamine indanedione molecular sensors were synthesized in a one-step facile manner and designed for viscosity detection in liquids.
Collapse
Affiliation(s)
- Lingfeng Xu
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China
- State Key Laboratory of Luminescent Materials & Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science & Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fangzhi Xiong
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Minqing Kang
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Yanrong Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Kui Wu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
27
|
Zeng SMZ, Zhang Q, Li Q, Yuan LC, Abbas M, He ZX, Zhu HL, Wang ZC. A novel quinoline-based fluorescent probe for real-time monitoring of Cys in glioma. Analyst 2022; 147:4257-4265. [DOI: 10.1039/d2an01115h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The highly selective fluorescent probe ZS-C1 for imaging Cys in living cells and 3D tumor cell sphere.
Collapse
Affiliation(s)
- Shang-Ming-Zhu Zeng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Qing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Qin Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Liang-Chao Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Muhammad Abbas
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Zhen-Xiang He
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhong-Chang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| |
Collapse
|
28
|
Li Z, Zhang Y, Jiang Y, Li H, Chen C, Liu W. A ratiometric fluorescent probe based on two-isophorone fluorophore for detecting cysteine. J Mater Chem B 2022; 10:6207-6213. [DOI: 10.1039/d2tb00882c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The key biological thiol, cysteine (Cys), which can participate in many physiological and pathological processes in the human body, has also been proofed to have considerable effects on redox homeostasis...
Collapse
|
29
|
Wang Z, Zhang Y, Liang Y, Li M, Meng Z, Gong S, Yang Y, Xu X, Wang S. Rational design of a facile camphor-based fluorescence turn-on probe for real-time tracking of hypochlorous acid in vivo and in vitro. Analyst 2022; 147:2080-2088. [DOI: 10.1039/d2an00321j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel camphor-based fluorescence turn-on probe with high selectivity and sensitivity was developed for HClO detection, and it was successfully employed for real-time imaging of exogenous and endogenous HClO in living cells as well as in living zebrafish.
Collapse
Affiliation(s)
- Zhonglong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Yueyin Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Mingxin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhiyuan Meng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Shuai Gong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Yiqin Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Xu Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Shifa Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|