1
|
Yuan M, Wang Y, Wan Y, Li S, Tang J, Liang X, Zeng B, Li M, Wei X, Li X, Guo L, Guo Y. Novel sodium tauroursodeoxycholate-based multifunctional liposomal delivery system for encapsulation of oleanolic acid and combination therapy of type 2 diabetes mellitus. Int J Pharm 2024; 666:124803. [PMID: 39368671 DOI: 10.1016/j.ijpharm.2024.124803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Liposomes have demonstrated great potential for drug delivery and diabetes treatment. However, hydrolysis by enzymes and emulsification by endogenous bile salts make liposomes unstable in the gastrointestinal tract. In this study, sodium tauroursodeoxycholate (TUDCNa)-based multifunctional bilosomes were designed to address the deficiencies of conventional liposomes. In the designed bilosomes, cholesterol was replaced by TUDCNa, which served as both a membrane stabilizer and an antidiabetic drug. Oleanolic acid (OA) was encapsulated in both conventional liposomes (OA-Ch-Lip) and bilosomes (OA-Tu-Bil) to compare their properties. Firstly, OA-Tu-Bil exhibited similar encapsulation efficiency and drug loading compared to OA-Ch-Lip, but with a smaller particle size. Secondly, OA-Tu-Bil showed better stability than OA-Ch-Lip. Thirdly, bilosomes exhibited prolonged intestinal retention time and improved permeability and oral bioavailability. Fourthly, in type 2 diabetes mellitus (T2DM) mice model, TUDCNa synergized with OA to exhibit the strongest therapeutic effect. In conclusion, TUDCNa have demonstrated the ability to substitute cholesterol in conventional liposomes, it provided a new approach for oral delivery of hypoglycemic drugs, and offered an innovative strategy for combination therapy.
Collapse
Affiliation(s)
- Minghao Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Yulu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Sihui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Jiamei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Xue Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Bin Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Meifeng Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Xiaohang Wei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Xiaohong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| | - Yiping Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| |
Collapse
|
2
|
Ding Z, Ge W, Xu X, Xu X, Sun Q, Xu X, Zhang J. A crucial role of adenosine deaminase in regulating gluconeogenesis in mice. J Biol Chem 2024; 300:107425. [PMID: 38823639 PMCID: PMC11231709 DOI: 10.1016/j.jbc.2024.107425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Adenosine deaminase (ADA) catalyzes the irreversible deamination of adenosine (ADO) to inosine and regulates ADO concentration. ADA ubiquitously expresses in various tissues to mediate ADO-receptor signaling. A significant increase in plasma ADA activity has been shown to be associated with the pathogenesis of type 2 diabetes mellitus. Here, we show that elevated plasma ADA activity is a compensated response to high level of ADO in type 2 diabetes mellitus and plays an essential role in the regulation of glucose homeostasis. Supplementing with more ADA, instead of inhibiting ADA, can reduce ADO levels and decrease hepatic gluconeogenesis. ADA restores a euglycemic state and recovers functional islets in db/db and high-fat streptozotocin diabetic mice. Mechanistically, ADA catabolizes ADO and increases Akt and FoxO1 phosphorylation independent of insulin action. ADA lowers blood glucose at a slower rate and longer duration compared to insulin, delaying or blocking the incidence of insulinogenic hypoglycemia shock. Finally, ADA suppresses gluconeogenesis in fasted mice and insulin-deficient diabetic mice, indicating the ADA regulating gluconeogenesis is a universal biological mechanism. Overall, these results suggest that ADA is expected to be a new therapeutic target for diabetes.
Collapse
Affiliation(s)
- Zhao Ding
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Wenhao Ge
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Xiaogang Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Xiaodong Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Qi Sun
- Department of Physiology, Bengbu Medical University, Bengbu, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China.
| |
Collapse
|
3
|
Lu W, Wang X, Kong C, Chen S, Hu C, Zhang J. Hydrogel Based on Riclin Cross-Linked with Polyethylene Glycol Diglycidyl Ether as a Soft Filler for Tissue Engineering. Biomacromolecules 2024; 25:1119-1132. [PMID: 38252967 DOI: 10.1021/acs.biomac.3c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Hydrogels composed of natural polysaccharides have been widely used as filling materials, with a growing interest in medical cosmetology and skin care. However, conventional commercial dermal fillers still have limitations, particularly in terms of mechanical performance and durability in vivo. In this study, a novel injectable and implantable hydrogel with adjustable characteristics was prepared from succinoglycan riclin by introducing PEG diglycidyl ether as a cross-linker. FTIR spectra confirmed the cross-linking reaction. The riclin hydrogels exhibited shear-thinning behavior, excellent mechanical properties, and cytocompatibility through in vitro experiments. Furthermore, when compared with subcutaneous injection of a commercial hyaluronic acid hydrogel, the riclin hydrogels showed enhanced persistence and biocompatibility in Balb/c mice after 16 weeks. These results demonstrate the great potential of the riclin-based hydrogel as an alternative to conventional commercial soft tissue fillers.
Collapse
Affiliation(s)
- Weiling Lu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Xianjin Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Changchang Kong
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Shijunyin Chen
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Chengtao Hu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| |
Collapse
|
4
|
Bai J, Tan X, Tang S, Liu X, Shao L, Wang C, Huang L. Citrus p-Synephrine Improves Energy Homeostasis by Regulating Amino Acid Metabolism in HFD-Induced Mice. Nutrients 2024; 16:248. [PMID: 38257140 PMCID: PMC10818793 DOI: 10.3390/nu16020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
p-Synephrine is a common alkaloid widely distributed in citrus fruits. However, the effects of p-synephrine on the metabolic profiles of individuals with energy abnormalities are still unclear. In the study, we investigated the effect of p-synephrine on energy homeostasis and metabolic profiles using a high fat diet (HFD)-induced mouse model. We found that p-synephrine inhibited the gain in body weight, liver weight and white adipose tissues weight induced by HFD. p-Synephrine supplementation also reduced levels of serum total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) but not to a statistically significant degree. Histological analysis showed that HFD induced excessive lipid accumulation and glycogen loss in the liver and adipocyte enlargement in perirenal fat tissue, while p-synephrine supplementation reversed the changes induced by HFD. Moreover, HFD feeding significantly increased mRNA expression levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) and reduced the mRNA expression level of interleukin-10 (IL-10) compared to the control group, while p-synephrine supplementation significantly reversed these HFD-induced changes. Liver and serum metabolomic analysis showed that p-synephrine supplementation significantly altered small molecule metabolites in liver and serum in HFD mice and that the changes were closely associated with improvement of energy homeostasis. Notably, amino acid metabolism pathways, both in liver and serum samples, were significantly enriched. Our study suggests that p-synephrine improves energy homeostasis probably by regulating amino acid metabolism in HFD mice, which provides a novel insight into the action mechanism of p-synephrine modulating energy homeostasis.
Collapse
Affiliation(s)
- Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400700, China; (J.B.)
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Xiang Tan
- Citrus Research Institute, Southwest University, Chongqing 400700, China; (J.B.)
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Sheng Tang
- Citrus Research Institute, Southwest University, Chongqing 400700, China; (J.B.)
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Xin Liu
- Citrus Research Institute, Southwest University, Chongqing 400700, China; (J.B.)
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Linzi Shao
- Citrus Research Institute, Southwest University, Chongqing 400700, China; (J.B.)
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Chen Wang
- National Citrus Engineering Research Center, Chongqing 400700, China
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Linhua Huang
- Citrus Research Institute, Southwest University, Chongqing 400700, China; (J.B.)
- National Citrus Engineering Research Center, Chongqing 400700, China
| |
Collapse
|
5
|
Ren Y, Mao S, Zeng Y, Chen S, Tian J, Ye X. Pectin from Citrus unshiu Marc. Alleviates Glucose and Lipid Metabolism by Regulating the Gut Microbiota and Metabolites. Foods 2023; 12:4094. [PMID: 38002152 PMCID: PMC10670317 DOI: 10.3390/foods12224094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The effects of pectin from Citrus unshiu Marc. on glycolipid metabolism, the morphologies of the pancreas and epididymal fat, the gut microbiota, and the metabolites of short-chain fatty acids (SCFAs) in db/db mice were investigated in this study. The results indicated that pectin reduced the levels of fasting blood glucose, glycated serum protein, triglycerides, total cholesterol, and low-density lipoprotein cholesterol while increasing the levels of high-density lipoprotein cholesterol. Meanwhile, pectin could improve the morphology of islet cells and inhibit the hypertrophy of adipocytes. Additionally, pectin not only regulated the intestinal flora dysbiosis in db/db mice, as shown by the increasing proportion of Firmicutes/Bacteroidetes and the relative abundance of Ligilactobacillus, Lactobacillus, and Limosilactobacillus, but also remedied the metabolic disorder of SCFAs in db/db mice. These results suggest that pectin could promote glucose and lipid metabolism by regulating the intestinal flora with changes in SCFA profile. This study proves that pectin might serve as a new prebiotic agent to prevent the disorder of glycolipid metabolism.
Collapse
Affiliation(s)
- Yanming Ren
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Y.R.); (S.M.); (Y.Z.); (S.C.); (J.T.)
| | - Shuifang Mao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Y.R.); (S.M.); (Y.Z.); (S.C.); (J.T.)
| | - Yujun Zeng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Y.R.); (S.M.); (Y.Z.); (S.C.); (J.T.)
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Y.R.); (S.M.); (Y.Z.); (S.C.); (J.T.)
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Y.R.); (S.M.); (Y.Z.); (S.C.); (J.T.)
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Y.R.); (S.M.); (Y.Z.); (S.C.); (J.T.)
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China
| |
Collapse
|
6
|
Ding Z, Ge W, Xu X, Xu X, Wang S, Zhang J. PER2/P65-driven glycogen synthase 1 transcription in macrophages modulates gut inflammation and pathogenesis of rectal prolapse. J Biol Chem 2023; 299:105219. [PMID: 37660913 PMCID: PMC10534228 DOI: 10.1016/j.jbc.2023.105219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Rectal prolapse in serious inflammatory bowel disease is caused by abnormal reactions of the intestinal mucosal immune system. The circadian clock has been implicated in immune defense and inflammatory responses, but the mechanisms by which it regulates gut inflammation remain unclear. In this study, we investigate the role of the rhythmic gene Period2 (Per2) in triggering inflammation in the rectum and its contribution to the pathogenesis of rectal prolapse. We report that Per2 deficiency in mice increased susceptibility to intestinal inflammation and resulted in spontaneous rectal prolapse. We further demonstrated that PER2 was essential for the transcription of glycogen synthase 1 by interacting with the NF-κB p65. We show that the inhibition of Per2 reduced the levels of glycogen synthase 1 and glycogen synthesis in macrophages, impairing the capacity of pathogen clearance and disrupting the composition of gut microbes. Taken together, our findings identify a novel role for Per2 in regulating the capacity of pathogen clearance in macrophages and gut inflammation and suggest a potential animal model that more closely resembles human rectal prolapse.
Collapse
Affiliation(s)
- Zhao Ding
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Wenhao Ge
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Xiaodong Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Shiming Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China.
| |
Collapse
|
7
|
Jeong JP, Kim K, Kim J, Kim Y, Jung S. New Polyvinyl Alcohol/Succinoglycan-Based Hydrogels for pH-Responsive Drug Delivery. Polymers (Basel) 2023; 15:3009. [PMID: 37514399 PMCID: PMC10383499 DOI: 10.3390/polym15143009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
We fabricated new hydrogels using polyvinyl alcohol (PVA) and succinoglycan (SG) directly isolated and obtained from Sinorhizobium meliloti Rm 1021 via the freeze-thaw method. Both the composition of the hydrogels and the freeze-thaw cycles were optimized to maximize the swelling ratio for the preparation of the PVA/SG hydrogels. During the optimization process, the morphology and conformational change in the hydrogel were analyzed by scanning electron microscopy, rheological measurements, and compressive tests. An optimized hydrogel with a maximum swelling ratio of 17.28 g/g was obtained when the composition of PVA to SG was 50:50 (PVA/SG 50/50) and the total number of freeze-thaw cycles was five. The PVA/SG 50/50 hydrogel had the largest pore with 51.24% porosity and the highest cross-over point (28.17%) between the storage modulus (G') and the loss modulus (G″). The PVA/SG 50/50 hydrogel showed improved thermal stability owing to its interaction with thermally stable SG chains. The improvement in the thermal stability was confirmed by thermogravimetric analysis and differential scanning calorimetry. In addition, the PVA/SG 50/50 hydrogel showed differential drug release according to the corresponding pH under acidic conditions of pH 1.2 and slightly basic conditions of pH 7.4. Furthermore, the cell viability test on the HEK-293 cell line for that hydrogel demonstrated that the PVA/SG 50/50 hydrogel was non-toxic and biocompatible. Therefore, this hydrogel could be a potential scaffold capable of pH-responsive drug delivery for chronic wound dressing applications.
Collapse
Affiliation(s)
- Jae-Pil Jeong
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyungho Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jaeyul Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Yohan Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
8
|
Lu W, Kong C, Cheng S, Xu X, Zhang J. Succinoglycan riclin relieves UVB-induced skin injury with anti-oxidant and anti-inflammatory properties. Int J Biol Macromol 2023; 235:123717. [PMID: 36806772 DOI: 10.1016/j.ijbiomac.2023.123717] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/19/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023]
Abstract
Excessive UVB exposure increases the production of reactive oxygen species (ROS), which causes oxidative damage and epidermal inflammation. Previous studies have identified that the succinoglycan riclin has potent anti-inflammatory properties. The current study aims to investigate whether riclin protects against UVB-induced photodamage. In vitro, riclin demonstrated excellent moisture-preserving properties, along with antioxidant potential by scavenging superoxide anions, hydroxyl and DPPH radicals. Riclin increased Col1α1 and Col3α1 expression in NIH3T3 cells, inhibited oxidation and melanin synthesis by B16F10 cells upon UVB irradiation. In vivo, topical application of riclin effectively attenuated UVB-induced skin damage in C57BL6 mice, which was characterized by erythema, epidermal hyperplasia, hydroxyproline loss and ROS production in skin tissue. Riclin suppressed skin inflammation by the elevation of TNF-α, IL-6, IL-β, and alleviated UVB-induced immune cell up-regulation. Moreover, treatment with a Dectin-1 inhibitor reversed the protective effect of riclin in THP-1 cells.
Collapse
Affiliation(s)
- Weiling Lu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Changchang Kong
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Shijunyin Cheng
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xiaodong Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China.
| |
Collapse
|
9
|
Jiang X, Sun B, Zhou Z. Preclinical Studies of Natural Products Targeting the Gut Microbiota: Beneficial Effects on Diabetes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8569-8581. [PMID: 35816090 DOI: 10.1021/acs.jafc.2c02960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diabetes mellitus (DM) is a serious metabolic disease characterized by persistent hyperglycemia, with a continuously increasing morbidity and mortality. Although traditional treatments including insulin and oral hypoglycemic drugs maintain blood glucose levels within the normal range to a certain extent, there is an urgent need to develop new drugs that can effectively improve glucose metabolism and diabetes-related complications. Notably, accumulated evidence implicates that the gut microbiota is unbalanced in DM individuals and is involved in the physiological and pathological processes of this metabolic disease. In this review, we introduce the molecular mechanisms by which the gut microbiota contributes to the development of DM. Furthermore, we summarize the preclinical studies of bioactive natural products that exert antidiabetic effects by modulating the gut microbiota, aiming to expand the novel therapeutic strategies for DM prevention and management.
Collapse
Affiliation(s)
- Xiaofang Jiang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Boyu Sun
- The Third People's Hospital of Qingdao, Qingdao 266000, China
| | - Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|