1
|
Zhan YF, Meng ZH, Yan CH, Tan M, Khurshid M, Li YJ, Zheng SJ, Wang J. A novel cascade catalysis for one-pot enzymatically modified isoquercitrin (EMIQ) conversion from rutin and sucrose using rationally designed gradient temperature control. Food Chem 2024; 457:140163. [PMID: 38924912 DOI: 10.1016/j.foodchem.2024.140163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Enzymatically modified isoquercitrin (EMIQ) is a glyco-chemically modified flavonoid exhibiting notably high biological activity, such as antioxidant, anti-inflammatory and anti-allergic properties. However, the utilization of expensive substrates such as isoquercitrin and cyclodextrin in the conventional approach has hindered the industrial-scale production of EMIQ due to high cost and low yields. Hence, the development of a cost-effective and efficient method is crucial for the biological synthesis of EMIQ. In this study, a natural cascade catalytic reaction system was constructed with α-L-rhamnosidase and amylosucrase using the inexpensive substrates rutin and sucrose. Additionally, a novel approach integrating gradient temperature regulation into biological cascade reactions was implemented. Under the optimal conditions, the rutin conversion reached a remarkable 95.39% at 24 h. Meanwhile, the productivity of quercetin-3-O-tetraglucoside with the best bioavailability reached an impressive 41.69%. This study presents promising prospects for future mass production of EMIQ directly prepared from rutin and sucrose.
Collapse
Affiliation(s)
- Yu-Fan Zhan
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Zhuo-Hao Meng
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Cheng-Hai Yan
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Min Tan
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Marriam Khurshid
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Yi-Jiangcheng Li
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Shao-Jun Zheng
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Jun Wang
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, PR China.
| |
Collapse
|
2
|
Yin X, Wei W, Chen Q, Zhang Y, Liu S, Gao S, Luo Z, Zhou J. Reengineering the Substrate Tunnel to Enhance the Catalytic Efficiency of Squalene Epoxidase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39454051 DOI: 10.1021/acs.jafc.4c05892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Squalene epoxidase plays a pivotal role in the biosynthesis of ergosterol, its derivatives, and other triterpenoid compounds by catalyzing the transformation of squalene into 2,3-oxidosqualene. However, its low catalytic efficiency remains a primary bottleneck for the microbial synthesis of triterpenoids. In this study, the catalytic activity of the squalene epoxidase from Saccharomyces cerevisiae was significantly improved by reshaping its substrate tunnel, resulting in a marked increase in the yield of the final product, ergosterol. First, the amino acid in the catalytic pocket of squalene epoxidase was replaced with alanine (Ala), effectively reducing the steric hindrance, and thus, enhancing the affinity of the enzyme with its substrate. Then, the V249H/L343A mutant was obtained by redesigning the substrate tunnel of dominant mutant L343A, thus, increasing the titer of ergosterol. The study also elucidated the mechanism behind the increased catalytic activity of the V249H/L343A mutant through substrate tunnel parameter analysis and molecular dynamics simulations. Finally, a titer of 3345 mg/L of ergosterol was achieved by strains containing V249H/L343A in a 5 L bioreactor, with a specific yield of 84 mg/g dry cell weight (DCW), marking a 64% increase compared with the titer achieved by wild type strains. This study established a strong foundation for improving the synthetic efficiency of ergosterol and other triterpenoid compounds.
Collapse
Affiliation(s)
- Xinran Yin
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Wenqian Wei
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Qihang Chen
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Yunliang Zhang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Song Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Song Gao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Zhengshan Luo
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Okonkwo CE, Adeyanju AA, Onyeaka H, Nwonuma CO, Olaniran AF, Alejolowo OO, Inyinbor AA, Oluyori AP, Zhou C. A review on rebaudioside M: The next generation steviol glycoside and noncaloric sweetener. J Food Sci 2024. [PMID: 39323262 DOI: 10.1111/1750-3841.17401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/06/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024]
Abstract
So far, the use of artificial low-calorie sweeteners, like sucralose, saccharin, and so on, to replace the conventional-based sugars has not succeeded due to the long-term adverse health effects, for example, hypertension, and not well-known safety stand. In this review, we discussed the next generation SvGl (rebaudioside M [Reb M]), their biosynthetic pathway in plant, high-yield production via microbial fermentation and enzyme engineering, physicochemical properties, taste modification, kinetic metabolism, application in food and beverages, safety and toxicological evaluation, regulation and dosage recommendation, and health benefits. In stevia, the biosynthesis of stevia glycosides, especially Reb M, is derived from the bifurcation of the pathway leading to gibberellin, followed by subsequent enzymatic modification of rubusoside. Reb M is more economically produced via microbial fermentation of modified yeast Yarrowia lipolytica and enzymatic bioconversion of rebaudioside A (Reb A) or Reb E. Reb M can serve as a suitable alternative to the conventional-based sugars.
Collapse
Affiliation(s)
- Clinton E Okonkwo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain, UAE
| | - Adeyemi A Adeyanju
- Department of Food Science and Microbiology, College of Pure and Applied Science, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Charles Obiora Nwonuma
- Department of Biochemistry, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Abiola F Olaniran
- Department of Food Science and Microbiology, College of Pure and Applied Science, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Omokolade Oluwaseyi Alejolowo
- Department of Biochemistry, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Adejumoke A Inyinbor
- Physical Sciences Department, Industrial Chemistry Programme, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Abimbola Peter Oluyori
- Physical Sciences Department, Industrial Chemistry Programme, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Yang L, Yang M, Deng Z, Luo Z, Yuan Z, Rao Y, Zhang Y. Highly Efficient Biosynthesis of Rebaudioside M8 through Structure-Guided Engineering of Glycosyltransferase UGT94E13. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15823-15831. [PMID: 38959519 DOI: 10.1021/acs.jafc.4c03565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Given the low-calorie, high-sweetness characteristics of steviol glycosides (SGs), developing SGs with improved taste profiles is a key focus. Rebaudioside M8 (Reb M8), a novel non-natural SG derivative obtained through glycosylation at the C-13 position of rebaudioside D (Reb D) using glycosyltransferase UGT94E13, holds promise for further development due to its enhanced sweetness. However, the low catalytic activity of UGT94E13 hampers further research and commercialization. This study aimed to improve the enzymatic activity of UGT94E13 through semirational design, and a variant UGT94E13-F169G/I185G was obtained with the catalytic activity improved by 13.90 times. A cascade reaction involving UGT94E13-F169G/I185G and sucrose synthase AtSuSy was established to recycle uridine diphosphate glucose, resulting in an efficient preparation of Reb M8 with a yield of 98%. Moreover, according to the analysis of the distances between the substrate Reb D and enzymes as well as between Reb D and the glucose donor through molecular dynamics simulations, it is found that the positive effect of shortening the distance on glycosylation reaction activity accounts for the improved catalytic activity of UGT94E13-F169G/I185G. Therefore, this study addresses the bottleneck in the efficient production of Reb M8 and provides a foundation for its widespread application in the food industry.
Collapse
Affiliation(s)
- Lifeng Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Mengliang Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhiwei Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhengshan Luo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
5
|
Li S, Luo S, Zhao X, Gao S, Shan X, Lu J, Zhou J. Efficient Conversion of Stevioside to Rebaudioside M in Saccharomyces cerevisiae by a Engineering Hydrolase System and Prolonging the Growth Cycle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8140-8148. [PMID: 38563232 DOI: 10.1021/acs.jafc.4c01483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Rebaudioside (Reb) M is an important sweetener with high sweetness, but its low content in Stevia rebaudiana and low catalytic capacity of the glycosyltransferases in heterologous microorganisms limit its production. In order to improve the catalytic efficiency of the conversion of stevioside to Reb M by Saccharomyces cerevisiae, several key issues must be resolved including knocking out endogenous hydrolases, enhancing glycosylation, and extending the enzyme catalytic process. Herein, endogenous glycosyl hydrolase SCW2 was knocked out in S. cerevisiae. The glycosylation process was enhanced by screening glycosyltransferases, and UGT91D2 from S. rebaudiana was identified as the optimum glycosyltransferase. The UDP-glucose supply was enhanced by overexpressing UGP1, and co-expressing UGT91D2 and UGT76G1 achieved efficient conversion of stevioside to Reb M. In order to extend the catalytic process, the silencing information regulator 2 (SIR2) which can prolong the growth cycle of S. cerevisiae was introduced. Finally, combining these modifications produced 12.5 g/L Reb M and the yield reached 77.9% in a 5 L bioreactor with 10.0 g/L stevioside, the highest titer from steviol glycosides to Reb M reported to date. The engineered strain could facilitate the industrial production of Reb M, and the strategies provide references for the production of steviol glycosides.
Collapse
Affiliation(s)
- Shan Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Shuangshuang Luo
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Xingying Zhao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Song Gao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Xiaoyu Shan
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Jian Lu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
6
|
Sun X, Ke Z, Zheng D, She M, Wu Z, Li QX, Zhang Z. Cloning, Expression, and Functional Characterization of Two Highly Efficient Flavonoid-di- O-glycosyltransferases ZmUGT84A1 and ZmUGT84A2 from Maize ( Zea mays L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7354-7363. [PMID: 38511857 DOI: 10.1021/acs.jafc.3c06327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The maize (Zea mays L.) glycosyltransferase family 1 comprises many uridine diphosphate glycosyltransferase (UGT) members. However, UGT activities and biochemical functions have seldom been revealed. In this study, the genes of two flavonoid di-O-glycosyltransferases ZmUGT84A1 and ZmUGT84A2 were cloned from maize plant and expressed in Escherichia coli. Phylogenetic analysis showed that the two enzymes were homologous to AtUGT84A1 and AtUGT84A3. The two recombinant enzymes showed a high conversion rate of luteolin to its glucosides, mainly 4',7-di-O-glucoside and minorly 3',7-di-O-glucoside in two-step glycosylation reactions in vitro. Moreover, the recombinant ZmUGT84A1 and ZmUGT84A2 had a broad substrate spectrum, converting eriodictyol, naringenin, apigenin, quercetin, and kaempferol to monoglucosides and diglucosides. The highly efficient ZmUGT84A1 and ZmUGT84A2 may be used as a tool for the effective synthesis of various flavonoid O-glycosides and as markers for crop breeding to increase O-glycosyl flavonoid content in food.
Collapse
Affiliation(s)
- Xiaorong Sun
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhao Ke
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 100096, China
| | - Dengyu Zheng
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Meng She
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- College of Agriculture, Yangtze University, Jingzhou, Hubei 434022, China
| | - Zhongyi Wu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, Hawaii 96822, United States
| | - Zhongbao Zhang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
7
|
Yang L, Yang M, Deng Z, Hou X, Zheng X, Ping Q, Rao Y, Shi J, Zhang Y. Selective synthesis of rebaudioside M2 through structure-guided engineering of glycosyltransferase UGT94D1. Front Bioeng Biotechnol 2024; 12:1334427. [PMID: 38375456 PMCID: PMC10875103 DOI: 10.3389/fbioe.2024.1334427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/12/2024] [Indexed: 02/21/2024] Open
Abstract
Rebaudioside M2 (Reb M2), a novel steviol glycoside derivative, has limited industrial applications due to its low synthetic yield and selectivity. Herein, we identify UGT94D1 as a selective glycosyltransferase for rebaudioside D (Reb D), leading to the production of a mono β-1,6-glycosylated derivative, Reb M2. A variant UGT94D1-F119I/D188P was developed through protein engineering. This mutant exhibited a 6.33-fold improvement in catalytic efficiency, and produced Reb M2 with 92% yield. Moreover, molecular dynamics simulations demonstrated that UGT94D1-F119I/D188P exhibited a shorter distance between the nucleophilic oxygen (OH6) of the substrate Reb D and uridine diphosphate glucose, along with an increased Ophosphate-C1-Oacceptor angle, thus improving the catalytic activity of the enzyme. Therefore, this study provides an efficient method for the selective synthesis of Reb M2 and paves the way for its applications in various fields.
Collapse
Affiliation(s)
- Lifeng Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Mengliang Yang
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhiwei Deng
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaodong Hou
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiangting Zheng
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Qian Ping
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Yijian Rao
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jinsong Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
Go SR, Lee SJ, Ahn WC, Park KH, Woo EJ. Enhancing the thermostability and activity of glycosyltransferase UGT76G1 via computational design. Commun Chem 2023; 6:265. [PMID: 38057441 DOI: 10.1038/s42004-023-01070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
The diterpene glycosyltransferase UGT76G1, derived from Stevia rebaudiana, plays a pivotal role in the biosynthesis of rebaudioside A, a natural sugar substitute. Nevertheless, its potential for industrial application is limited by certain enzymatic characteristics, notably thermostability. To enhance the thermostability and enzymatic activity, we employed a computational design strategy, merging stabilizing mutation scanning with a Rosetta-based protein design protocol. Compared to UGT76G1, the designed variant 76_4 exhibited a 9 °C increase in apparent Tm, a 2.55-fold increase rebaudioside A production capacity, and a substantial 11% reduction in the undesirable byproduct rebaudioside I. Variant 76_7 also showed a 1.91-fold enhancement rebaudioside A production capacity, which was maintained up to 55 °C, while the wild-type lost most of its activity. These results underscore the efficacy of structure-based design in introducing multiple mutations simultaneously, which significantly improves the enzymatic properties of UGT76G1. This strategy provides a method for the development of efficient, thermostable enzymes for industrial applications.
Collapse
Affiliation(s)
- Seong-Ryeong Go
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Su-Jin Lee
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Woo-Chan Ahn
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Kwang-Hyun Park
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Eui-Jeon Woo
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
9
|
Jung J, Liu H, Borg AJE, Nidetzky B. Solvent Engineering for Nonpolar Substrate Glycosylation Catalyzed by the UDP-Glucose-Dependent Glycosyltransferase UGT71E5: Intensification of the Synthesis of 15-Hydroxy Cinmethylin β-d-Glucoside. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13419-13429. [PMID: 37655961 PMCID: PMC10510383 DOI: 10.1021/acs.jafc.3c04027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
Sugar nucleotide-dependent glycosyltransferases are powerful catalysts of the glycosylation of natural products and xenobiotics. The low solubility of the aglycone substrate often limits the synthetic efficiency of the transformation catalyzed. Here, we explored different approaches of solvent engineering for reaction intensification of β-glycosylation of 15HCM (a C15-hydroxylated, plant detoxification metabolite of the herbicide cinmethylin) catalyzed by safflower UGT71E5 using UDP-glucose as the donor substrate. Use of a cosolvent (DMSO, ethanol, and acetonitrile; ≤50 vol %) or a water-immiscible solvent (n-dodecane, n-heptane, n-hexane, and 1-hexene) was ineffective due to enzyme activity and stability, both impaired ≥10-fold compared to a pure aqueous solvent. Complexation in 2-hydroxypropyl-β-cyclodextrin enabled dissolution of 50 mM 15HCM while retaining the UGT71E5 activity (∼0.32 U/mg) and stability. Using UDP-glucose recycling, 15HCM was converted completely, and 15HCM β-d-glucoside was isolated in 90% yield (∼150 mg). Collectively, this study highlights the requirement for a mild, enzyme-compatible strategy for aglycone solubility enhancement in glycosyltransferase catalysis applied to glycoside synthesis.
Collapse
Affiliation(s)
- Jihye Jung
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, A-8010 Graz, Austria
| | - Hui Liu
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, A-8010 Graz, Austria
| | - Annika J. E. Borg
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, A-8010 Graz, Austria
- Austrian
Centre of Industrial Biotechnology, A-8010 Graz, Austria
| | - Bernd Nidetzky
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, A-8010 Graz, Austria
- Austrian
Centre of Industrial Biotechnology, A-8010 Graz, Austria
| |
Collapse
|
10
|
Chen K, Lin L, Ma R, Ding J, Pan H, Tao Y, Li Y, Jia H. Identification of sucrose synthase from Micractinium conductrix to favor biocatalytic glycosylation. Front Microbiol 2023; 14:1220208. [PMID: 37649634 PMCID: PMC10465243 DOI: 10.3389/fmicb.2023.1220208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/11/2023] [Indexed: 09/01/2023] Open
Abstract
Sucrose synthase (SuSy, EC 2.4.1.13) is a unique glycosyltransferase (GT) for developing cost-effective glycosylation processes. Up to now, some SuSys derived from plants and bacteria have been used to recycle uridine 5'-diphosphate glucose in the reactions catalyzed by Leloir GTs. In this study, after sequence mining and experimental verification, a SuSy from Micractinium conductrix (McSuSy), a single-cell green alga, was overexpressed in Escherichia coli, and its enzymatic properties were characterized. In the direction of sucrose cleavage, the specific activity of the recombinant McSuSy is 9.39 U/mg at 37°C and pH 7.0, and the optimum temperature and pH were 60°C and pH 7.0, respectively. Its nucleotide preference for uridine 5'-diphosphate (UDP) was similar to plant SuSys, and the enzyme activity remained relatively high when the DMSO concentration below 25%. The mutation of the predicted N-terminal phosphorylation site (S31D) significantly stimulated the activity of McSuSy. When the mutant S31D of McSuSy was applied by coupling the engineered Stevia glycosyltransferase UGT76G1 in a one-pot two-enzyme reaction at 10% DMSO, 50 g/L rebaudioside E was transformed into 51.06 g/L rebaudioside M in 57 h by means of batch feeding, with a yield of 76.48%. This work may reveal the lower eukaryotes as a promising resource for SuSys of industrial interest.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | | |
Collapse
|
11
|
Sirirungruang S, Barnum CR, Tang SN, Shih PM. Plant glycosyltransferases for expanding bioactive glycoside diversity. Nat Prod Rep 2023. [PMID: 36853278 DOI: 10.1039/d2np00077f] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Glycosylation is a successful strategy to alter the pharmacological properties of small molecules, and it has emerged as a unique approach to expand the chemical space of natural products that can be explored in drug discovery. Traditionally, most glycosylation events have been carried out chemically, often requiring many protection and deprotection steps to achieve a target molecule. Enzymatic glycosylation by glycosyltransferases could provide an alternative strategy for producing new glycosides. In particular, the glycosyltransferase family has greatly expanded in plants, representing a rich enzymatic resource to mine and expand the diversity of glycosides with novel bioactive properties. This article highlights previous and prospective uses for plant glycosyltransferases in generating bioactive glycosides and altering their pharmacological properties.
Collapse
Affiliation(s)
- Sasilada Sirirungruang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.,Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Collin R Barnum
- Department of Plant Biology, University of California, Davis, CA, USA
| | - Sophia N Tang
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Patrick M Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.,Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Innovative Genomics Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
12
|
Yang S, Hou X, Deng Z, Yang L, Ping Q, Yuan Z, Zhang Y, Rao Y. Improving the thermostability of glycosyltransferase YojK by targeting mutagenesis for highly efficient biosynthesis of rebaudioside D. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Xu Y, Wu Y, Liu Y, Li J, Du G, Chen J, Lv X, Liu L. Sustainable bioproduction of natural sugar substitutes: Strategies and challenges. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|