1
|
Xu W, Yao J, Ma J, Lu C, Wang C, Sun Y, Guang C, Mu W. Characterization of deoxynivalenol dehydrogenase from Pelagibacterium sp. SCN 63-126 and its application. Arch Microbiol 2024; 207:9. [PMID: 39636447 DOI: 10.1007/s00203-024-04208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
Deoxynivalenol (DON), a type-B trichothecene mycotoxin, is primarily produced by Fusarium species and widely pollutes wheat and other grains. Enzymatic treatment of DON has been widely studied in recent years. Here, we present the biochemical identification of the DON dehydrogenase from Pelagibacterium sp. SCN 63-126 (Pe DDH). After removing the signal peptide, Pe DDH is effectively expressed in its soluble form. Biochemical identification indicates that the optimal temperature and pH of Pe DDH against DON is 35 ℃ and pH 8.5. Furthermore, Pe DDH is activated significantly in the presence of Ca2+, Mg2+, and Cu2+, and alternatively activated by pyrroloquinoline quinone (PQQ), phenazine methosulfate (PMS), and 2, 6-dichlorophenolindophenol (DCPIP). When PQQ, PMS, and DCPIP are combined, Pe DDH (60 µg/mL) effectively degrads DON (150 µM) in just 5 min, suggesting a synergistic effect of three cofactors on DON degradation. All these results suggest a great potential of Pe DDH in the control of DON contamination.
Collapse
Affiliation(s)
- Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Jiayi Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Jingbo Ma
- Department of Neurology, Affiliated Children's Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chen Lu
- Jiangsu Aomai Bio-Technology Co., Ltd, Nanjing, Jiangsu, 211225, China
| | - Chenfei Wang
- Jiangsu Aomai Bio-Technology Co., Ltd, Nanjing, Jiangsu, 211225, China
| | - Yurong Sun
- Jiangsu Aomai Bio-Technology Co., Ltd, Nanjing, Jiangsu, 211225, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
2
|
Liu J, Li P, Li X, Xie Y, Mwabulili F, Sun S, Yang Y, Ma W, Li Q, Jia H. Expression, characterization, and application of an aldo-keto reductase mined from Bacillus velezensis Vel-HNGD-F2 for deoxynivalenol biodegradation. Food Chem Toxicol 2024; 196:115159. [PMID: 39613245 DOI: 10.1016/j.fct.2024.115159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Deoxynivalenol (DON) contamination in cereals and their products poses a potential threat to animal and human health, however, physical and chemical detoxification methods deplete nutrients and cannot specifically remove DON. This study aims to identify novel and efficient DON-degrading enzymes, providing practical support for their application in biodegradation. A novel DON-degrading aldo-keto reductase named AKR11A2 was identified from Bacillus velezensis Vel-HNGD-F2 through BlastP comparison. AKR11A2, an enzyme with a molecular mass of 34.8 kDa encoded by a 933 bp gene, exhibited optimal activity at pH 9 and 40 °C, while demonstrating remarkable thermal and alkaline stability by retaining over 90% of its activity. UPLC-MS/MS analysis revealed that the m/z of the DON degradation product was 295.1, identified as 3-epi-DON, formed through the direct isomerization of DON. Notably, zebrafish experiments demonstrated that the liver toxicity of the degradation product was significantly lower than that of DON. AKR11A2 effectively degraded 50.69% of the DON in contaminated corn, highlighting its practical application in food safety. These findings indicate that the study achieved the biodegradation of DON and provide a promising theoretical and technological support for the application of DON detoxifying enzymes in food and feed products.
Collapse
Affiliation(s)
- Junxia Liu
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Peng Li
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China; Centre for Complexity Science, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Xiao Li
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Yanli Xie
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China.
| | - Fred Mwabulili
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Shumin Sun
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Yuhui Yang
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Weibin Ma
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Qian Li
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Hang Jia
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| |
Collapse
|
3
|
Zhang Y, Huang J, Li S, Jiang J, Sun J, Chen D, Pang Q, Wu Y. Pyrroloquinoline Quinone Alleviates Mitochondria Damage in Radiation-Induced Lung Injury in a MOTS-c-Dependent Manner. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20944-20958. [PMID: 39259217 DOI: 10.1021/acs.jafc.4c03502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Radiation-induced lung injury (RILI) is a prevalent complication of thoracic tumor radiotherapy and accidental radiation exposure. Pyrroloquinoline quinone (PQQ), a novel vitamin B, plays a crucial role in delaying aging, antioxidation, anti-inflammation, and antiapoptosis. This study aims to investigate the protective effect and mechanisms of PQQ against RILI. C57BL/6 mice were exposed to a 20 Gy dose of X-ray radiation on the entire thorax with or without daily oral administration of PQQ for 2 weeks. PQQ effectively mitigated radiation-induced lung tissue damage, inflammation, oxidative stress, and epithelial cell apoptosis. Additionally, PQQ significantly inhibited oxidative stress and mitochondrial damage in MLE-12 cells. Mechanistically, PQQ upregulated the mRNA and protein levels of MOTS-c in irradiated lung tissue and MLE-12 cells. Knockdown of MOTS-c by siRNA substantially attenuated the protective effects of PQQ on oxidative stress, inflammation, and apoptosis. In conclusion, PQQ alleviates RILI by preserving mitochondrial function through a MOTS-c-dependent mechanism, suggesting that PQQ may serve as a promising nutraceutical intervention against RILI.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi 214122, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Jianfeng Huang
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi 214122, China
| | - Shengpeng Li
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Junlin Jiang
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi 214122, China
| | - Jiaojiao Sun
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Dan Chen
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Qingfeng Pang
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi 214122, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Yaxian Wu
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi 214122, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| |
Collapse
|
4
|
He W, Yang P, Huang T, Liu Y, Zhang Y, Zhang W, Zhang T, Zheng M, Ma L, Zhao C, Li H, Liao Y, Wu A, Zhang J. Detoxifying bacterial genes for deoxynivalenol epimerization confer durable resistance to Fusarium head blight in wheat. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2395-2409. [PMID: 38593377 PMCID: PMC11331793 DOI: 10.1111/pbi.14353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/26/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Fusarium head blight (FHB) and the presence of mycotoxin deoxynivalenol (DON) pose serious threats to wheat production and food safety worldwide. DON, as a virulence factor, is crucial for the spread of FHB pathogens on plants. However, germplasm resources that are naturally resistant to DON and DON-producing FHB pathogens are inadequate in plants. Here, detoxifying bacteria genes responsible for DON epimerization were used to enhance the resistance of wheat to mycotoxin DON and FHB pathogens. We characterized the complete pathway and molecular basis leading to the thorough detoxification of DON via epimerization through two sequential reactions in the detoxifying bacterium Devosia sp. D6-9. Epimerization efficiently eliminates the phytotoxicity of DON and neutralizes the effects of DON as a virulence factor. Notably, co-expressing of the genes encoding quinoprotein dehydrogenase (QDDH) for DON oxidation in the first reaction step, and aldo-keto reductase AKR13B2 for 3-keto-DON reduction in the second reaction step significantly reduced the accumulation of DON as virulence factor in wheat after the infection of pathogenic Fusarium, and accordingly conferred increased disease resistance to FHB by restricting the spread of pathogenic Fusarium in the transgenic plants. Stable and improved resistance was observed in greenhouse and field conditions over multiple generations. This successful approach presents a promising avenue for enhancing FHB resistance in crops and reducing mycotoxin contents in grains through detoxification of the virulence factor DON by exogenous resistance genes from microbes.
Collapse
Affiliation(s)
- Wei‐Jie He
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Peng Yang
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Jiangsu Ruihua Agricultural Science and Technology Co., Ltd.SuqianChina
| | - Tao Huang
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yu‐Fan Liu
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yu‐Wei Zhang
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Wen‐Min Zhang
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Tian‐Tian Zhang
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Meng‐Ru Zheng
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ling Ma
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Chang‐Xing Zhao
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - He‐Ping Li
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yu‐Cai Liao
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ai‐Bo Wu
- SIBS‐UGENT‐SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Jing‐Bo Zhang
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
5
|
Thompson PJ, Boggs DG, Wilson CA, Bruchs AT, Velidandla U, Bridwell-Rabb J, Olshansky L. Structure-driven development of a biomimetic rare earth artificial metalloprotein. Proc Natl Acad Sci U S A 2024; 121:e2405836121. [PMID: 39116128 PMCID: PMC11331073 DOI: 10.1073/pnas.2405836121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
The 2011 discovery of the first rare earth-dependent enzyme in methylotrophic Methylobacterium extorquens AM1 prompted intensive research toward understanding the unique chemistry at play in these systems. This enzyme, an alcohol dehydrogenase (ADH), features a La3+ ion closely associated with redox-active coenzyme pyrroloquinoline quinone (PQQ) and is structurally homologous to the Ca2+-dependent ADH from the same organism. AM1 also produces a periplasmic PQQ-binding protein, PqqT, which we have now structurally characterized to 1.46-Å resolution by X-ray diffraction. This crystal structure reveals a Lys residue hydrogen-bonded to PQQ at the site analogously occupied by a Lewis acidic cation in ADH. Accordingly, we prepared K142A- and K142D-PqqT variants to assess the relevance of this site toward metal binding. Isothermal titration calorimetry experiments and titrations monitored by UV-Vis absorption and emission spectroscopies support that K142D-PqqT binds tightly (Kd = 0.6 ± 0.2 μM) to La3+ in the presence of bound PQQ and produces spectral signatures consistent with those of ADH enzymes. These spectral signatures are not observed for WT- or K142A-variants or upon addition of Ca2+ to PQQ ⸦ K142D-PqqT. Addition of benzyl alcohol to La3+-bound PQQ ⸦ K142D-PqqT (but not Ca2+-bound PQQ ⸦ K142D-PqqT, or La3+-bound PQQ ⸦ WT-PqqT) produces spectroscopic changes associated with PQQ reduction, and chemical trapping experiments reveal the production of benzaldehyde, supporting ADH activity. By creating a metal binding site that mimics native ADH enzymes, we present a rare earth-dependent artificial metalloenzyme primed for future mechanistic, biocatalytic, and biosensing applications.
Collapse
Affiliation(s)
- Peter J. Thompson
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Urbana, IL61801
| | - David G. Boggs
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Charles A. Wilson
- Department of Chemistry, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Austin T. Bruchs
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Uditha Velidandla
- Department of Chemistry, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | | | - Lisa Olshansky
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
6
|
Liu M, Zhang X, Luan H, Zhang Y, Xu W, Feng W, Song P. Bioenzymatic detoxification of mycotoxins. Front Microbiol 2024; 15:1434987. [PMID: 39091297 PMCID: PMC11291262 DOI: 10.3389/fmicb.2024.1434987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Mycotoxins are secondary metabolites produced during the growth, storage, and transportation of crops contaminated by fungi and are physiologically toxic to humans and animals. Aflatoxin, zearalenone, deoxynivalenol, ochratoxin, patulin, and fumonisin are the most common mycotoxins and can cause liver and nervous system damage, immune system suppression, and produce carcinogenic effects in humans and animals that have consumed contaminated food. Physical, chemical, and biological methods are generally used to detoxify mycotoxins. Although physical methods, such as heat treatment, irradiation, and adsorption, are fast and simple, they have associated problems including incomplete detoxification, limited applicability, and cause changes in food characteristics (e.g., nutritive value, organoleptic properties, and palatability). Chemical detoxification methods, such as ammonification, ozonation, and peroxidation, pollute the environment and produce food safety risks. In contrast, bioenzymatic methods are advantageous as they achieve selective detoxification and are environmentally friendly and reusable; thus, these methods are the most promising options for the detoxification of mycotoxins. This paper reviews recent research progress on common mycotoxins and the enzymatic principles and mechanisms for their detoxification, analyzes the toxicity of the degradation products and describes the challenges faced by researchers in carrying out enzymatic detoxification. In addition, the application of enzymatic detoxification in food and feed is discussed and future directions for the development of enzymatic detoxification methods are proposed for future in-depth study of enzymatic detoxification methods.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
7
|
Ma B, Niu J, Zhu H, Chi H, Lu Z, Lu F, Zhu P. Engineering substrate specificity of quinone-dependent dehydrogenases for efficient oxidation of deoxynivalenol to 3-keto-deoxynivalenol. Int J Biol Macromol 2024; 264:130484. [PMID: 38431002 DOI: 10.1016/j.ijbiomac.2024.130484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
The oxidative reaction of Fusarium mycotoxin deoxynivalenol (DON) using the dehydrogenase is a desirable strategy and environmentally friendly to mitigate its toxicity. However, a critical issue for these dehydrogenases shows widespread substrate promiscuity. In this study, we conducted pocket reshaping of Devosia strain A6-243 pyrroloquinoline quinone (PQQ)-dependent dehydrogenase (DADH) on the basis of protein structure and kinetic analysis of substrate libraries to improve preference for particular substrate DON (10a). The variant presented an increased preference for substrate 10a and enhanced catalytic efficiency. A 4.7-fold increase in preference for substrate 10a was observed. Kinetic profiling and molecular dynamics (MD) simulations provided insights into the enhanced substrate specificity and activity. Moreover, the variant exhibited stronger conversion of substrate 10a to 3-keto-DON compared to the wild DADH. Overall, this study provides a feasible protocol for the redesign of PQQ-dependent dehydrogenases with favourable substrate specificity and catalytic activity, which is desperately needed for DON antidote development.
Collapse
Affiliation(s)
- Bin Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiafeng Niu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huibing Chi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ping Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Shi Y, Xu W, Ni D, Zhang W, Guang C, Mu W. Identification and application of a novel deoxynivalenol-degrading enzyme from Youhaiella tibetensis. Food Chem 2024; 435:137609. [PMID: 37783127 DOI: 10.1016/j.foodchem.2023.137609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
Deoxynivalenol (DON) poses a significant threat to human health due to its widespread distribution and biological toxicity. Here, we identified a novel DON-degrading enzyme from Youhaiella tibetensis (YoDDH). YoDDH exhibited the highest activity against DON at pH 4.5 and 40 ℃, in the presence of Ca2+ and the pyrroloquinoline quinone (PQQ). Additionally, YoDDH displayed remarkable thermostability at 40 ℃, with a half-life of 24 h and a Tm value of 48.5 ℃. Notably, phenazine methosulfate (PMS) and 2,6-dichlorophenolindophenol (DCPIP) can also serve as electron acceptors for YoDDH. After incubation in the optimal conditions for 3 h, YoDDH degraded 73 % of DON (100 μM) finally. The kcat and kcat /Km of YoDDH towards DON was determined as 1.65 s-1 and 1526 M-1·s-1 in the presence of PMS. The 3-keto-DON was verified as the degradation product. This identified YoDDH presents a promising candidate for DON decontamination in the food and feed industry.
Collapse
Affiliation(s)
- Yan Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Niu J, Yan R, Zhou H, Ma B, Lu Z, Meng F, Lu F, Zhu P. Self-cascade deoxynivalenol detoxification by an artificial enzyme with bifunctions of dehydrogenase and aldo/keto reductase from genome mining. Int J Biol Macromol 2024; 261:129512. [PMID: 38246466 DOI: 10.1016/j.ijbiomac.2024.129512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/05/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Due to the severe health risks for human and animal caused by the intake of toxic deoxynivalenol (DON) derived from Fusarium species, elimination DON in food and feed has been initiated as a critical issue. Enzymatic cascade catalysis by dehydrogenase and aldo-keto reductase represents a fascinating strategy for DON detoxification. Here, one quinone-dpendent alcohol dehydrogenase DADH oxidized DON into less-toxic 3-keto-DON and NADPH-dependent aldo-keto reductase AKR13B3 reduced 3-keto-DON into relatively non-toxic 3-epi-DON were identified from Devosia strain A6-243, indicating that degradation of DON on C3 are two-step sequential cascade processes. To establish the bifunctions, fusion enzyme linking DADH and AKR13B3 was successfully assembled to promote one-step DON degradations with accelerated specific activity and efficiency, resulting 93.29 % of DON removal rate in wheat sample. Three-dimensional simulation analysis revealed that the bifunctional enzyme forms an artificial intramolecular channel to minimize the distance of intermediate from DADH to AKR13B3 for two-step enzymatic reactions, and thereby accelerates this enzymatic process. As the first report of directing single step DON detoxification by an interesting bifunctional artificial enzyme, this work revealed a facile and eco-friendly approach to detoxify DON with application potential and gave valuable insights into execute other mycotoxin detoxification for ensuring food safety.
Collapse
Affiliation(s)
- Jiafeng Niu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruxue Yan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huimin Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fanqiang Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ping Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Niu J, Ma B, Shen J, Chi H, Zhou H, Lu Z, Lu F, Zhu P. Structure-Guided Steric Hindrance Engineering of Devosia Strain A6-243 Quinone-Dependent Dehydrogenase to Enhance Its Catalytic Efficiency. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:549-558. [PMID: 38153089 DOI: 10.1021/acs.jafc.3c07179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Deoxynivalenol (DON), the most widely distributed mycotoxin worldwide, causes severe health risks for humans and animals. Quinone-dependent dehydrogenase derived from Devosia strain A6-243 (DADH) can degrade DON into less toxic 3-keto-DON and then aldo-keto reductase AKR13B3 can reduce 3-keto-DON into relatively nontoxic 3-epi-DON. However, the poor catalytic efficiency of DADH made it unsuitable for practical applications, and it has become the rate-limiting step of the two-step enzymatic cascade catalysis. Here, structure-guided steric hindrance engineering was employed to enhance the catalytic efficiency of DADH. After the steric hindrance engineering, the best mutant, V429G/N431V/T432V/L434V/F537A (M5-1), showed an 18.17-fold increase in specific activity and an 11.04-fold increase in catalytic efficiency (kcat/Km) compared with that of wild-type DADH. Structure-based computational analysis provided information on the increased catalytic efficiency in the directions that attenuated steric hindrance, which was attributed to the reshaped substrate-binding pocket with an expanded catalytic binding cavity and a favorable attack distance. Tunnel analysis suggested that reshaping the active cavity by mutation might alter the shape and size of the enzyme tunnels or form one new enzyme tunnel, which might contribute to the improved catalytic efficiency of M5-1. These findings provide a promising strategy to enhance the catalytic efficiency by steric hindrance engineering.
Collapse
Affiliation(s)
- Jiafeng Niu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huibing Chi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huimin Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Sun H, He Z, Xiong D, Long M. Mechanisms by which microbial enzymes degrade four mycotoxins and application in animal production: A review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:256-274. [PMID: 38033608 PMCID: PMC10685049 DOI: 10.1016/j.aninu.2023.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 12/02/2023]
Abstract
Mycotoxins are toxic compounds that pose a serious threat to animal health and food safety. Therefore, there is an urgent need for safe and efficient methods of detoxifying mycotoxins. As biotechnology has continued to develop, methods involving biological enzymes have shown great promise. Biological enzymatic methods, which can fundamentally destroy the structures of mycotoxins and produce degradation products whose toxicity is greatly reduced, are generally more specific, efficient, and environmentally friendly. Mycotoxin-degrading enzymes can thus facilitate the safe and effective detoxification of mycotoxins which gives them a huge advantage over other methods. This article summarizes the newly discovered degrading enzymes that can degrade four common mycotoxins (aflatoxins, zearalenone, deoxynivalenol, and ochratoxin A) in the past five years, and reveals the degradation mechanism of degrading enzymes on four mycotoxins, as well as their positive effects on animal production. This review will provide a theoretical basis for the safe treatment of mycotoxins by using biological enzyme technology.
Collapse
Affiliation(s)
- Huiying Sun
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ziqi He
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Dongwei Xiong
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Miao Long
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
12
|
Wang Y, Zhao D, Zhang W, Wang S, Huang K, Guo B. Biotransformation of Deoxynivalenol by a Dual-Member Bacterial Consortium Isolated from Tenebrio molitor Larval Feces. Toxins (Basel) 2023; 15:492. [PMID: 37624249 PMCID: PMC10467086 DOI: 10.3390/toxins15080492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
In this study, a dual-member bacterial consortium with the ability to oxidize deoxynivalenol (DON) to 3-keto-DON, designated SD, was first screened from the feces of Tenebrio molitor larvae. This consortium consisted of Pseudomonas sp. SD17-1 and Devosia sp. SD17-2, as determined by 16S rRNA-based phylogenetic analysis. A temperature of 30 °C, a pH of 8.0-9.0, and an initial inoculum concentration ratio of Devosia to Pseudomonas of 0.1 were optimal single-factor parameters for the DON oxidation activity of the bacterial consortium SD. Genome-based bioinformatics analysis revealed the presence of an intact PQQ biosynthesis operon (pqqFABCDEG) and four putative pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenase (ADH) genes in the genomes of Pseudomonas strain SD17-1 and Devosia strain SD17-2, respectively. Biochemical analyses further confirmed the PQQ-producing phenotype of Pseudomonas and the DON-oxidizing enzymatic activities of two of four PQQ-dependent ADHs in Devosia. The addition of PQQ-containing a cell-free fermentation supernatant from Pseudomonas activated DON-oxidizing activity of Devosia. In summary, as members of the bacterial consortium SD, Pseudomonas and Devosia play indispensable and complementary roles in SD's oxidation of DON. Specifically, Pseudomonas is responsible for producing the necessary PQQ cofactor, whereas Devosia expresses the PQQ-dependent DON dehydrogenase, together facilitating the oxidation of DON.
Collapse
Affiliation(s)
- Yang Wang
- Institute of Grain and Oil Quality and Safety, Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China; (Y.W.)
| | - Donglei Zhao
- Institute of Grain and Oil Quality and Safety, Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China; (Y.W.)
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wei Zhang
- Institute of Grain and Oil Quality and Safety, Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China; (Y.W.)
| | - Songxue Wang
- Institute of Grain and Oil Quality and Safety, Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China; (Y.W.)
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Baoyuan Guo
- Institute of Grain and Oil Quality and Safety, Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China; (Y.W.)
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
13
|
Shi Y, Ouyang B, Zhang Y, Zhang W, Xu W, Mu W. Recent developments of mycotoxin-degrading enzymes: identification, preparation and application. Crit Rev Food Sci Nutr 2023; 64:10089-10104. [PMID: 37293851 DOI: 10.1080/10408398.2023.2220402] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mycotoxins are secondary metabolites produced by fungi during their growth. They not only seriously affect the yield of food crops but also pose a threat to human and animal health. Physical and chemical methods have been widely used to reduce the production and accumulation of mycotoxins in the field or after harvest, but these methods have difficulty in completely removing mycotoxins while keeping the nutrients at the same time. Biodegradation methods using isolated enzymes have shown superiority and potential for modest reaction conditions, high degradation efficiency and degradation products with low toxicity. Therefore, the occurrence, chemical structures, and toxicology of six prevalent mycotoxins (deoxynivalenol, zearalenone, aflatoxin, patulin, fumonisin, and ochratoxin) were described in this manuscript. The identification and application of mycotoxin-degrading enzymes were thoroughly reviewed. It is believed that in the near future, mycotoxin-degrading enzymes are expected to be commercially developed and used in the feed and food industries.
Collapse
Affiliation(s)
- Yan Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Binbin Ouyang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yulei Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
14
|
Wang Y, Zhao D, Zhang W, Wang S, Wu Y, Wang S, Yang Y, Guo B. Four PQQ-Dependent Alcohol Dehydrogenases Responsible for the Oxidative Detoxification of Deoxynivalenol in a Novel Bacterium Ketogulonicigenium vulgare D3_3 Originated from the Feces of Tenebrio molitor Larvae. Toxins (Basel) 2023; 15:367. [PMID: 37368668 PMCID: PMC10301637 DOI: 10.3390/toxins15060367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Deoxynivalenol (DON) is frequently detected in cereals and cereal-based products and has a negative impact on human and animal health. In this study, an unprecedented DON-degrading bacterial isolate D3_3 was isolated from a sample of Tenebrio molitor larva feces. A 16S rRNA-based phylogenetic analysis and genome-based average nucleotide identity comparison clearly revealed that strain D3_3 belonged to the species Ketogulonicigenium vulgare. This isolate D3_3 could efficiently degrade 50 mg/L of DON under a broad range of conditions, such as pHs of 7.0-9.0 and temperatures of 18-30 °C, as well as during aerobic or anaerobic cultivation. 3-keto-DON was identified as the sole and finished DON metabolite using mass spectrometry. In vitro toxicity tests revealed that 3-keto-DON had lower cytotoxicity to human gastric epithelial cells and higher phytotoxicity to Lemna minor than its parent mycotoxin DON. Additionally, four genes encoding pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenases in the genome of isolate D3_3 were identified as being responsible for the DON oxidation reaction. Overall, as a highly potent DON-degrading microbe, a member of the genus Ketogulonicigenium is reported for the first time in this study. The discovery of this DON-degrading isolate D3_3 and its four dehydrogenases will allow microbial strains and enzyme resources to become available for the future development of DON-detoxifying agents for food and animal feed.
Collapse
Affiliation(s)
- Yang Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Y.W.)
| | - Donglei Zhao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wei Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Y.W.)
| | - Songshan Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Y.W.)
| | - Yu Wu
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Y.W.)
| | - Songxue Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Y.W.)
| | - Yongtan Yang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Y.W.)
| | - Baoyuan Guo
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Y.W.)
| |
Collapse
|
15
|
Li D, Liang G, Mu P, Lin J, Huang J, Guo C, Li Y, Lin R, Jiang J, Wu J, Deng Y, Wen J. Improvement of catalytic activity of sorbose dehydrogenase for deoxynivalenol degradation by rational design. Food Chem 2023; 423:136274. [PMID: 37159968 DOI: 10.1016/j.foodchem.2023.136274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/27/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Deoxynivalenol (DON) is the most frequently contaminated mycotoxin in food and feed worldwide, causing significant economic losses and health risks. Physical and chemical detoxification methods are widely used, but they cannot efficiently and specifically remove DON. In the study, the combination of bioinformatics screening and experimental verification confirmed that sorbose dehydrogenase (SDH) can effectively convert DON to 3-keto-DON and a substance that removes four hydrogen atoms for DON. Through rational design, the Vmax of the mutants F103L and F103A were increased by 5 and 23 times, respectively. Furthermore, we identified catalytic sites W218 and D281. SDH and its mutants have broad application conditions, including temperature ranges of 10-45 °C and pH levels of 4-9. Additionally, the half-lives of F103A at 90 °C (processing temperature) and 30 °C (storage temperature) were 60.1 min and 100.5 d, respectively. These results suggest that F103A has significant potential in the detoxification application of DON.
Collapse
Affiliation(s)
- Danyang Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Guoqiang Liang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Peiqiang Mu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Jinquan Lin
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Jiarun Huang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Chongwen Guo
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Yang Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Ruqin Lin
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Jun Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Jun Wu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| |
Collapse
|