1
|
Li M, Long Y, Shao L, Meng J, Zheng Z, Wu Y, Zhou X, Liu L, Li Z, Wu Z, Yang S. Targeting tubulin protein to combat fungal disease: Design, synthesis, and its new mechanistic insights of benzimidazole hydrazone derivatives. Int J Biol Macromol 2025:140226. [PMID: 39855516 DOI: 10.1016/j.ijbiomac.2025.140226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/11/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
As the vital the biomacromolecule in eukaryotic cells, tubulin protein is essential for preserving cell shape, facilitating cell division, and cell viability. Tubulin has been approved as promising target for anticancer, and antifungal therapy. However, there are still many gaps in tubulin-targeted fungicidal discovery. To expand the structural diversity of benzimidazoles and achieve the distinct interaction model, a series of novel benzimidazole hydrazone derivatives were therefore synthesized. Antifungal results showed that compound A9 was the most effective, achieving an EC50 value of 2.88 μg/mL in vitro against Colletotrichum sublineola. In vivo assay, compound A9 displayed encouraging efficacy, outperforming the reference agents ferimzone and tetramethylthiuram disulfide. Interestingly, mechanistic studies indicated that, compared with carbendazim, compound A9 might form stronger interactions with tubulin, exemplified by the presence of multiple hydrogen bonds and π-π interactions, leading to intracellular microtubule aggregation in compound A9-treated cells. The significantly different interactions models between A9-tubulin and carbendazim-tubulin complexes may endow to produce the low resistance risk. Additionally, compound A9 possessed low phytotoxicity and satisfactory ADME properties. This study not only provides a structural basis for the development of benzimidazole-based fungicides targeting tubulin but also offers new insights into the use of immunofluorescence assays in tubulin-targeting studies.
Collapse
Affiliation(s)
- Mei Li
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yu Long
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Lihui Shao
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jiao Meng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhicheng Zheng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yuanyuan Wu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Liwei Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhenhua Li
- College of Agriculture/Institute of Rice Industry Technology Research, Key Laboratory of Plant Resource, Guizhou University, Guiyang 550025, China
| | - Zhibing Wu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
An Y, Zou H, Zhou Q, Deng T, Tian J, Qiu Y, Xue W. Design, Synthesis, and Biological Activity Studies of Myricetin Derivatives Containing a Diisopropanolamine Structure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25034-25044. [PMID: 39498550 DOI: 10.1021/acs.jafc.4c08663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
A series of myricetin derivatives containing diisopropanolamine were designed and synthesized. The in vitro inhibitory effects of the target compounds on 9 fungal pathogens and 3 bacterial pathogens were also evaluated. A12 had the best inhibitory effect against Xanthomonas oryzae pv. oryzae (Xoo), with an EC50 value of 4.9 μg/mL, which was better than zinc-thiazole (ZT: EC50 = 7.3 μg/mL) and thiodiazole-copper (TC: EC50 = 65.5 μg/mL); A25 had the best inhibitory effect against Phomopsis sp. (Ps), with an EC50 value of 17.2 μg/mL, which was better than azoxystrobin (Az: EC50 = 22.3 μg/mL). In vivo inhibition tests were performed on kiwifruit for A25 and rice leaves for A12. At 200 μg/mL, the curative activity of A12 against rice leaf blight was 40.7%, which was better than that of ZT (37.2%) and TC (32.9%), and the protective activity of A12 was 44.8%, which was better than that of ZT (39.5%) and TC (34.6%). The curative activity of A25 against kiwi soft rot disease was 70.1%, which was better than that of Az (62.8%). Preliminary elucidation of the possible mechanisms of action was carried out by experiments on fluorescence microscopy, scanning electron microscopy, formation of biofilms, density functional theory calculations, and so on.
Collapse
Affiliation(s)
- Youshan An
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Hongqian Zou
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Qing Zhou
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Tianyu Deng
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Jiao Tian
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Yujiao Qiu
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Wei Xue
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
3
|
Deng T, Xin H, Luo X, Zhou Q, Wang Y, Hu C, Fu H, Xue W. Antifungal activity of chalcone derivatives containing 1,2,3,4-tetrahydroquinoline and studies on them as potential SDH inhibitors. PEST MANAGEMENT SCIENCE 2024. [PMID: 39529550 DOI: 10.1002/ps.8524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND A large number of pathogenic fungi have caused serious damage to the global crop yield, and drug resistance is always a topic that cannot be avoided for traditional fungicides. Therefore, finding efficient, green, and low-toxic fungicides is our primary task, which brings opportunities for the development of natural product green pesticides. RESULTS Twenty chalcone derivatives containing 1,2,3,4-tetrahydroquinoline were designed and synthesized, and the compounds were tested for their fungicidal effects against eight plant pathogenic fungi in vitro. The results demonstrate that the original splicing did not have fungicidal activity, so a piperazine fragment was introduced; the test results revealed that H1-H10 all had good antifungal activity. Among them, H4 showed the highest inhibitory activity against Phytophthora capsici (Pc) with a median effect concentration (EC50) value of 5.2 μg/mL, which was higher than that of the control drugs Azoxystrobin (EC50 = 80.2 μg/mL) and Fluopyram (EC50 = 146.8 μg/mL). After the study, it was demonstrated that H4 mainly acted on the cell membrane against Phytophthora capsici and inhibited the activity of the marker enzyme of mitochondria (SDH) in the fungus. CONCLUSION H4 has significant resistance to Phytophthora capsici and also plays a significant role in inhibiting SDH activity, providing a new direction for the development of green pesticides. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tianyu Deng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, People's Republic of China
| | - Hui Xin
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, People's Republic of China
| | - Xingping Luo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, People's Republic of China
| | - Qing Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, People's Republic of China
| | - Yuhong Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, People's Republic of China
| | - Chunmei Hu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, People's Republic of China
| | - Hong Fu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, People's Republic of China
| | - Wei Xue
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, People's Republic of China
| |
Collapse
|
4
|
Fan W, Zhang S, Yang N, Li Y, Zhang X, Niu C, Liu X, Wang B. Studies on the synthesis, crystal structures, biological activities and molecular docking of novel natural methylxanthine derivatives containing piperazine moiety. Mol Divers 2024:10.1007/s11030-024-10972-z. [PMID: 39511124 DOI: 10.1007/s11030-024-10972-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 11/15/2024]
Abstract
A series of novel methylxanthine Mannich base derivatives containing substituted piperazine groups were synthesized through Mannich reaction. The structures of these new compounds were confirmed by NMR, HRMS or elemental analyses, and X-ray single crystal diffraction. Bioassay results showed that some of the compounds exhibit favorable fungicidal and insecticidal potentials. Particularly, compounds IIk, IIq, IIs and compounds If, IIk against Physalospora piricola and Rhizoctonia cerealis, respectively, were comparable with Azoxystrobin and Chlorothalonil; compound Ik exhibited higher potency than Triflumuron against Plutella xylostella L., suggesting its potential as a lead compound for further development in insecticidal applications. Despite possessing weak herbicidal activities, the target compounds, especially the methylxanthine S-Mannich base derivatives I displayed remarkable inhibitory activities toward ketol-acid reductoisomerase (KARI); compounds Ib, If, and Ik which had Ki values of 2.41-8.08 µmol/L can be novel potent KARI inhibitors for deeper exploration. The SARs were analyzed in detail. The molecular docking studies on the highly active inhibitors with KARI provided possible binding modes between inhibitor and the target enzyme. The physicochemical parameter predictions indicated that compounds Ik, IIk, IIq and IIs have "druglike structure" features. The research results in this article may bring a new inspiration to the extensive explorations on new methylxanthine derivatives in pesticide area.
Collapse
Affiliation(s)
- Wenqi Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shuyun Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Na Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yonghong Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiao Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Congwei Niu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xinghai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
| | - Baolei Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
5
|
Sun NB, Min LJ, Sun XP, Zhai ZW, Bajsa-Hirschel J, Wei ZC, Hua XW, Cantrell CL, Xu H, Duke SO, Liu XH. Novel Pyrazole Acyl(thio)urea Derivatives Containing a Biphenyl Scaffold as Potential Succinate Dehydrogenase Inhibitors: Design, Synthesis, Fungicidal Activity, and SAR. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2512-2525. [PMID: 38286814 DOI: 10.1021/acs.jafc.3c07735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
As part of a program to discover novel succinate dehydrogenase inhibitor fungicides, a series of new pyrazole acyl(thio)urea compounds containing a diphenyl motif were designed and synthesized. Their structures were confirmed by 1H NMR, HRMS, and single X-ray crystal diffraction analysis. Most of these compounds possessed excellent activity against 10 fungal plant pathogens at 50 μg mL-1, especially against Rhizoctonia solani, Alternaria solani, Sclerotinia sclerotiorum, Botrytis cinerea, and Cercospora arachidicola. Interestingly, compounds 3-(difluoromethyl)-1-methyl-N-((3',4',5'-trifluoro-[1,1'-biphenyl]-2-yl)carbamoyl)-1H-pyrazole-4-carboxamide (9b, EC50 = 0.97 ± 0.18 μg mL-1), 1,3-dimethyl-N-((3',4',5'-trifluoro-[1,1'-biphenyl]-2-yl)carbamoyl)-1H-pyrazole-4-carboxamide (9a, EC50 = 2.63 ± 0.41 μg mL-1), and N-((4'-chloro-[1,1'-biphenyl]-2-yl)carbamoyl)-1,3-dimethyl-1H-pyrazole-4-carboxamide (9g, EC50 = 1.31 ± 0.15 μg mL-1) exhibited activities against S. sclerotiorum that were better than the commercial fungicide bixafen (EC50 = 9.15 ± 0.05 μg mL-1) and similar to the positive control fluxapyroxad (EC50 = 0.71 ± 0.11 μg mL-1). These compounds were not significantly phytotoxic to monocotyledonous and dicotyledonous plants. Structure-activity relationships (SAR) are discussed by substituent effects/molecular docking, and density functional theory analysis indicated that these compounds are succinate dehydrogenase inhibitors.
Collapse
Affiliation(s)
- Na-Bo Sun
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015 Zhejiang China
| | - Li-Jing Min
- College of Life Science, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Xin-Peng Sun
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015 Zhejiang China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhi-Wen Zhai
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Joanna Bajsa-Hirschel
- Natural Products Utilization Research Unit, United States Department of Agriculture, Agricultural Research Service, University, Mississippi 38677, United States
| | - Zhe-Cheng Wei
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xue-Wen Hua
- College of Agriculture, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Charles L Cantrell
- Natural Products Utilization Research Unit, United States Department of Agriculture, Agricultural Research Service, University, Mississippi 38677, United States
| | - Hao Xu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015 Zhejiang China
| | - Stephen O Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Xing-Hai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
6
|
Sun XP, Yu CS, Min LJ, Cantrell CL, Hua X, Sun NB, Liu XH. Discovery of Highly Efficient Novel Antifungal Lead Compounds Targeting Succinate Dehydrogenase: Pyrazole-4-carboxamide Derivatives with an N-Phenyl Substituted Amide Fragment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19312-19323. [PMID: 38018356 DOI: 10.1021/acs.jafc.3c04842] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Developing environmentally friendly fungicides is crucial to tackle the issue of rising pesticide resistance. In this study, a series of novel pyrazole-4-carboxamide derivatives containing N-phenyl substituted amide fragments were designed and synthesized. The structures of target compounds were confirmed by 1H NMR, 13C NMR, and HRMS, and the crystal structure of the most active compound N-(1-(4-(4-(tert-butyl)benzamido)phenyl)propan-2-yl)-3-(difluoromethyl)-N-methoxy-1-methyl-1H-pyrazole-4-carboxamide (U22) was further determined by X-ray single-crystal diffraction. The bioassay results indicated that the 26 target compounds possessed good in vitro antifungal activity against Sclerotinia sclerotiorum with EC50 values for compounds U12, U13, U15, U16, U18, U22, and U23 being 4.17 ± 0.46, 8.04 ± 0.71, 7.01 ± 0.71, 12.77 ± 1.00, 8.11 ± 0.70, 0.94 ± 0.11, and 9.48 ± 0.83 μg·mL-1, respectively, which were the similar to controls bixafen (6.70 ± 0.47 μg·mL-1), fluxapyroxad (0.71 ± 0.14 μg·mL-1), and pydiflumetofen (0.06 ± 0.01 μg·mL-1). Furthermore, in vivo antifungal activity results against S. sclerotiorum indicated that compounds U12 (80.6%) and U22 (89.9%) possessed excellent preventative efficacy at 200 μg·mL-1, which was the same as the control pydiflumetofen (82.4%). Scanning electron microscopy and transmission electron microscopy studies found that the compound U22 could destroy the hyphal morphology and damage mitochondria, cell membranes, and vacuoles. The results of molecular docking of compound U22 and pydiflumetofen with succinate dehydrogenase (SDH) indicated they interact well with the active site of SDH. This study validated our approach and design strategy to produce compounds with an enhanced biological activity as compared to the parent structure.
Collapse
Affiliation(s)
- Xin-Peng Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, Zhejiang China
| | - Chen-Sheng Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Li-Jing Min
- College of Life Science, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou 313000, Zhejiang, China
| | - Charles L Cantrell
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, Oxford, Mississippi 38677, United States
| | - Xuewen Hua
- College of Agriculture, Liaocheng University, Liaocheng 252000, Shandong, China
| | - Na-Bo Sun
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, Zhejiang China
| | - Xing-Hai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
7
|
Cheng X, Xu Z, Cui H, Zhang Z, Chen W, Wang F, Li S, Liu Q, Wang D, Lv X, Chang X. Discovery of Pyrazole-5-yl-amide Derivatives Containing Cinnamamide Structural Fragments as Potential Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37922127 DOI: 10.1021/acs.jafc.3c04355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
To promote the development of novel agricultural succinate dehydrogenase inhibitor (SDHI) fungicides, we introduced cinnamamide and nicotinamide structural fragments into the structure of pyrazol-5-yl-amide by carbon chain extension and scaffold hopping, respectively, and synthesized a series of derivatives. The results of the biological activity assays indicated that most of the target compounds exhibited varying degrees of inhibitory activity against the tested fungi. Notably, compounds G22, G28, G34, G38, and G39 exhibited excellent in vitro antifungal activities against Valsa mali with EC50 values of 0.48, 0.86, 0.57, 0.73, and 0.87 mg/L, respectively, and this result was significantly more potent than boscalid (EC50 = 2.80 mg/L) and closer to the specialty control drug tebuconazole (EC50 = 0.30 mg/L). Compounds G22 and G34 also exhibited excellent in vivo protective and curative effects against V. mali at 40 mg/L. The SEM and TEM observations indicated that compounds G22 and G34 may affect normal V. mali mycelial morphology as well as the cellular ultrastructure. Molecular docking analysis results indicated that G22 and boscalid possessed a similar binding mode to that of SDH, and detailed SDH inhibition assays validated the feasibility of the designed compounds as potential SDH inhibitors. Compounds G22 and G3 were selected for theoretical calculations, and the terminal carboxylic acid group of this series of compounds may be a key region influencing the antifungal activity. Furthermore, toxicity tests on Apis mellifera l. revealed that compounds G22 and G34 exhibited low toxicity to A. mellifera l. populations. The above results demonstrated that these series of pyrazole-5-yl-amide derivatives are promising for development as potential low-risk drug-resistance agricultural SDHI fungicides.
Collapse
Affiliation(s)
- Xiang Cheng
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zonghan Xu
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Hongyun Cui
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Zhen Zhang
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Wei Chen
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Fanglei Wang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Shanlu Li
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Qixuan Liu
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Dandan Wang
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Xianhai Lv
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Xihao Chang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- School of Science, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
8
|
Zhong LK, Sun XP, Han L, Tan CX, Weng JQ, Xu TM, Shi JJ, Liu XH. Design, Synthesis, Insecticidal Activity, and SAR of Aryl Isoxazoline Derivatives Containing Pyrazole-5-carboxamide Motif. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14458-14470. [PMID: 37782011 DOI: 10.1021/acs.jafc.3c01608] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
It is important to develop new insecticides with a new mode of action because of increasing pesticide resistance. In this study, a series of novel aryl isoxazoline derivatives containing the pyrazole-5-carboxamide motif were designed and synthesized. Their structures were confirmed by 1H NMR, 13C NMR, and HRMS. Bioassays indicated that the 24 compounds synthesized possessed excellent insecticidal activity against Mythimna separate and no activity against Aphis craccivora and Tetranychus cinnabarinus. Among these aryl isoxazoline derivatives, 3-(5-(3,5-dichlorophenyl)-5-(trifluoromethyl)-4,5-dihydrozol-3-yl)-N-(4-fluorophenyl)-1-methyl-1H-pyrazole-5-carboxamide (IA-8) had the best insecticidal activity against M. separate, which is comparable with the positive control fluralaner. The molecular docking results of compound IA-8 and fluralaner with the GABA model demonstrated the same docking mode between compound IA-8 and positive control fluralaner in the active site of GABA. Molecular structure comparisons and ADMET analysis can potentially be used to design more active compounds. The structure-activity relationships are also discussed. This work provided an excellent insecticide for further optimization.
Collapse
Affiliation(s)
- Liang-Kun Zhong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Base of National Southern Pesticide Research Centre, Zhejiang Research Institute of Chemical Industry, Hangzhou 310023, China
| | - Xin-Peng Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liang Han
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Cheng-Xia Tan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jian-Quan Weng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tian-Ming Xu
- Zhejiang Base of National Southern Pesticide Research Centre, Zhejiang Research Institute of Chemical Industry, Hangzhou 310023, China
| | - Jian-Jun Shi
- College of Chemistry & Chemical Engineering, Huangshan University, Huangshan 245041, China
| | - Xing-Hai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
9
|
Sun X, Yu W, Min L, Han L, Hua X, Shi J, Sun N, Liu X. Synthesis, Structural Determination, and Antifungal Activity of Novel Fluorinated Quinoline Analogs. Molecules 2023; 28:molecules28083373. [PMID: 37110607 PMCID: PMC10145707 DOI: 10.3390/molecules28083373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
A series of new fluorinated quinoline analogs were synthesized using Tebufloquin as the lead compound, 2-fluoroaniline, ethyl 2-methylacetoacetate, and substituted benzoic acid as raw materials. Their structures were confirmed by 1H NMR, 13C NMR, and HRMS. The compound 8-fluoro-2,3-dimethylquinolin-4-yl 4-(tert-butyl)benzoate (2b) was further determined by X-ray single-crystal diffraction. The antifungal activity was tested at 50 μg/mL, and the bioassay results showed that these quinoline derivatives had good antifungal activity. Among them, compounds 2b, 2e, 2f, 2k, and 2n exhibited good activity (>80%) against S. sclerotiorum, and compound 2g displayed good activity (80.8%) against R. solani.
Collapse
Affiliation(s)
- Xinpeng Sun
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Yu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lijing Min
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Liang Han
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xuewen Hua
- College of Agriculture, Liaocheng University, Liaocheng 252000, China
| | - Jianjun Shi
- College of Chemistry and Chemical Engineering, Huangshan University, Huangshan 245041, China
| | - Nabo Sun
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xinghai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
10
|
Niu X, Lin L, Liu L, Wang H. Preparation of a novel glucose oxidase-N-succinyl chitosan nanospheres and its antifungal mechanism of action against Colletotrichum gloeosporioides. Int J Biol Macromol 2023; 228:681-691. [PMID: 36549621 DOI: 10.1016/j.ijbiomac.2022.12.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
In this work, a new glucose oxidase-N-succinyl chitosan (GOD-NSCS) nanospheres was prepared through the immobilization of glucose oxidase (GOD) on N-succinyl chitosan (NSCS) nanospheres. Compared to the free GOD, GOD-NSCS nanospheres demonstrated the excellent anti-Colletotrichum gloeosporioides activity with the EC50 values of 211.2 and 10.7 μg/mL against mycelial growth and spores germination. The computational biology analysis demonstrated that the substrate presented the similar binding free energy with GOD-NSCS nanospheres (-27.64 kcal/mol) compared with the free GOD (-24.04 kcal/mol), indicating that GOD-NSCS nanospheres had the same oxidation efficiency and produced more H2O2. Moreover, the enzyme activity stability of GOD-NSCS nanospheres could be prolonged to 10 d. The cell membrane was destructed by the treatment of H2O2 produced by GOD, leading to the cell death. In vivo test, GOD-NSCS nanospheres treatment significantly prolonged the preservation period of mangoes 2-fold. Collectively, these results suggested that GOD-NSCS nanospheres suppresses anthracnose in postharvest mangoes by inhibiting the growth of C. gloeosporioides and might become a potential natural preservative for fruits and vegetables.
Collapse
Affiliation(s)
- Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Li Lin
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Lu Liu
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun, China.
| |
Collapse
|
11
|
Wei ZC, Wang Q, Min LJ, Bajsa-Hirschel J, Cantrell CL, Han L, Tan CX, Weng JQ, Li YX, Sun NB, Duke SO, Liu XH. Synthesis and Pesticidal Activity of New Niacinamide Derivatives Containing a Flexible, Chiral Chain. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010047. [PMID: 36615249 PMCID: PMC9822348 DOI: 10.3390/molecules28010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Natural products are a source for pesticide or drug discovery. In order to discover lead compounds with high fungicidal or herbicidal activity, new niacinamide derivatives derived from the natural product niacinamide, containing chiral flexible chains, were designed and synthesized. Their structures were confirmed by 1H NMR, 13C NMR and HRMS analysis. The fungicidal and herbicidal activities of these compounds were tested. The fungicidal activity results demonstrated that the compound (S)-2-(2-chloronicotinamido)propyl-2-methylbenzoate (3i) exhibited good fungicidal activity (92.3% inhibition) against the plant pathogen Botryosphaeria berengriana at 50 μg/mL and with an EC50 of 6.68 ± 0.72 μg/mL, which is the same as the positive control (fluxapyroxad). Compound 3i was not phytotoxic and could therefore be used as a fungicide on crops. Structure-activity relationships (SAR) were studied by molecular docking simulations with the succinate dehydrogenase of the fungal mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Zhe-Cheng Wei
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiao Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Li-Jing Min
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Joanna Bajsa-Hirschel
- Natural Products Utilization Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Oxford, MS 38677, USA
| | - Charles L. Cantrell
- Natural Products Utilization Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Oxford, MS 38677, USA
| | - Liang Han
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Cheng-Xia Tan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jian-Quan Weng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu-Xin Li
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Tianjin 300071, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha 430081, China
| | - Na-Bo Sun
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
- Correspondence: (N.-B.S.); (S.O.D.); (X.-H.L.)
| | - Stephen O. Duke
- National Center for Natural Product Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
- Correspondence: (N.-B.S.); (S.O.D.); (X.-H.L.)
| | - Xing-Hai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence: (N.-B.S.); (S.O.D.); (X.-H.L.)
| |
Collapse
|
12
|
Sun XP, Yu W, Min LJ, Han L, Sun NB, Liu XH. Synthesis, Crystal Structure and Antifungal Activities of New Quinoline Derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Min LJ, Shen ZH, Bajsa-Hirschel J, Cantrell CL, Han L, Hua XW, Liu XH, Duke SO. Synthesis, crystal structure, herbicidal activity and mode of action of new cyclopropane-1,1-dicarboxylic acid analogues. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105228. [PMID: 36464348 DOI: 10.1016/j.pestbp.2022.105228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 06/17/2023]
Abstract
A new series of cyclopropane-1,1-dicarboxylic (CPD) acid analogues were designed and synthesized. CPD is an inhibitor of ketol-acid reductoisomerase (KARI), an enzyme of the branched chain amino acid pathway in plants. The structures of CPD analogues were characterized by 1H NMR and HRMS. The structure of N,N'-bis(4-(tert-butyl)phenyl)cyclopropane-1,1-dicarboxamide was further elucidated by X-ray diffraction. The herbicidal activities of these compounds were tested against lettuce (Lactuca sativa) and bentgrass (Agrostis stolonifera). Most of these compounds exhibited low herbicidal activity against both plant species. Among them, N,N'-bis(2-ethylphenyl)cyclopropane-1,1-dicarboxamide displayed moderate activity against bentgrass. Inhibition of KARI activity by the CPD analogues was also assessed experimentally and by molecular docking simulation with results supporting inhibition of KARI as their mode of action. These results provide the basis for design of more effective KARI inhibitors.
Collapse
Affiliation(s)
- Li-Jing Min
- College of Life Science, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, 313000, Zhejiang, China
| | - Zhong-Hua Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Joanna Bajsa-Hirschel
- Natural Products Utilization Research Unit, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 1848, MS 38677, USA
| | - Charles L Cantrell
- Natural Products Utilization Research Unit, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 1848, MS 38677, USA
| | - Liang Han
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xue-Wen Hua
- College of Agriculture, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Xing-Hai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
| | - Stephen O Duke
- National Center for Natural Product Research, School of Pharmacy, University of Mississippi, P.O. Box 1848, MS, 38677, USA.
| |
Collapse
|
14
|
Wang YE, Yang D, Ma C, Hu S, Huo J, Chen L, Kang Z, Mao J, Zhang J. Design, Synthesis, and Herbicidal Activity of Naphthalimide-Aroyl Hybrids as Potent Transketolase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12819-12829. [PMID: 36173029 DOI: 10.1021/acs.jafc.2c04533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Transketolase (TK) was identified as a new target for the development of novel herbicides. In this study, a series of naphthalimide-aroyl hybrids were designed and prepared based on TK as a new target and tested for their herbicidal activities. In vitro bioassay showed that compounds 4c and 4w exhibited stronger inhibitory effects against Digitaria sanguinalis (DS) and Amaranthus retroflexus (AR) with the inhibition over 90% at 200 mg/L and around 80% at 100 mg/L. Also, compounds 4c and 4w exhibited excellent postemergence herbicidal activity against DS and AR with the inhibition around 90% at 90 g [active ingredient (ai)]/ha and 80% at 50 g (ai)/ha in the greenhouse, which was comparable with the activity of mesotrione. The fluorescent quenching experiments of At TK revealed the occurrence of electron transfer from compound 4w to At TK and the formation of a strong exciplex between them. Molecular docking analyses further showed that compounds 4w exhibited profound affinity with At TK through the interaction with the amino acids in the active site, which results in its strong inhibitory activities against TK. These findings demonstrated that compound 4w is potentially a lead candidate for novel herbicides targeting TK.
Collapse
Affiliation(s)
- Yan-En Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Dongchen Yang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Chujian Ma
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Shiqi Hu
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Zhanhai Kang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jianyou Mao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| |
Collapse
|
15
|
Advancement of Phenoxypyridine as an Active Scaffold for Pesticides. Molecules 2022; 27:molecules27206803. [PMID: 36296394 PMCID: PMC9610772 DOI: 10.3390/molecules27206803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Phenoxypyridine, the bioisostere of diaryl ethers, has been widely introduced into bioactive molecules as an active scaffold, which has different properties from diaryl ethers. In this paper, the bioactivities, structure-activity relationships, and mechanism of compounds containing phenoxypyridine were summarized, which may help to explore the lead compounds and discover novel pesticides with potential bioactivities.
Collapse
|
16
|
Yao MM, Chen WT, Min LJ, Han L, Sun NB, Liu XH. Synthesis, crystal structure and fungicidal activities of 3-(Trifluoromethyl)-Pyrazole-4-carboxylic oxime ester derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Shi HB, Zhai ZW, Min LJ, Han L, Sun NB, Cantrell CL, Bajsa-Hirschel J, Duke SO, Liu XH. Synthesis and pesticidal activity of new 1,3,4-oxadiazole thioether compounds containing a trifluoromethylpyrazoyl moiety. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [PMCID: PMC9486790 DOI: 10.1007/s11164-022-04839-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In order to find new lead compounds with high pesticidal activity, a series of 1,3,4-oxadiazole thioether compounds (5 series) were designed by using penthiopyrad as a synthon. They were synthesized easily via five steps by using ethyl 4,4,4-trifluoro-3-oxobutanoate and triethyl orthoformate as starting materials. The synthesized compounds were characterized by 1H NMR, 13C NMR and HRMS. The compound 2-(benzylthio)-5-(1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)-1,3,4-oxadiazole (5a) was further determined by X-ray single-crystal diffraction. It crystallized in the monoclinic system, space group P21/c, Z = 4. All the 1,3,4-oxadiazole thioether derivatives were screened for fungicidal activity against ten fungi and herbicidal activity against two weeds. The bioassay results indicated that some of the synthesized 1,3,4-oxadiazole compounds exhibited good fungicidal activity (> 50% inhibition) against the plant pathogens Sclerotinia sclerotiorum and Rhizoctonia solani at 50 μg/mL. Some of them exhibited certain herbicidal activity, and compounds 2-((3-chlorobenzyl)thio)-5-(1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)-1,3,4-oxadiazole (5e) and 2-((4-bromobenzyl)thio)-5-(1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)-1,3,4-oxadiazole (5 g) had bleach effect. Molecular docking is to find the best fit orientation of the 2-((4-bromobenzyl)thio)-5-(1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)-1,3,4-oxadiazole (5 g) molecule with the SDH protein (PDB: 2FBW). The docking results indicate that the compound 5 g and the lead compound penthiopyrad have similar binding interactions with SDH and carbonyl is a key group for these compounds.
Collapse
Affiliation(s)
- Hai-Bo Shi
- Chemical Engineering College, Ningbo Polytechnic, Ningbo, 315800 China
| | - Zhi-Wen Zhai
- College of Life Science, Huzhou University, Huzhou, 313000 China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Li-Jing Min
- College of Life Science, Huzhou University, Huzhou, 313000 China
| | - Liang Han
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Na-Bo Sun
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015 Zhejiang China
| | - Charles L. Cantrell
- Natural Products Utilization Research Unit, USDA ARS, University, MS 38677 USA
| | | | - Stephen O. Duke
- National Center for Natural Product Research, School of Pharmacy, University of Mississippi, P.O. Box 1848, University, MS 38677 USA
| | - Xing-Hai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 China
| |
Collapse
|
18
|
Han L, Cheng L, Hu D, Chen Q, Han L, Xu T, Liu X, Wu N. Design, Synthesis and Biological Activities of 1,2,
4‐Triazolo
[1,5‐
a
]pyrimidine‐7‐amine Derivatives Bearing 1,2,
4‐Oxadiazole
Motif. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lin‐Ru Han
- College of Chemical Engineering Zhejiang University of Technology Hangzhou China
- Zhejiang Base of National Southern Pesticide Research Centre Zhejiang Research Institute of Chemical Industry Hangzhou China
| | - Long Cheng
- College of Chemical Engineering Zhejiang University of Technology Hangzhou China
- Zhejiang Base of National Southern Pesticide Research Centre Zhejiang Research Institute of Chemical Industry Hangzhou China
| | - Dong‐Song Hu
- Zhejiang Base of National Southern Pesticide Research Centre Zhejiang Research Institute of Chemical Industry Hangzhou China
| | - Qing‐Wu Chen
- College of Chemical Engineering Zhejiang University of Technology Hangzhou China
| | - Liang Han
- College of Chemical Engineering Zhejiang University of Technology Hangzhou China
| | - Tian‐Ming Xu
- Zhejiang Base of National Southern Pesticide Research Centre Zhejiang Research Institute of Chemical Industry Hangzhou China
| | - Xing‐Hai Liu
- College of Chemical Engineering Zhejiang University of Technology Hangzhou China
| | - Ning‐Jie Wu
- Zhejiang Base of National Southern Pesticide Research Centre Zhejiang Research Institute of Chemical Industry Hangzhou China
| |
Collapse
|
19
|
Synthesis, Structure, and Antifungal Activities of 3-(Difluoromethyl)-Pyrazole-4-Carboxylic Oxime Ester Derivatives. HETEROATOM CHEMISTRY 2022. [DOI: 10.1155/2022/6078017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fifteen new pyrazole-4-carboxylic oxime ester derivatives were conveniently synthesized, and their structures were confirmed by 1H NMR, 13C NMR, HRMS, and X-ray diffraction. Antifungal assays indicated that some of these compounds possessed good activity against S. sclerotiorum, B. cinerea, R. solani, P. oryae, and P. piricola at 50 ppm. Structure-activity relationships (SAR) were studied by molecular docking simulation.
Collapse
|
20
|
Isolation, Synthesis, and Fungicidal Activity of Isopropyl (3-methyl-1-oxo-1-((1-((4-(prop-2-yn-1-yloxy)phenyl)thio)propan-2-yl)amino)butan-2-yl)carbamate Diastereomers against Phytophthora capsici. HETEROATOM CHEMISTRY 2022. [DOI: 10.1155/2022/4678338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two isopropyl (3-methyl-1-oxo-1-((1-((4-(prop-2-yn-1-yloxy)phenyl)thio)propan-2-yl)amino)butan-2-yl)carbamate diastereomers were isolated. Fungicidal activities indicated that the isolated four chiral compounds possessed excellent activity against P. capsici with the EC50 value of 4a (1.30 μg/mL), 4b (0.078 μg/mL), 4c (1.85 μg/mL), and 4d (44.4 μg/mL). Among them, compound 4b exhibited remarkably high activities against Phytophthora capsici, which is better than that of positive control dimethomorph. Its R and S isomers showed that chiral influences the activity against P. capsici.
Collapse
|