1
|
Villegas-Aguilar MC, Cádiz-Gurrea MDLL, Sánchez-Marzo N, Barrajón-Catalán E, Arráez-Román D, Fernández-Ochoa Á, Segura-Carretero A. The Application of Untargeted Metabolomic Approaches for the Search of Common Bioavailable Metabolites in Human Plasma Samples from Lippia citriodora and Olea europaea Extracts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24879-24893. [PMID: 39437164 PMCID: PMC11544713 DOI: 10.1021/acs.jafc.4c05325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Lippia citriodora and Olea europaea are known for their shared common bioactivities. Although both matrices are rich in similar families of bioactive compounds, their specific phytochemical compounds are mostly different. Since these compounds can be metabolized in the organism, this study hypothesized that common bioavailable metabolites may contribute to their similar bioactive effects. To test this, an acute double-blind intervention study in humans was conducted with blood samples collected at multiple time points. Using an untargeted metabolomic approach based on HPLC-ESI-QTOF-MS, 66 circulating metabolites were detected, including 9 common to both extracts, such as homovanillic acid sulfate and glucuronide derivates, hydroxytyrosol sulfate, etc. These common metabolites displayed significantly different Tmax values depending on the source, suggesting distinct metabolization pathways for each extract. The study highlights how shared bioavailable metabolites may underlie similar bioactivities observed between these two plant sources.
Collapse
Affiliation(s)
| | | | - Noelia Sánchez-Marzo
- Institute
of Research, Development and Innovation in Biotechnology of Elche
(IDiBE) and Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), 03202 Elche, Spain
| | - Enrique Barrajón-Catalán
- Institute
of Research, Development and Innovation in Biotechnology of Elche
(IDiBE) and Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), 03202 Elche, Spain
| | - David Arráez-Román
- Department
of Analytical Chemistry, University of Granada, 18071 Granada, Spain
| | | | | |
Collapse
|
2
|
Farzan M, Abedi B, Bhia I, Madanipour A, Farzan M, Bhia M, Aghaei A, Kheirollahi I, Motallebi M, Amini-Khoei H, Ertas YN. Pharmacological Activities and Molecular Mechanisms of Sinapic Acid in Neurological Disorders. ACS Chem Neurosci 2024; 15:2966-2981. [PMID: 39082749 DOI: 10.1021/acschemneuro.4c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Sinapic acid (SA) is a phenylpropanoid derivative found in various natural sources that exhibits remarkable versatile properties, including antioxidant, anti-inflammatory, and metal-chelating capabilities, establishing itself as a promising candidate for the prevention and treatment of conditions affecting the central nervous system, such as Alzheimer's disease (AD), Parkinson's disease (PD), ischemic stroke, and other neurological disorders. These effects also include neuroprotection in epilepsy models, as evidenced by a reduction in seizure-like behavior, cell death in specific hippocampal regions, and lowered neuroinflammatory markers. In AD, SA treatment enhances memory, reverses cognitive deficits, and attenuates astrocyte activation. SA also has positive effects on cognition by improving memory and lowering oxidative stress. This is shown by lower levels of oxidative stress markers, higher levels of antioxidant enzyme activity, and better memory retention. Additionally, in ischemic stroke and PD models, SA provides microglial protection and exerts anti-inflammatory effects. This review emphasizes SA's multifaceted neuroprotective properties and its potential role in the prevention and treatment of various brain disorders. Despite the need for further research to fully understand its mechanisms of action and clinical applicability, SA stands out as a valuable bioactive compound in the ongoing quest to combat neurodegenerative diseases and enhance the quality of life for affected individuals.
Collapse
Affiliation(s)
- Mahan Farzan
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815783657, Iran
| | - Behnaz Abedi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran
| | - Iman Bhia
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Atossa Madanipour
- Student Research Committee, Alborz University of Medical Sciences, Karaj 3146883811, Iran
| | - Mahour Farzan
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815783657, Iran
| | - Mohammad Bhia
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1996835113, Iran
| | - Ava Aghaei
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
| | - Iman Kheirollahi
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan 8174673441, Iran
| | - Mahzad Motallebi
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 7616911319, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815783657, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- Department of Technical Sciences, Western Caspian University, AZ1001 Baku, Azerbaijan
| |
Collapse
|
3
|
Che Lah NA, Kamaruzaman A. The physico-chemical and antimicrobial properties of nano ZnO functionalised tannic acid. Sci Rep 2024; 14:18596. [PMID: 39127757 PMCID: PMC11316790 DOI: 10.1038/s41598-024-69632-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024] Open
Abstract
Tannic acid (TA) has been reported as an efficient plant-based compound with inhibitory activity against viruses and bacteria. The combination of TA with Zinc Oxide (ZnO) nanostructures with ZnO is one of the most widely used nanoparticles for antimicrobial properties, have not yet fully elucidate especially their mechanisms of overall physicochemical and antimicrobial actions. Hence, to observe the influence of TA adsorption on ZnO, the investigations on the TA concentration and the effect of pH towards the physicochemical, optical and antimicrobial properties are demonstrated. The pure ZnO are synthesised via the chemical reduction method and the ZnO-TA nanostructures are further prepared using the dropwise methods to form variations of pH samples, which causes the formation of different mean particle size distribution, d m . The findings reveal that the performance of physicochemical and optical properties of pure ZnO and ZnO-TA are different due to the wrapped layers of TA which change the charged surface of all the particles. The protonation reactions yield strong pH dependence (pH 3 and 5), with uptake performance becoming more dominant at higher TA concentration loading (pH 3). The detailed optical energy bandgap and Urbach energy that concluded the nanoparticle growth and disorder condition of produced particles are presented. For antimicrobial efficiency, ZnO-TA shows improved effectiveness in growth inhibitions of S. aureus 99.69% compared to pure ZnO nanostructure (99.39%). This work reveals that the TA concentration increases the overall performance, and the discussion gives added support to their potential performance related to the field of ZnO compound.
Collapse
Affiliation(s)
- Nurul Akmal Che Lah
- Centre for Advanced Intelligent Materials, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Khalil Yaakob, 26300, Gambang, Pahang, Malaysia.
- Faculty of Manufacturing and Mechatronics Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600, Pekan, Pahang, Malaysia.
| | - Aqilah Kamaruzaman
- Faculty of Manufacturing and Mechatronics Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600, Pekan, Pahang, Malaysia
- City Universiti Malaysia, 8, Jalan 51a/223, Seksyen 51a, 46100, Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
4
|
Mahamoud R, Bowman DT, Ward WE, Mangal V. Assessing the stability of polyphenol content in red rooibos herbal tea using traditional methods and high-resolution mass spectrometry: Implications for studying dietary interventions in preclinical rodent studies. Food Chem 2024; 448:139068. [PMID: 38608397 DOI: 10.1016/j.foodchem.2024.139068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/01/2024] [Accepted: 03/16/2024] [Indexed: 04/14/2024]
Abstract
Preclinical rodent models are used to examine the relationship between tea consumption and bone health, where tea is available for rodents and typically replaced weekly. However, the extent to which the tea polyphenols change over time remains uncertain, despite its importance in preparing tea during preclinical rodent trials. Using an untargeted molecular approach, we applied a liquid chromatography quadrupole-time-of-flight mass spectrometry (LC-QTOFMS) system to assess the molecular profile of red rooibos teas throughout a 6-day aging period. We found a significant, 3-fold decrease of polyphenols involved in bone metabolism, including m-coumaric acid, catechin derivatives and courmaroyl tartaric acid over 6 days, likely due to photochemical decomposition and autooxidation within tea extracts. Using a novel untargeted workflow for polyphenol characterization, our findings revealed the complexity of polyphenols in red rooibos teas that can inform the evidence-based decisions of how often to change teas during in vivo rodent trials.
Collapse
Affiliation(s)
| | - David T Bowman
- Brock-Niagara Validation, Prototyping and Manufacturing Institute, Canada
| | - Wendy E Ward
- Brock University, Department of Kinesiology, Canada; Brock-Niagara Validation, Prototyping and Manufacturing Institute, Canada
| | - Vaughn Mangal
- Brock University, Department of Chemistry, Canada; Brock-Niagara Validation, Prototyping and Manufacturing Institute, Canada.
| |
Collapse
|
5
|
Kassem AM, Almukainzi M, Faris TM, Ibrahim AH, Anwar W, Elbahwy IA, El-Gamal FR, Zidan MF, Akl MA, Abd-ElGawad AM, Elshamy AI, Elmowafy M. A pH-sensitive silica nanoparticles for colon-specific delivery and controlled release of catechin: Optimization of loading efficiency and in vitro release kinetics. Eur J Pharm Sci 2024; 192:106652. [PMID: 38008226 DOI: 10.1016/j.ejps.2023.106652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
Catechin is a naturally occurring flavonoid of the flavan-3-ol subclass with numerous biological functions; however, these benefits are diminished due to several factors, including low water solubility and degradation in the stomach's harsh environment. So, this study aimed to develop an intelligent catechin colon-targeting delivery system with a high loading capacity. This was done by coating surface-decorated mesoporous silica nanoparticles with a pH-responsive enteric polymer called Eudragit®-S100. The pristine wormlike mesoporous silica nanoparticles (< 100 nm) with high surface area and large total pore volume were effectively synthesized and modified with the NH2 group using the post-grafting strategy. Various parameters, including solvent polarity, catechin-carrier mass ratio, and adsorption time, were studied to improve the loading of catechin into the aminated silica nanoparticles. Next, the negatively charged Eudragit®-S100 was electrostatically coated onto the positively charged aminated nanocarriers to shield the loaded catechin from the acidic environment of the stomach (pH 1.9) and to facilitate site-specific delivery in the acidic environment of the colon (pH 7.4). The prepared nanomaterials were evaluated using several methods, including The Brauner-Emmett-Teller, surface area analyzer, zeta sizer, Field Emission Scanning Electron Microscope, Powder X-Ray Diffraction, Fourier Transform Infrared Spectroscopy, Energy-Dispersive X-ray Spectroscopy, and Differential Scanning Calorimetry. In vitro dissolution studies revealed that Eudragit®-S100-coated aminated nanomaterials prevented the burst release of the loaded catechin in the acidic environment, with approximately 90% of the catechin only being released at colonic pH (pH > 7) with a supercase II transport mechanism. As a result, silica nanoparticles coated with Eudragit®-S100 would provide an innovative and promising approach in targeted nanomedicine for the oral delivery of catechin and related medicines for treating diseases related to the colon, such as colorectal cancer and irritable bowel syndrome.
Collapse
Affiliation(s)
- Abdulsalam M Kassem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11751, Cairo, Egypt
| | - May Almukainzi
- Department of Pharmaceutical Science, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Tarek M Faris
- Department of Pharmaceutical Science, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed H Ibrahim
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11751, Cairo, Egypt
| | - Walid Anwar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11751, Cairo, Egypt
| | - Ibrahim A Elbahwy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11751, Cairo, Egypt
| | - Farid R El-Gamal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11751, Cairo, Egypt
| | - Mohamed F Zidan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11751, Cairo, Egypt
| | - Mohamed A Akl
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11751, Cairo, Egypt; Department of Pharmaceutics, College of Pharmacy, The Islamic University, Najaf 54001, Iraq
| | - Ahmed M Abd-ElGawad
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Abdelsamed I Elshamy
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Mohammed Elmowafy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11751, Cairo, Egypt; Department of Pharmaceutics, College of Pharmacy, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| |
Collapse
|
6
|
Kanner J. Food Polyphenols as Preventive Medicine. Antioxidants (Basel) 2023; 12:2103. [PMID: 38136222 PMCID: PMC10740609 DOI: 10.3390/antiox12122103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Reactive oxygen species (ROS) are the initiators in foods and in the stomach of oxidized dietary lipids, proteins, and lipid-oxidation end-products (ALEs), inducing in humans the development of several chronic diseases and cancer. Epidemiological, human clinical and animal studies supported the role of dietary polyphenols and derivatives in prevention of development of such chronic diseases. There is much evidence that polyphenols/derivatives at the right timing and concentration, which is critical, acts mostly in the aerobic stomach and generally in the gastrointestinal tract as reducing agents, scavengers of free radicals, trappers of reactive carbonyls, modulators of enzyme activity, generators of beneficial gut microbiota and effectors of cellular signaling. In the blood system, at low concentration, they act as generators of electrophiles and low concentration of H2O2, acting mostly as cellular signaling, activating the PI3K/Akt-mediated Nrf2/eNOS pathways and inhibiting the inflammatory transcription factor NF-κB, inducing the cells, organs and organism for eustress, adaptation and surviving.
Collapse
Affiliation(s)
- Joseph Kanner
- Department of Food Science, ARO, Volcani Center, Bet-Dagan 7505101, Israel; or
- Institute of Biochemistry, Food Science and Nutrtion, Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot 9190501, Israel
| |
Collapse
|
7
|
Milhem F, Komarnytsky S. Progression to Obesity: Variations in Patterns of Metabolic Fluxes, Fat Accumulation, and Gastrointestinal Responses. Metabolites 2023; 13:1016. [PMID: 37755296 PMCID: PMC10535155 DOI: 10.3390/metabo13091016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
Obesity is a multifactorial disorder that is remarkably heterogeneous. It presents itself in a variety of phenotypes that can be metabolically unhealthy or healthy, associate with no or multiple metabolic risk factors, gain extreme body weight (super-responders), as well as resist obesity despite the obesogenic environment (non-responders). Progression to obesity is ultimately linked to the overall net energy balance and activity of different metabolic fluxes. This is particularly evident from variations in fatty acids oxidation, metabolic fluxes through the pyruvate-phosphoenolpyruvate-oxaloacetate node, and extracellular accumulation of Krebs cycle metabolites, such as citrate. Patterns of fat accumulation with a focus on visceral and ectopic adipose tissue, microbiome composition, and the immune status of the gastrointestinal tract have emerged as the most promising targets that allow personalization of obesity and warrant further investigations into the critical issue of a wider and long-term weight control. Advances in understanding the biochemistry mechanisms underlying the heterogenous obesity phenotypes are critical to the development of targeted strategies to maintain healthy weight.
Collapse
Affiliation(s)
- Fadia Milhem
- Plants for Human Health Institute, NC State University, 600 Laureate Way, Kannapolis, NC 28081, USA;
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA
- Department of Nutrition, University of Petra, 317 Airport Road, Amman 11196, Jordan
| | - Slavko Komarnytsky
- Plants for Human Health Institute, NC State University, 600 Laureate Way, Kannapolis, NC 28081, USA;
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| |
Collapse
|
8
|
Zhang L, Qu H, Xie M, Shi T, Shi P, Yu M. Effects of Different Cooking Methods on Phenol Content and Antioxidant Activity in Sprouted Peanut. Molecules 2023; 28:4684. [PMID: 37375239 DOI: 10.3390/molecules28124684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Peanut sprout is a high-quality healthy food, which not only has beneficial effects, but also a higher phenol content than peanut seed. In this study, peanut sprout was treated with five cooking methods, namely boiling, steaming, microwave heating, roasting, and deep-frying, and the phenol content, monomeric phenol composition, and antioxidant activity were determined. The results showed that, compared with unripened peanut sprout, the total phenol content (TPC) and total flavonoid content (TFC) decreased significantly after the five ripening processes, and the highest retention of phenols and flavonoids was associated with microwave heating (82.05% for TPC; 85.35% for TFC). Compared with unripened peanut sprout, the monomeric phenol composition in germinated peanut was variable after heat processing. After microwave heating, except for a significant increase in the cinnamic acid content, no changes in the contents of resveratrol, ferulic acid, sinapic acid, and epicatechin were observed. Furthermore, there was a significant positive correlation of TPC and TFC with 2,2-diphenyl-1-picrylhydrazyl scavenging capacity, 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) scavenging capacity, and ferric ion reducing antioxidant power in germinated peanut, but not with hydroxyl free radical scavenging capacity, in which the main monomer phenolic compounds were resveratrol, catechin, and quercetin. The research results indicate that microwave heating can effectively retain the phenolic substances and antioxidant activity in germinated peanuts, making it a more suitable ripening and processing method for germinated peanuts.
Collapse
Affiliation(s)
- Liangchen Zhang
- Institute of Food and Processing, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Haolin Qu
- Food Science College, Shenyang Agricultural Unversity, Shenyang 110866, China
| | - Mengxi Xie
- Institute of Food and Processing, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Taiyuan Shi
- Institute of Food and Processing, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Puxiang Shi
- Institute of Sandy Land Management and Utilization of Liaoning, Fuxin 123000, China
| | - Miao Yu
- Institute of Food and Processing, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| |
Collapse
|
9
|
Komarnytsky S, Wagner C, Gutierrez J, Shaw OM. Berries in Microbiome-Mediated Gastrointestinal, Metabolic, and Immune Health. Curr Nutr Rep 2023; 12:151-166. [PMID: 36738429 DOI: 10.1007/s13668-023-00449-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2022] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW Current research has shown that berry-derived polymeric substrates that resist human digestion (dietary fibers and polyphenols) are extensively metabolized in the gastrointestinal tract dominated by microbiota. This review assesses current epidemiological, experimental, and clinical evidence of how berry (strawberry, blueberry, raspberry, blackberry, cranberry, black currant, and grapes) phytochemicals interact with the microbiome and shape health or metabolic risk factor outcomes. RECENT FINDINGS There is a growing evidence that the compositional differences among complex carbohydrate fractions and classes of polyphenols define reversible shifts in microbial populations and human metabolome to promote gastrointestinal health. Interventions to prevent gastrointestinal inflammation and improve metabolic outcomes may be achieved with selection of berries that provide distinct polysaccharide substrates for selective multiplication of beneficial microbiota or oligomeric decoys for binding and elimination of the pathogens, as well as phenolic substrates that hold potential to modulate gastrointestinal mucins, reduce luminal oxygen, and release small phenolic metabolites signatures capable of ameliorating inflammatory and metabolic perturbations. These mechanisms may explain many of the differences in microbiota and host gastrointestinal responses associated with increased consumption of berries, and highlight potential opportunities to intentionally shift gut microbiome profiles or to modulate risk factors associated with better nutrition and health outcomes.
Collapse
Affiliation(s)
- Slavko Komarnytsky
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA.
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC, 27695, USA.
| | - Charles Wagner
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Janelle Gutierrez
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Odette M Shaw
- Plant & Food Research, Private Bag 11600, Palmerston North, 4442, New Zealand
| |
Collapse
|
10
|
Effect of Wild Blueberry Metabolites on Biomarkers of Gastrointestinal and Immune Health In Vitro. IMMUNO 2022. [DOI: 10.3390/immuno2020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Wild blueberries (Vaccinium angustifolium Aiton.) are a rich source of dietary fiber and (poly)phenols with gastrointestinal and immune health-promoting properties, however, their mechanisms of action on the intestinal epithelial cells and transient tissue macrophages remain to be elucidated. In this study, we evaluated the individual effects of anthocyanins, short-chain fatty acids (metabolites derived from fiber), and a series of hydroxycinnamic and hydroxybenzoic acid metabolites common to anthocyanins and other polyphenols on epithelial gut homeostasis in human colon epithelial CCD-18 cells and murine RAW 264.7 macrophages. Gastrointestinal cell migration was enhanced in response to anthocyanin glucosides with the maximum effect observed for malvidin-3-glucoside, and a structural subset of hydroxybenzoic acids, especially 2-hydroxybenzoic acid. Enhanced staining for ZO-1 protein in the junctional complexes was observed in CCD-18 cells treated with malvidin and butyrate, as well as several phenolic metabolites, including hydroxybenzoic and hydroxycinnamic acids. Nitric oxide production and pro-inflammatory gene expression profiles in the LPS-stimulated macrophages were mostly affected by treatments with 3-caffeoylquinic (chlorogenic) and 3,4-dihydroxycinnamic (caffeic) acids, as well as 2-hydroxybenzoic acid. This study lays the foundation for future investigations evaluating the effects of dietary interventions on managing gastrointestinal and inflammatory pathophysiological outcomes.
Collapse
|