1
|
Singh S, Mishra A, Alka. Unlocking the therapeutic potential of Geraniol: an alternative perspective for metabolic disease management. Inflammopharmacology 2024:10.1007/s10787-024-01582-0. [PMID: 39460887 DOI: 10.1007/s10787-024-01582-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Natural substance geraniol has anti-inflammatory and antioxidant qualities. It may be used to treat metabolic diseases such as diabetes, obesity, and cardiovascular illnesses. Innovations in nanoformulations enhance geraniol's absorption, stability, and targeted distribution, augmenting its therapeutic effectiveness and mitigating side effects, despite the limits of traditional treatment. AIM OF THE REVIEW The therapeutic potential of geraniol in the management of metabolic disorders such as diabetes, obesity, neuroinflammation, and cardiovascular disease is examined in this review. It highlights the anti-inflammatory, antioxidant, and lipid-lowering qualities of geraniol as well as the potential for nanoformulations to increase bioavailability and therapeutic efficacy. MATERIALS AND METHODS A collection of pertinent research articles about the potential of geraniol in metabolic illnesses, including obesity, type 2 diabetes, as well as cardiovascular diseases, was compiled from PubMed, Scopus, and Google Scholar. Terms such as "metabolic syndrome," "antioxidant," "anti-inflammatory," "geraniol," and "nanoformulations" were employed. Google Patents were also examined in order to offer insights into current and upcoming research. RESULTS The potential of geraniol to treat metabolic disorders, including obesity, diabetes, hyperlipidemia, and cardiovascular illnesses, is thoroughly reviewed in this article. Recent research has demonstrated the lipid-lowering, antioxidant, and anti-inflammatory properties of geraniol as well as its ability to improve endothelial function and reduce oxidative stress in preclinical animals. The paper delves into the various nanoformulations, including liposomes, nanoparticles, and nanoemulsions, which enhance geraniol's therapeutic efficacy and bioavailability, making it a viable option for managing metabolic syndrome. CONCLUSION The antioxidant, anti-inflammatory, and lipid-lowering qualities of geraniol make it a promising treatment for metabolic diseases. Its bioavailability along with therapeutic efficacy are increased by nanoformulations, which makes it a compelling option for the treatment of conditions such as neuroinflammation, diabetes, and obesity.
Collapse
Affiliation(s)
- Shiva Singh
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Anuradha Mishra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
| | - Alka
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India
| |
Collapse
|
2
|
Panthi VK, Fairfull-Smith KE, Islam N. Liposomal drug delivery strategies to eradicate bacterial biofilms: Challenges, recent advances, and future perspectives. Int J Pharm 2024; 655:124046. [PMID: 38554739 DOI: 10.1016/j.ijpharm.2024.124046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/08/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Typical antibiotic treatments are often ineffectual against biofilm-related infections since bacteria residing within biofilms have developed various mechanisms to resist antibiotics. To overcome these limitations, antimicrobial-loaded liposomal nanoparticles are a promising anti-biofilm strategy as they have demonstrated improved antibiotic delivery and eradication of bacteria residing in biofilms. Antibiotic-loaded liposomal nanoparticles revealed remarkably higher antibacterial and anti-biofilm activities than free drugs in experimental settings. Moreover, liposomal nanoparticles can be used efficaciously for the combinational delivery of antibiotics and other antimicrobial compounds/peptide which facilitate, for instance, significant breakdown of the biofilm matrix, increased bacterial elimination from biofilms and depletion of metabolic activity of various pathogens. Drug-loaded liposomes have mitigated recurrent infections and are considered a promising tool to address challenges associated to antibiotic resistance. Furthermore, it has been demonstrated that surface charge and polyethylene glycol modification of liposomes have a notable impact on their antibacterial biofilm activity. Future investigations should tackle the persistent hurdles associated with development of safe and effective liposomes for clinical application and investigate novel antibacterial treatments, including CRISPR-Cas gene editing, natural compounds, phages, and nano-mediated approaches. Herein, we emphasize the significance of liposomes in inhibition and eradication of various bacterial biofilms, their challenges, recent advances, and future perspectives.
Collapse
Affiliation(s)
- Vijay Kumar Panthi
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Kathryn E Fairfull-Smith
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia; Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia; Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; Centre for Immunology and Infection Control (CIIC), Queensland University of Technology (QUT), Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Weaver E, Macartney RA, Irwin R, Uddin S, Hooker A, Burke GA, Wylie MP, Lamprou DA. Liposomal encapsulation of amoxicillin via microfluidics with subsequent investigation of the significance of PEGylated therapeutics. Int J Pharm 2024; 650:123710. [PMID: 38097147 DOI: 10.1016/j.ijpharm.2023.123710] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
With an increasing concern of global antimicrobial resistance, the efforts to improve the formulation of a narrowing library of therapeutic antibiotics must be confronted. The liposomal encapsulation of antibiotics using a novel and sustainable microfluidic method has been employed in this study to address this pressing issue, via a targeted, lower-dose medical approach. The study focusses upon microfluidic parameter optimisation, formulation stability, cytotoxicity, and future applications. Particle sizes of circa. 130 nm, with viable short-term (28-day) physical stability were obtained, using two different non-cytotoxic liposomal formulations, both of which displayed suitable antibacterial efficacy. The microfluidic method allowed for high encapsulation efficiencies (≈77 %) and the subsequent in vitro release profile suggested high limits of antibiotic dissociation from the nanovessels, achieving 90% release within 72 h. In addition to the experimental data, the growing use of poly(ethylene) glycol (PEG) within lipid-based formulations is discussed in relation to anti-PEG antibodies, highlighting the key pharmacological differences between PEGylated and non-PEGylated formulations and their respective advantages and drawbacks. It's surmised that in the case of the formulations used in this study, the addition of PEG upon the liposomal membrane would still be a beneficial feature to possess owing to beneficial features such as stability, antibiotic efficacy and the capacity to further modify the liposomal membrane.
Collapse
Affiliation(s)
- Edward Weaver
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Robyn A Macartney
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Nanotechnology & Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, York Street, Belfast BT15 1ED, UK
| | - Robyn Irwin
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Shahid Uddin
- Immunocore Ltd, 92 Park Dr, Milton, Abingdon OX14 4RY, UK
| | - Andrew Hooker
- Immunocore Ltd, 92 Park Dr, Milton, Abingdon OX14 4RY, UK
| | - George A Burke
- Nanotechnology & Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, York Street, Belfast BT15 1ED, UK
| | - Matthew P Wylie
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
4
|
Ghodke J, Ekonomou SI, Weaver E, Lamprou D, Doran O, Stratakos AC. The Manufacturing and Characterisation of Eugenol-Enclosed Liposomes Produced by Microfluidic Method. Foods 2023; 12:2940. [PMID: 37569209 PMCID: PMC10418319 DOI: 10.3390/foods12152940] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
In this study, liposomes enclosing eugenol were prepared using microfluidics. Two lipids-1,2-dimyristoyl-sn-glycero-3-phosphocholine, 18:0 (DSPC) and 2-dimyristoyl-sn-glycero-3-phosphocholine, 14:0 (DMPC)-and microfluidic chips with serpentine and Y-shaped micromixing designs were used for the liposomal formulation. Minimum bactericidal concentration (MBC) values indicated that eugenol was more effective against Gram-negative than Gram-positive bacteria. Four different flow-rate ratios (FRR 2:1, 3:1, 4:1, 5:1) were explored. All liposomes' encapsulation efficiency (EE) was determined: 94.34% for DSPC 3:1 and 78.63% for DMPC 5:1. The highest eugenol release of 99.86% was observed at pH 4, DMPC 3:1 (Y-shaped chip). Liposomes were physically stable at 4, 20 and 37 °C for 60 days as determined by their size, polydispersity index (PDI) and zeta potential (ZP). The most stable liposomes were observed at FRR 5:1 for DSPC. EE, stability, and eugenol release studies proved that the liposomal formulations produced can be used as delivery vehicles to increase food safety.
Collapse
Affiliation(s)
- Jessica Ghodke
- College of Health, Science and Society, University of the West of England, Coldharbour Ln, Bristol BS16 1QY, UK; (J.G.); (S.I.E.); (O.D.)
| | - Sotirios I. Ekonomou
- College of Health, Science and Society, University of the West of England, Coldharbour Ln, Bristol BS16 1QY, UK; (J.G.); (S.I.E.); (O.D.)
| | - Edward Weaver
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (E.W.); (D.L.)
| | - Dimitrios Lamprou
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (E.W.); (D.L.)
| | - Olena Doran
- College of Health, Science and Society, University of the West of England, Coldharbour Ln, Bristol BS16 1QY, UK; (J.G.); (S.I.E.); (O.D.)
| | - Alexandros Ch. Stratakos
- College of Health, Science and Society, University of the West of England, Coldharbour Ln, Bristol BS16 1QY, UK; (J.G.); (S.I.E.); (O.D.)
| |
Collapse
|
5
|
Fahmy S, Nasr S, Ramzy A, Dawood AS, Abdelnaser A, Azzazy HMES. Cytotoxic and Antioxidative Effects of Geranium Oil and Ascorbic Acid Coloaded in Niosomes against MCF-7 Breast Cancer Cells. ACS OMEGA 2023; 8:22774-22782. [PMID: 37396262 PMCID: PMC10308595 DOI: 10.1021/acsomega.3c01681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/12/2023] [Indexed: 07/04/2023]
Abstract
Geranium oil (GO) has antiproliferative, antiangiogenic, and anti-inflammatory properties. Ascorbic acid (AA) is reported to inhibit the formation of reactive oxygen species, sensitize cancer cells, and induce apoptosis. In this context, AA, GO, and AA-GO were loaded into niosomal nanovesicles to ameliorate the physicochemical properties of GO and improve its cytotoxic effects using the thin-film hydration technique. The prepared nanovesicles had a spherical shape with average diameters ranging from 200 to 300 nm and exhibited outstanding surface negative charges, high entrapment efficiencies, and a controlled sustained release over 72 h. Entrapping AA and GO in niosomes resulted in a lower IC50 value than free AA and GO when tested on MCF-7 breast cancer cells. In addition, flow cytometry analysis showed higher apoptotic cells in the late apoptotic stage upon treating the MCF-7 breast cancer cells with AA-GO niosomal vesicles compared to treatments with free AA, free GO, and AA or GO loaded into niosomal nanovesicles. Assessing the antioxidant effect of the free drugs and loaded niosomal nanovesicles showed enhanced antioxidant activity of AA-GO niosomal vesicles. These findings suggest the AA-GO niosomal vesicles as a potential treatment strategy against breast cancer, possibly through scavenging free radicals.
Collapse
Affiliation(s)
- Sherif
Ashraf Fahmy
- Chemistry
Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Administrative
Capital, Cairo 11835, Egypt
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Soad Nasr
- Institute
of Global Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Asmaa Ramzy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Abdelhameed S. Dawood
- Institute
of Global Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Anwar Abdelnaser
- Institute
of Global Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
- Department
of Nanobiophotonics, Leibniz Institute for
Photonic Technology, Albert Einstein Str. 9, Jena 07745, Germany
| |
Collapse
|
6
|
Makhlouf Z, Ali AA, Al-Sayah MH. Liposomes-Based Drug Delivery Systems of Anti-Biofilm Agents to Combat Bacterial Biofilm Formation. Antibiotics (Basel) 2023; 12:antibiotics12050875. [PMID: 37237778 DOI: 10.3390/antibiotics12050875] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
All currently approved antibiotics are being met by some degree of resistance by the bacteria they target. Biofilm formation is one of the crucial enablers of bacterial resistance, making it an important bacterial process to target for overcoming antibiotic resistance. Accordingly, several drug delivery systems that target biofilm formation have been developed. One of these systems is based on lipid-based nanocarriers (liposomes), which have shown strong efficacy against biofilms of bacterial pathogens. Liposomes come in various types, namely conventional (charged or neutral), stimuli-responsive, deformable, targeted, and stealth. This paper reviews studies employing liposomal formulations against biofilms of medically salient gram-negative and gram-positive bacterial species reported recently. When it comes to gram-negative species, liposomal formulations of various types were reported to be efficacious against Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, and members of the genera Klebsiella, Salmonella, Aeromonas, Serratia, Porphyromonas, and Prevotella. A range of liposomal formulations were also effective against gram-positive biofilms, including mostly biofilms of Staphylococcal strains, namely Staphylococcus aureus, Staphylococcus epidermidis, and Staphylococcus saprophyticus subspecies bovis, followed by Streptococcal strains (pneumonia, oralis, and mutans), Cutibacterium acnes, Bacillus subtilis, Mycobacterium avium, Mycobacterium avium subsp. hominissuis, Mycobacterium abscessus, and Listeria monocytogenes biofilms. This review outlines the benefits and limitations of using liposomal formulations as means to combat different multidrug-resistant bacteria, urging the investigation of the effects of bacterial gram-stain on liposomal efficiency and the inclusion of pathogenic bacterial strains previously unstudied.
Collapse
Affiliation(s)
- Zinb Makhlouf
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Amaal Abdulraqeb Ali
- Biomedical Engineering Program, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Mohammad Hussein Al-Sayah
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
7
|
Recent Developments and Applications of Nanosystems in the Preservation of Meat and Meat Products. Foods 2022; 11:foods11142150. [PMID: 35885393 PMCID: PMC9317627 DOI: 10.3390/foods11142150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023] Open
Abstract
Due to their high water, lipid, and protein content, meat and meat products are highly perishable. The principal spoilage mechanisms involved are protein and lipid oxidation and deterioration caused by microbial growth. Therefore, efforts are ongoing to ensure food safety and increase shelf life. The development of low-cost, innovative, eco-friendly approaches, such as nanotechnology, using non-toxic, inexpensive, FDA-approved ingredients is reducing the incorporation of chemical additives while enhancing effectiveness and functionality. This review focuses on advances in the incorporation of natural additives that increase the shelf life of meat and meat products through the application of nanosystems. The main solvent-free preparation methods are reviewed, including those that involve mixing organic–inorganic or organic–organic compounds with such natural substances as essential oils and plant extracts. The performance of these additives is analyzed in terms of their antioxidant effect when applied directly to meat as edible coatings or marinades, and during manufacturing processes. The review concludes that nanotechnology represents an excellent option for the efficient design of new meat products with enhanced characteristics.
Collapse
|