1
|
Wijatniko BD, Ishii Y, Hirayama M, Suzuki T. Novel Peptides LFLLP and DFFL from Jack Bean Protein Hydrolysates Suppress the Inflammatory Response in Lipopolysaccharide-Stimulated RAW 264.7 Cells. Foods 2024; 13:3198. [PMID: 39410232 PMCID: PMC11482615 DOI: 10.3390/foods13193198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024] Open
Abstract
The production of inflammatory cytokines such as tumor necrosis factor (TNF)-α by activated macrophage cells plays an important role in the development of intestinal inflammation. The present study investigated the anti-inflammatory effect of the protein hydrolysates prepared from the jack bean (JBPHs), Canavalia ensiformis (L.) DC, using the enzyme Alcalase, in a murine macrophage model, RAW 264.7 cells, which were stimulated by lipopolysaccharides. JBPHs reduced the TNF-α expression at the protein and mRNA levels through the downregulation of cellular signaling pathways involved in nuclear factor kappa B (NF-κB), extracellular signal-regulated kinase (ERK), and p38. A combination of mass spectrometry and in silico approaches identified 10 potential anti-inflammatory peptides in the JBPHs, including LFLLP and DFFL. Interestingly, while LFLLP targeted the NF-κB pathway, DFFL targeted p38 and ERK to suppress the TNF-α production in the RAW 264.7 cells. In addition, LFLLP and DFFL were localized in the cytosol of the cells. These results demonstrated that LFLLP and DFFL were incorporated by RAW 264.7 cells and, at least in part, contributed to the reduction in TNF-α by JBPHs. These peptides isolated from JBPHs may well be utilized as new alternatives to alleviate intestinal inflammation.
Collapse
Affiliation(s)
- Bambang Dwi Wijatniko
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8528, Japan; (B.D.W.); (Y.I.); (M.H.)
- Department of Food and Agricultural Product Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Yoshiki Ishii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8528, Japan; (B.D.W.); (Y.I.); (M.H.)
| | - Makoto Hirayama
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8528, Japan; (B.D.W.); (Y.I.); (M.H.)
| | - Takuya Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8528, Japan; (B.D.W.); (Y.I.); (M.H.)
| |
Collapse
|
2
|
Isaac KS, Combe M, Potter G, Sokolenko S. Machine learning tools for peptide bioactivity evaluation - Implications for cell culture media optimization and the broader cultivated meat industry. Curr Res Food Sci 2024; 9:100842. [PMID: 39435450 PMCID: PMC11491887 DOI: 10.1016/j.crfs.2024.100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/07/2024] [Indexed: 10/23/2024] Open
Abstract
Although bioactive peptides have traditionally been studied for their health-promoting qualities in the context of nutrition and medicine, the past twenty years have seen a steady increase in their application to cell culture media optimization. Complex natural sources of bioactive peptides, such as hydrolysates, offer a sustainable and cost-effective means of promoting cellular growth, making them an essential component of scaling-up cultivated meat production. However, the sheer diversity of hydrolysates makes product selection difficult, highlighting the need for functional characterization. Traditional wet-lab techniques for isolating and estimating peptide bioactivity cannot keep pace with peptide identification using high-throughput tools such as mass spectrometry, requiring the development and use of machine learning-based classifiers. This review provides a comprehensive list of available software tools to evaluate peptide bioactivity, classified and compared based on the algorithm, training set, functionality, and limitations of the underlying models. We curated independent test sets to compare the predictive performance of different models based on specific bioactivity classification relevant to promoting cell culture growth: antioxidant and anti-inflammatory. A comprehensive screening of all bioactivity classifiers revealed that while there are approximately fifty tools to elucidate antimicrobial activity and sixteen that predict anti-inflammatory activity, fewer tools are available for other functionalities related to cell growth - five that predict antioxidant activity and two for growth factor and/or cell signaling prediction. A thorough evaluation of the available tools revealed significant issues with sensitivity, specificity, and overall accuracy. Despite the overall interest in estimating peptide bioactivity, our work highlights key gaps in the broader adoption of existing software for the specific application of cell culture media optimization in the context of cultivated meat and beyond.
Collapse
Affiliation(s)
- Kathy Sharon Isaac
- Process Engineering and Applied Science, Dalhousie University, 5273 DaCosta Row, PO Box 15000, Halifax, B3H 4R2, NS, Canada
| | - Michelle Combe
- Process Engineering and Applied Science, Dalhousie University, 5273 DaCosta Row, PO Box 15000, Halifax, B3H 4R2, NS, Canada
| | | | - Stanislav Sokolenko
- Process Engineering and Applied Science, Dalhousie University, 5273 DaCosta Row, PO Box 15000, Halifax, B3H 4R2, NS, Canada
| |
Collapse
|
3
|
Biji CA, Balde A, Nazeer RA. Anti-inflammatory peptide therapeutics and the role of sulphur containing amino acids (cysteine and methionine) in inflammation suppression: A review. Inflamm Res 2024; 73:1203-1221. [PMID: 38769154 DOI: 10.1007/s00011-024-01893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Inflammation serves as our body's immune response to combat infections, pathogens, viruses, and external stimuli. Inflammation can be classified into two types: acute inflammation and chronic inflammation. Non-steroidal anti-inflammatory medications (NSAIDs) are used to treat both acute and chronic inflammatory disorders. However, these treatments have various side effects such as reduced healing efficiency, peptic ulcers, gastrointestinal toxicities, etc. METHOD: This review assesses the potential of anti-inflammatory peptides (AIPs) derived from various natural sources, such as algae, fungi, plants, animals, and marine organisms. Focusing on peptides rich in cysteines and methionine, sulphur-containing amino acids known for their role in suppression of inflammation. RESULT Due to their varied biological activity, ability to penetrate cells, and low cytotoxicity, bioactive peptides have garnered interest as possible therapeutic agents. The utilisation of AIPs has shown great potential in the treatment of disorders associated with inflammation. AIPs can be obtained from diverse natural sources such as algae, fungi, plants, and animals. Cysteine and methionine are sulphur-containing amino acids that aid in the elimination of free radicals, hence assisting in the treatment of inflammatory diseases. CONCLUSION This review specifically examines several sources of AIPs including peptides that contain numerous cysteines and methionine. In addition, the biological characteristics of these amino acids and advancements in peptide delivery are also discussed.
Collapse
Affiliation(s)
- Catherin Ann Biji
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamilnadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamilnadu, India
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamilnadu, India.
| |
Collapse
|
4
|
Wijesekara T, Abeyrathne EDNS, Ahn DU. Effect of Bioactive Peptides on Gut Microbiota and Their Relations to Human Health. Foods 2024; 13:1853. [PMID: 38928795 PMCID: PMC11202804 DOI: 10.3390/foods13121853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Bioactive peptides derived from both exogenous and endogenous origins have been studied extensively to use their beneficial effects in humans and animals. Bioactive peptides exhibit beneficial bodily functions and contribute to a healthy gastrointestinal system by influencing barrier functions, immune responses, and gut microbiota. Gut microbiota is a diverse microbial community that significantly influences the overall well-being and homeostasis of the body. Factors such as diet, age, lifestyle, medication, and environmental circumstances can affect the composition and diversity of the gut microbiota. The disturbances or imbalances in the gut microbiota have been associated with various health problems. The interplays between bioactive peptides and gut microbiota are not fully understood, but bioactive peptides hold promise as modulators of the gut microbiota to promote gut health. Almost all the bioactive research on human health, including the development of therapeutics and nutritional interventions, uses cell culture, even though their direct biofunctional activities can only occur when absorbed in the intestine and into the blood system. This review focuses on the current understanding of bioactive peptides in gut microbiota and their impact and mechanisms on gut and human health. The novelty of this review lies in its comprehensive analysis of the multifaceted interactions between bioactive peptides and gut microbiota, integrating knowledge from diverse disciplines between microbiology and nutrition. By elucidating the underlying mechanisms and identifying current research gaps, this review offers an outlook on the potential of bioactive peptides in promoting gut health and shaping future therapeutic and nutritional interventions.
Collapse
Affiliation(s)
- Tharuka Wijesekara
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada;
| | | | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
5
|
Thongtak A, Yutisayanuwat K, Harnkit N, Noikaew T, Chumnanpuen P. Computational Screening for the Dipeptidyl Peptidase-IV Inhibitory Peptides from Putative Hemp Seed Hydrolyzed Peptidome as a Potential Antidiabetic Agent. Int J Mol Sci 2024; 25:5730. [PMID: 38891918 PMCID: PMC11171819 DOI: 10.3390/ijms25115730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Dipeptidyl peptidase-IV (DPPIV) inhibitory peptides are a class of antihyperglycemic drugs used in the treatment of type 2 diabetes mellitus, a metabolic disorder resulting from reduced levels of the incretin hormone GLP-1. Given that DPPIV degrades incretin, a key regulator of blood sugar levels, various antidiabetic medications that inhibit DPPIV, such as vildagliptin, sitagliptin, and linagliptin, are employed. However, the potential side effects of these drugs remain a matter of debate. Therefore, we aimed to investigate food-derived peptides from Cannabis sativa (hemp) seeds. Our developed bioinformatics pipeline was used to identify the putative hydrolyzed peptidome of three highly abundant proteins: albumin, edestin, and vicilin. These proteins were subjected to in silico digestion by different proteases (trypsin, chymotrypsin, and pepsin) and then screened for DPPIV inhibitory peptides using IDPPIV-SCM. To assess potential adverse effects, several prediction tools, namely, TOXINpred, AllerCatPro, and HemoPred, were employed to evaluate toxicity, allergenicity, and hemolytic effects, respectively. COPID was used to determine the amino acid composition. Molecular docking was performed using GalaxyPepDock and HPEPDOCK, 3D visualizations were conducted using the UCSF Chimera program, and MD simulations were carried out with AMBER20 MD software. Based on the predictive outcomes, FNVDTE from edestin and EAQPST from vicilin emerged as promising candidates for DPPIV inhibitors. We anticipate that our findings may pave the way for the development of alternative DPPIV inhibitors.
Collapse
Affiliation(s)
- Arisa Thongtak
- Mahidol Wittayanusorn School, 364 Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand; (A.T.); (K.Y.)
| | - Kulpariya Yutisayanuwat
- Mahidol Wittayanusorn School, 364 Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand; (A.T.); (K.Y.)
| | - Nathaphat Harnkit
- Medicinal Plant Research Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand;
| | - Tipanart Noikaew
- Department of Biology and Health Science, Mahidol Wittayanusorn School, 364 Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand;
| | - Pramote Chumnanpuen
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
6
|
Aita SE, Montone CM, Taglioni E, Capriotti AL. Hempseed protein-derived short- and medium-chain peptides and their multifunctional properties. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:275-325. [PMID: 38906589 DOI: 10.1016/bs.afnr.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Nowadays, the growing knowledge about the high nutritional value and potential functionality of hempseeds, the edible fruits of the Cannabis sativa L. plant, has sparked a surge in interest in exploring the worthwhile attributes of hempseed proteins and peptides. This trend aligns with the increasing popularity of hemp-based food, assuming a vital role in the global food chain. This chapter targets the nutritional and chemical composition of hempseed in terms of short- and medium-chain bioactive peptides. The analytical approaches for their characterization and multifunctional properties are summarized in detail. Moreover, the processing, functionality, and application of various hempseed protein products are discussed. In the final part of the chapter-for evaluating their propensity to be transported by intestinal cells-the transepithelial transport of peptides within hempseed protein hydrolysate is highlighted.
Collapse
Affiliation(s)
- Sara Elsa Aita
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | | - Enrico Taglioni
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
7
|
Santos-Sánchez G, Ponce-España E, Álvarez-López AI, Pedroche J, Millán-Linares MDC, Fernández-Pachón MS, Lardone PJ, Cruz-Chamorro I, Carrillo-Vico A. A lupin protein hydrolysate protects the central nervous system from oxidative stress in WD-fed ApoE -/- mice. Mol Nutr Food Res 2024; 68:e2300503. [PMID: 38308501 DOI: 10.1002/mnfr.202300503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/22/2023] [Indexed: 02/04/2024]
Abstract
Oxidative stress plays a crucial role in neurodegenerative diseases like Parkinson's and Alzheimer's. Studies indicate the relationship between oxidative stress and the brain damage caused by a high-fat diet. It is previously found that a lupin protein hydrolysate (LPH) has antioxidant effects on human leukocytes, as well as on the plasma and liver of Western diet (WD)-fed ApoE-/- mice. Additionally, LPH shows anxiolytic effects in these mice. Given the connection between oxidative stress and anxiety, this study aimed to investigate the antioxidant effects of LPH on the brain of WD-fed ApoE-/- mice. LPH (100 mg kg-1) or a vehicle is administered daily for 12 weeks. Peptide analysis of LPH identified 101 amino acid sequences (36.33%) with antioxidant motifs. Treatment with LPH palliated the decrease in total antioxidant activity caused by WD ingestion and regulated the nitric oxide synthesis pathway in the brain of the animals. Furthermore, LPH increased cerebral glutathione levels and the activity of catalase and glutathione reductase antioxidant enzymes and reduced the 8-hydroxy-2'-deoxyguanosine levels, a DNA damage marker. These findings, for the first time, highlight the antioxidant activity of LPH in the brain. This hydrolysate could potentially be used in future nutraceutical therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Guillermo Santos-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, 41013, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville, 41009, Spain
| | - Eduardo Ponce-España
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, 41013, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville, 41009, Spain
| | - Ana Isabel Álvarez-López
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, 41013, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville, 41009, Spain
| | - Justo Pedroche
- Department of Food & Health, Instituto de la grasa, CSIC, Ctra, Utrera Km 1, Seville, 41013, Spain
| | - María Del Carmen Millán-Linares
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville, 41009, Spain
- Department of Food & Health, Instituto de la grasa, CSIC, Ctra, Utrera Km 1, Seville, 41013, Spain
| | - María-Soledad Fernández-Pachón
- Área de Nutrición y Bromatología, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Ctra. Utrera Km 1, Sevilla, 41013, Spain
| | - Patricia Judith Lardone
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, 41013, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville, 41009, Spain
| | - Ivan Cruz-Chamorro
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, 41013, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville, 41009, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, 41013, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville, 41009, Spain
| |
Collapse
|
8
|
Lammi C. Plant bioactive peptides for cardiovascular disease prevention. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:219-239. [PMID: 37722773 DOI: 10.1016/bs.afnr.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Cardiovascular disease (CVD) is a major cause of deaths in industrialized countries and a constantly growing cause of morbidity and mortality worldwide Hypercholesterolemia is one of the main risk factors for CVD progression that may be prevented by lifestyle changes, including diet. This chapter will discuss the role of peptides from plants (soybean, lupin, cowpea, hempseed, and rice bran) sources with pleotropic activity for the prevention of CVD. Overall, the bioactivity that will be mainly discussed it is the hypocholesterolemic one. The very diversified structures of the hypocholesterolemic peptides so far identified explains the reason why they exert their activity through different mechanisms of action that will be extensively described in this review. Doubtlessly, their potential use in nutritional application is desirable, however, only few of them have been tested in vivo. Therefore, more efforts need to be pursued for singling out good candidates for the development of functional foods or dietary supplements.
Collapse
Affiliation(s)
- Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
9
|
Ashaolu TJ, Le TD, Suttikhana I, Olatunji OJ, Farag MA. RETRACTED: Hemp bioactive peptides: Nutrition, functional properties and action mechanisms to maximize their nutraceutical applications and future prospects. Food Chem 2023; 414:135691. [PMID: 36808030 DOI: 10.1016/j.foodchem.2023.135691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/locate/withdrawalpolicy). This review article has been retracted at the request of the Editor in Chief and authors. The article has been retracted as it duplicates several figures from a paper that had already appeared in Trends in Food Science & Technology, Volume 127, September 2022, Pages 303-318, without giving appropriate credit to this paper. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article falls short of the scientific quality requirement of the journal. The third author admits responsibility for the oversight and wishes to apologize to the readers and editors of Food Chemistry for the inconvenience. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.
Collapse
Affiliation(s)
| | - Thanh-Do Le
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Viet Nam
| | - Itthanan Suttikhana
- Department of Multifunctional Agriculture, Faculty of Agriculture and Technology, University of South Bohemia, České Budějovice, Czech Republic
| | - Opeyemi Joshua Olatunji
- African Genome Center, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt.
| |
Collapse
|
10
|
Santos-Sánchez G, Aiello G, Rivardo F, Bartolomei M, Bollati C, Arnoldi A, Cruz-Chamorro I, Lammi C. Antioxidant Effect Assessment and Trans Epithelial Analysis of New Hempseed Protein Hydrolysates. Antioxidants (Basel) 2023; 12:antiox12051099. [PMID: 37237964 DOI: 10.3390/antiox12051099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Hempseed (Cannabis sativa) is one of the most promising sources of plant proteins. It contains approximately 24% (w/w) protein, and edestin accounts for approximately 60-80% (w/w) of its total proteins. In a framework of research aimed at fostering the proteins recovered from the press cake by-products generated after the extraction of hempseed oil, two hempseed protein hydrolysates (HH1 and HH2) were produced at an industrial level using a mixture of different enzymes from Aspergillus niger, Aspergillus oryzae, and Bacillus licheniformis for different times (5 h and 18 h). Using a combination of different direct antioxidant tests (DPPH, TEAC, FRAP, and ORAC assays, respectively), it has been demonstrated that HHs exert potent, direct antioxidant activity. A crucial feature of bioactive peptides is their intestinal bioavailability; for this reason, in order to solve this peculiar issue, the ability of HH peptides to be transported by differentiated human intestinal Caco-2 cells has been evaluated. Notably, by using mass spectrometry analysis (HPLC Chip ESI-MS/MS), the stable peptides transported by intestinal cells have been identified, and dedicated experiments confirmed that the trans-epithelial transported HH peptide mixtures retain their antioxidant activity, suggesting that these hempseed hydrolysates may be considered sustainable antioxidant ingredients to be exploited for further application, i.e., nutraceutical and/or food industries.
Collapse
Affiliation(s)
- Guillermo Santos-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Gilda Aiello
- Department of Human Science and Quality of Life Promotion, Telematic University San Raffaele, 00166 Rome, Italy
| | - Fabrizio Rivardo
- A. Costantino & C. Spa, Via Francesco Romana 11-15, 10083 Favria, Italy
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Ivan Cruz-Chamorro
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
11
|
Fatoki TH, Chukwuejim S, Udenigwe CC, Aluko RE. In Silico Exploration of Metabolically Active Peptides as Potential Therapeutic Agents against Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:5828. [PMID: 36982902 PMCID: PMC10058213 DOI: 10.3390/ijms24065828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is regarded as a fatal neurodegenerative disease that is featured by progressive damage of the upper and lower motor neurons. To date, over 45 genes have been found to be connected with ALS pathology. The aim of this work was to computationally identify unique sets of protein hydrolysate peptides that could serve as therapeutic agents against ALS. Computational methods which include target prediction, protein-protein interaction, and peptide-protein molecular docking were used. The results showed that the network of critical ALS-associated genes consists of ATG16L2, SCFD1, VAC15, VEGFA, KEAP1, KIF5A, FIG4, TUBA4A, SIGMAR1, SETX, ANXA11, HNRNPL, NEK1, C9orf72, VCP, RPSA, ATP5B, and SOD1 together with predicted kinases such as AKT1, CDK4, DNAPK, MAPK14, and ERK2 in addition to transcription factors such as MYC, RELA, ZMIZ1, EGR1, TRIM28, and FOXA2. The identified molecular targets of the peptides that support multi-metabolic components in ALS pathogenesis include cyclooxygenase-2, angiotensin I-converting enzyme, dipeptidyl peptidase IV, X-linked inhibitor of apoptosis protein 3, and endothelin receptor ET-A. Overall, the results showed that AGL, APL, AVK, IIW, PVI, and VAY peptides are promising candidates for further study. Future work would be needed to validate the therapeutic properties of these hydrolysate peptides by in vitro and in vivo approaches.
Collapse
Affiliation(s)
- Toluwase Hezekiah Fatoki
- Department of Biochemistry, Federal University Oye-Ekiti, PMB 373, Oye 371104, Nigeria; (T.H.F.); (S.C.)
| | - Stanley Chukwuejim
- Department of Biochemistry, Federal University Oye-Ekiti, PMB 373, Oye 371104, Nigeria; (T.H.F.); (S.C.)
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Chibuike C. Udenigwe
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Richardson Centre for Food Technology and Research, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
12
|
Lin L, Li C, Li T, Zheng J, Shu Y, Zhang J, Shen Y, Ren D. Plant‐derived peptides for the improvement of Alzheimer's disease: Production, functions, and mechanisms. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Affiliation(s)
- Like Lin
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Tingting Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Jingyi Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Yu Shu
- College of Food Science and Technology Northwest University Xi'an Shaanxi China
| | - Jingjing Zhang
- College of Chemical Engineering Northwest University Xi'an Shaanxi China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Difeng Ren
- Beijing Key Laboratory of Food Processing and Safety in Forestry Department of Food Science and Engineering, College of Biological Sciences and Biotechnology Beijing Forestry University Beijing China
| |
Collapse
|
13
|
Purcell D, Packer MA, Hayes M. Identification of Bioactive Peptides from a Laminaria digitata Protein Hydrolysate Using In Silico and In Vitro Methods to Identify Angiotensin-1-Converting Enzyme (ACE-1) Inhibitory Peptides. Mar Drugs 2023; 21:90. [PMID: 36827131 PMCID: PMC9967564 DOI: 10.3390/md21020090] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
Bioactive peptides range in size from 2-30 amino acids and may be derived from any protein-containing biomass using hydrolysis, fermentation or high-pressure processing. Pro-peptides or cryptides result in shorter peptide sequences following digestion and may have enhanced bioactivity. Previously, we identified a protein hydrolysate generated from Laminaria digitata that inhibited ACE-1 in vitro and had an ACE-1 IC50 value of 590 µg/mL compared to an ACE-1 IC50 value of 500 µg/mL (~2.3 µM) observed for the anti-hypertensive drug Captopril©. A number of peptide sequences (130 in total) were identified using mass spectrometry from a 3 kDa permeate of this hydrolysate. Predicted bioactivities for these peptides were determined using an in silico strategy previously published by this group utilizing available databases including Expasy peptide cutter, BIOPEP and Peptide Ranker. Peptide sequences YIGNNPAKGGLF and IGNNPAKGGLF had Peptide Ranker scores of 0.81 and 0.80, respectively, and were chemically synthesized. Synthesized peptides were evaluated for ACE-1 inhibitory activity in vitro and were found to inhibit ACE-1 by 80 ± 8% and 91 ± 16%, respectively. The observed ACE-1 IC50 values for IGNNPAKGGLF and YIGNNPAKGGLF were determined as 174.4 µg/mL and 133.1 µg/mL. Both peptides produced sequences following simulated digestion with the potential to inhibit Dipeptidyl peptidase IV (DPP-IV).
Collapse
Affiliation(s)
- Diane Purcell
- Food BioSciences Department, Teagasc Food Research Centre, Ashtown, Dublin 15, D15 DY05 Dublin, Ireland
- Cawthron Institute, 98 Halifax Street, Nelson 7010, New Zealand
| | | | - Maria Hayes
- Food BioSciences Department, Teagasc Food Research Centre, Ashtown, Dublin 15, D15 DY05 Dublin, Ireland
| |
Collapse
|
14
|
Cerrato A, Lammi C, Laura Capriotti A, Bollati C, Cavaliere C, Maria Montone C, Bartolomei M, Boschin G, Li J, Piovesana S, Arnoldi A, Laganà A. Isolation and functional characterization of hemp seed protein-derived short- and medium-chain peptide mixtures with multifunctional properties for metabolic syndrome prevention. Food Res Int 2023; 163:112219. [PMID: 36596148 DOI: 10.1016/j.foodres.2022.112219] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
This study aims to obtain a valuable mixture of short-chain peptides from hempseed as a new ingredient for developing nutraceutical and functional foods useful for preventing metabolic syndrome that represents the major cause of death globally. A dedicated analytical platform based on a purification step by size exclusion chromatography or ultrafiltration membrane and high-resolution mass spectrometry was developed to isolate and comprehensively characterize short-chain peptides leading to the identification of more than 500 short-chain peptides. Our results indicated that the short-chain peptide mixture was about three times more active than the medium-chain peptide mixture and total hydrolysate with respect to measured inhibition of the angiotensin-converting enzyme. The short-chain peptide mixture was also two times more active as a dipeptidyl peptidase IV, and twofold more active on the cholesterol metabolism pathway through the modulation of low-density lipoprotein receptor.
Collapse
Affiliation(s)
- Andrea Cerrato
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy.
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Giovanna Boschin
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Jianqiang Li
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Susy Piovesana
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
15
|
Hemp Protein Hydrolysates Modulate Inflammasome-Related Genes in Microglial Cells. BIOLOGY 2022; 12:biology12010049. [PMID: 36671742 PMCID: PMC9855956 DOI: 10.3390/biology12010049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
A prolonged inflammatory response can lead to the development of neurodegenerative diseases such as Alzheimer's disease. Enzymatic hydrolysis is a sustainable way to increase the value of protein sources by obtaining peptides that can exert bioactivity. Hemp (Cannabis sativa L.) protein hydrolysates have been proven to exert anti-inflammatory activity. In this study, two hemp protein hydrolysate (HPHs), obtained with Alcalase as sole catalyst, or with Alcalase followed by Flavourzyme, were evaluated as inflammatory mediators (TNFα, IL-1β, IL-6, and IL-10), microglial polarization markers (Ccr7, iNos, Arg1, and Ym1), and genes related to inflammasome activation (Nlrp3, Asc, Casp1, and Il18), employing the lipopolysaccharide (LPS)-induced neuroinflammation model in murine BV-2 microglial cells. A significant decrease of the expression of proinflammatory genes (e.g., Tnfα, Ccr7, inos, and Nlrp3, among others) and increase of the expression anti-inflammatory cytokines in microglial cells was observed after treatment with the test HPHs. This result in the cell model suggests a polarization toward an anti-inflammatory M2 phenotype. Our results show that the evaluated HPHs show potential neuroprotective activity in microglial cells via the inflammasome.
Collapse
|
16
|
Prasertsuk K, Prongfa K, Suttiwanich P, Harnkit N, Sangkhawasi M, Promta P, Chumnanpuen P. Computer-Aided Screening for Potential Coronavirus 3-Chymotrypsin-like Protease (3CLpro) Inhibitory Peptides from Putative Hemp Seed Trypsinized Peptidome. Molecules 2022; 28:50. [PMID: 36615263 PMCID: PMC9822321 DOI: 10.3390/molecules28010050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
To control the COVID-19 pandemic, antivirals that specifically target the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently required. The 3-chymotrypsin-like protease (3CLpro) is a promising drug target since it functions as a catalytic dyad in hydrolyzing polyprotein during the viral life cycle. Bioactive peptides, especially food-derived peptides, have a variety of functional activities, including antiviral activity, and also have a potential therapeutic effect against COVID-19. In this study, the hemp seed trypsinized peptidome was subjected to computer-aided screening against the 3CLpro of SARS-CoV-2. Using predictive trypsinized products of the five major proteins in hemp seed (i.e., edestin 1, edestin 2, edestin 3, albumin, and vicilin), the putative hydrolyzed peptidome was established and used as the input dataset. To select the Cannabis sativa antiviral peptides (csAVPs), a predictive bioinformatic analysis was performed by three webserver screening programs: iAMPpred, AVPpred, and Meta-iAVP. The amino acid composition profile comparison was performed by COPid to screen for the non-toxic and non-allergenic candidates, ToxinPred and AllerTOP and AllergenFP, respectively. GalaxyPepDock and HPEPDOCK were employed to perform the molecular docking of all selected csAVPs to the 3CLpro of SARS-CoV-2. Only the top docking-scored candidate (csAVP4) was further analyzed by molecular dynamics simulation for 150 nanoseconds. Molecular docking and molecular dynamics revealed the potential ability and stability of csAVP4 to inhibit the 3CLpro catalytic domain with hydrogen bond formation in domain 2 with short bonding distances. In addition, these top ten candidate bioactive peptides contained hydrophilic amino acid residues and exhibited a positive net charge. We hope that our results may guide the future development of alternative therapeutics against COVID-19.
Collapse
Affiliation(s)
- Kansate Prasertsuk
- Pibulwitthayalai School, 777 Naraimaharach, Talaychoopsorn, Lopburi District, Lopburi 15000, Thailand
| | - Kasidit Prongfa
- Pibulwitthayalai School, 777 Naraimaharach, Talaychoopsorn, Lopburi District, Lopburi 15000, Thailand
| | - Piyapach Suttiwanich
- Pibulwitthayalai School, 777 Naraimaharach, Talaychoopsorn, Lopburi District, Lopburi 15000, Thailand
| | - Nathaphat Harnkit
- Medicinal Plant Research Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Mattanun Sangkhawasi
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pongsakorn Promta
- Pibulwitthayalai School, 777 Naraimaharach, Talaychoopsorn, Lopburi District, Lopburi 15000, Thailand
| | - Pramote Chumnanpuen
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
17
|
Rivera-Jiménez J, Berraquero-García C, Pérez-Gálvez R, García-Moreno PJ, Espejo-Carpio FJ, Guadix A, Guadix EM. Peptides and protein hydrolysates exhibiting anti-inflammatory activity: sources, structural features and modulation mechanisms. Food Funct 2022; 13:12510-12540. [PMID: 36420754 DOI: 10.1039/d2fo02223k] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inflammation is the response of the immune system to harmful stimuli such as tissue injury, infection or toxic chemicals, which has the aim of eliminating irritants or pathogenic microorganisms and enhancing tissue repair. Uncontrolled long-lasting acute inflammation can gradually progress to chronic, causing a variety of chronic inflammatory diseases that are usually treated with anti-inflammatory drugs, but most of them are inadequate to control chronic responses and are also associated with adverse side effects. Thus, many efforts are being directed to develop alternative and more selective anti-inflammatory therapies from natural products. One main field of interest is the obtaining of bioactive peptides exhibiting anti-inflammatory activity from sustainable protein sources like edible insects or agroindustry and fishing by-products. This work highlighted the structure-activity relationship of anti-inflammatory peptides. Small peptides with molecular weight under 1 kDa and amino acid chain length between 2 to 20 residues are generally the most active because of the higher probability to be absorbed in the intestine and penetrate into cells when compared with the larger size peptides. The presence of hydrophobic (Val, Ile, Pro) and positively charged (His, Arg, Lys) amino acids is another common occurrence for anti-inflammatory peptides. Interestingly, a high percentage (77%) of these bioactive peptides can be found in alternative sustainable protein sources such as Tenebrio molitor or sunflower, apart from its original protein source. However, not all of these peptides with anti-inflammatory potential in vitro achieve good scores by the in silico bioactivity predictors studied. Therefore, it is essential to implement current bioinformatics tools, in order to complement in vitro experiments with prior prediction of potential bioactive peptides.
Collapse
Affiliation(s)
- Julia Rivera-Jiménez
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| | | | - Raúl Pérez-Gálvez
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| | | | | | - Antonio Guadix
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| | - Emilia M Guadix
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
18
|
Jiang F, Liu J, Du Z, Liu X, Shang X, Yu Y, Zhang T. Soybean meal peptides regulated membrane phase of giant unilamellar vesicles: A key role for bilayer amphipathic region localization. Food Res Int 2022; 162:111924. [DOI: 10.1016/j.foodres.2022.111924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022]
|
19
|
Anti-Inflammatory Function of Plant-Derived Bioactive Peptides: A Review. Foods 2022; 11:foods11152361. [PMID: 35954128 PMCID: PMC9368234 DOI: 10.3390/foods11152361] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammation is considered to be a crucial factor in the development of chronic diseases, eight of which were listed among the top ten causes of death worldwide in the World Health Organization’s World Health Statistics 2019. Moreover, traditional drugs for inflammation are often linked to undesirable side effects. As gentler alternatives to traditional anti-inflammatory drugs, plant-derived bioactive peptides have been shown to be effective interventions against various chronic diseases, including Alzheimer’s disease, cardiovascular disease and cancer. However, an adequate and systematic review of the structures and anti-inflammatory activities of plant-derived bioactive peptides has been lacking. This paper reviews the latest research on plant-derived anti-inflammatory peptides (PAPs), mainly including the specific regulatory mechanisms of PAPs; the structure–activity relationships of PAPs; and their enzymatic processing based on the structure–activity relationships. Moreover, current research problems for PAPs are discussed, such as the shallow exploration of mechanisms, enzymatic solution determination difficulty, low yield and unknown in vivo absorption and metabolism and proposed future research directions. This work aims to provide a reference for functional activity research, nutritional food development and the clinical applications of PAPs.
Collapse
|
20
|
Bollati C, Xu R, Boschin G, Bartolomei M, Rivardo F, Li J, Arnoldi A, Lammi C. Integrated Evaluation of the Multifunctional DPP-IV and ACE Inhibitory Effect of Soybean and Pea Protein Hydrolysates. Nutrients 2022; 14:2379. [PMID: 35745109 PMCID: PMC9227613 DOI: 10.3390/nu14122379] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023] Open
Abstract
Nowadays, notwithstanding their nutritional and technological properties, food bioactive peptides from plant sources garner increasing attention for their ability to impart more than one beneficial effect on human health. Legumes, which stand out thanks to their high protein content, represent valuable sources of bioactive peptides. In this context, this study focused on the characterization of the potential pleotropic activity of two commercially available soybean (SH) and pea (PH) protein hydrolysates, respectively. Since the biological activity of a specific protein hydrolysate is strictly correlated with its chemical composition, the first aim of the study was to identify the compositions of the SH and PH peptides. Peptidomic analysis revealed that most of the identified peptides within both mixtures belong to storage proteins. Interestingly, according to the BIOPEP-UWM database, all the peptides contain more than one active motive with known inhibitory angiotensin converting enzyme (ACE) and dipeptidyl-dipeptidases (DPP)-IV sequences. Indeed, the results indicated that both SH and PH inhibit DPP-IV and ACE activity with a dose-response trend and IC50 values equal to 1.15 ± 0.004 and 1.33 ± 0.004 mg/mL, and 0.33 ± 0.01 and 0.61 ± 0.05 mg/mL, respectively. In addition, both hydrolysates reduced the activity of DPP-IV and ACE enzymes which are expressed on the surface of human intestinal Caco-2 cells. These findings clearly support that notion that SH and PH may represent new ingredients with anti-diabetic and hypotensive effects for the development of innovative multifunctional foods and/or nutraceuticals for the prevention of metabolic syndrome.
Collapse
Affiliation(s)
- Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (C.B.); (R.X.); (G.B.); (M.B.); (J.L.); (A.A.)
| | - Ruoxian Xu
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (C.B.); (R.X.); (G.B.); (M.B.); (J.L.); (A.A.)
| | - Giovanna Boschin
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (C.B.); (R.X.); (G.B.); (M.B.); (J.L.); (A.A.)
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (C.B.); (R.X.); (G.B.); (M.B.); (J.L.); (A.A.)
| | - Fabrizio Rivardo
- A. Costantino & C. Spa, Via Francesco Romana 11, 10083 Torino, Italy;
| | - Jianqiang Li
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (C.B.); (R.X.); (G.B.); (M.B.); (J.L.); (A.A.)
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (C.B.); (R.X.); (G.B.); (M.B.); (J.L.); (A.A.)
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (C.B.); (R.X.); (G.B.); (M.B.); (J.L.); (A.A.)
| |
Collapse
|
21
|
Hempseed (Cannabis sativa) protein hydrolysates: A valuable source of bioactive peptides with pleiotropic health-promoting effects. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Li J, Bollati C, Bartolomei M, Mazzolari A, Arnoldi A, Vistoli G, Lammi C. Hempseed ( Cannabis sativa) Peptide H3 (IGFLIIWV) Exerts Cholesterol-Lowering Effects in Human Hepatic Cell Line. Nutrients 2022; 14:1804. [PMID: 35565772 PMCID: PMC9101684 DOI: 10.3390/nu14091804] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Hempseed (Cannabis sativa) protein is an important source of bioactive peptides. H3 (IGFLIIWV), a transepithelial transported intestinal peptide obtained from the hydrolysis of hempseed protein with pepsin, carries out antioxidant and anti-inflammatory activities in HepG2 cells. In this study, the main aim was to assess its hypocholesterolemic effects at a cellular level and the mechanisms behind this health-promoting activity. The results showed that peptide H3 inhibited the 3-hydroxy-3-methylglutaryl co-enzyme A reductase (HMGCoAR) activity in vitro in a dose-dependent manner with an IC50 value of 59 μM. Furthermore, the activation of the sterol regulatory element binding proteins (SREBP)-2 transcription factor, followed by the increase of low-density lipoprotein (LDL) receptor (LDLR) protein levels, was observed in human hepatic HepG2 cells treated with peptide H3 at 25 µM. Meanwhile, peptide H3 regulated the intracellular HMGCoAR activity through the increase of its phosphorylation by the activation of AMP-activated protein kinase (AMPK)-pathways. Consequently, the augmentation of the LDLR localized on the cellular membranes led to the improved ability of HepG2 cells to uptake extracellular LDL with a positive effect on cholesterol levels. Unlike the complete hempseed hydrolysate (HP), peptide H3 can reduce the proprotein convertase subtilisin/kexin 9 (PCSK9) protein levels and its secretion in the extracellular environment via the decrease of hepatic nuclear factor 1-α (HNF1-α). Considering all these evidences, H3 may represent a new bioactive peptide to be used for the development of dietary supplements and/or peptidomimetics for cardiovascular disease (CVD) prevention.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (J.L.); (C.B.); (M.B.); (A.M.); (A.A.); (G.V.)
| |
Collapse
|