1
|
Yan X, White JC, He E, Peijnenburg WJGM, Zhang P, Qiu H. Temporal Dynamics of Copper-Based Nanopesticide Transfer and Subsequent Modulation of the Interplay Between Host and Microbiota Across Trophic Levels. ACS NANO 2024; 18:25552-25564. [PMID: 39171664 DOI: 10.1021/acsnano.4c06047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
During agricultural production, significant quantities of copper-based nanopesticides (CBNPs) may be released into terrestrial ecosystems through foliar spraying, thereby posing a potential risk of biological transmission via food chains. Consequently, we investigated the trophic transfer of two commonly available commercial CBNPs, Reap2000 (RP) and HolyCu (HC), in a plant-caterpillar terrestrial food chain and evaluated impacts on host microbiota. Upon foliar exposure (with 4 rounds of spraying, totaling 6.0 mg CBNPs per plant), leaf Cu accumulation levels were 726 ± 180 and 571 ± 121 mg kg-1 for RP and HC, respectively. HC exhibited less penetration through the cuticle compared to RP (RP: 55.5%; HC: 32.8%), possibly due to size exclusion limitations. While caterpillars accumulated higher amounts of RP, HC exhibited a slightly higher trophic transfer factor (TTF; RP: 0.69 ± 0.20; HC: 0.74 ± 0.17, p > 0.05) and was more likely to be transferred through the food chain. The application of RP promoted the dispersal of phyllosphere microbes and perturbed the original host intestinal microbiota, whereas the HC group was largely host-modulated (control: 65%; RP: 94%; HC: 34%). Integrating multiomics analyses and modeling approaches, we elucidated two pathways by which plants exert bottom-up control over caterpillar health. Beyond the direct transmission of phyllosphere microbes, the leaf microbiome recruited upon exposure to CBNPs further influenced the ingestion behavior and intestinal microbiota of caterpillars via altered leaf metabolites. Elevated Proteobacteria abundance benefited caterpillar growth with RP, while the reduction of Proteobacteria with HC increased the risk of lipid metabolism issues and gut disease. The recruited Bacteroidota in the RP phyllosphere proliferated more extensively into the caterpillar gut to enhance stress resistance. Overall, the gut microbes reshaped in RP caterpillars exerted a strong regulatory effect on host health. These findings expand our understanding of the dynamic transmission of host-microbiota interactions with foliar CBNPs exposure, and provide critical insight necessary to ensure the safety and sustainability of nanoenabled agricultural strategies.
Collapse
Affiliation(s)
- Xuchen Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven06511, Connecticut, United States
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Willie J G M Peijnenburg
- Center for the Safety of Substances and Products, National Institute of Public Health and the Environment, Bilthoven 3720BA, The Netherlands
- Institute of Environmental Sciences, Leiden University, Leiden 2300RA, The Netherlands
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, Birmingham, U.K
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Hassani MA, Cui Z, LaReau J, Huntley RB, Steven B, Zeng Q. Inter-species interactions between two bacterial flower commensals and a floral pathogen reduce disease incidence and alter pathogen activity. mBio 2024; 15:e0021324. [PMID: 38376185 PMCID: PMC10936193 DOI: 10.1128/mbio.00213-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Flowers are colonized by a diverse community of microorganisms that can alter plant health and interact with floral pathogens. Erwinia amylovora is a flower-inhabiting bacterium and a pathogen that infects different plant species, including Malus × domestica (apple). Previously, we showed that the co-inoculation of two bacterial strains, members of the genera Pseudomonas and Pantoea, isolated from apple flowers, reduced disease incidence caused by this floral pathogen. Here, we decipher the ecological interactions between the two flower-associated bacteria and E. amylovora in field experimentation and in vitro co-cultures. The two flower commensal strains did not competitively exclude E. amylovora from the stigma habitat, as both bacteria and the pathogen co-existed on the stigma of apple flowers and in vitro. This suggests that plant protection might be mediated by other mechanisms than competitive niche exclusion. Using a synthetic stigma exudation medium, ternary co-culture of the bacterial strains led to a substantial alteration of gene expression in both the pathogen and the two microbiota members. Importantly, the gene expression profiles for the ternary co-culture were not just additive from binary co-cultures, suggesting that some functions only emerged in multipartite co-culture. Additionally, the ternary co-culture of the strains resulted in a stronger acidification of the growth milieu than mono- or binary co-cultures, pointing to another emergent property of co-inoculation. Our study emphasizes the critical role of emergent properties mediated by inter-species interactions within the plant holobiont and their potential impact on plant health and pathogen behavior. IMPORTANCE Fire blight, caused by Erwinia amylovora, is one of the most important plant diseases of pome fruits. Previous work largely suggested plant microbiota commensals suppressed disease by antagonizing pathogen growth. However, inter-species interactions of multiple flower commensals and their influence on pathogen activity and behavior have not been well studied. Here, we show that co-inoculating two bacterial strains that naturally colonize the apple flowers reduces disease incidence. We further demonstrate that the interactions between these two microbiota commensals and the floral pathogen led to the emergence of new gene expression patterns and a strong alteration of the external pH, factors that may modify the pathogen's behavior. Our findings emphasize the critical role of emergent properties mediated by inter-species interactions between plant microbiota and plant pathogens and their impact on plant health.
Collapse
Affiliation(s)
- M. Amine Hassani
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Zhouqi Cui
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Jacquelyn LaReau
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Regan B. Huntley
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Blaire Steven
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Quan Zeng
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Cecala JM, Vannette RL. Nontarget impacts of neonicotinoids on nectar-inhabiting microbes. Environ Microbiol 2024; 26:e16603. [PMID: 38494634 DOI: 10.1111/1462-2920.16603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/23/2024] [Indexed: 03/19/2024]
Abstract
Plant-systemic neonicotinoid (NN) insecticides can exert non-target impacts on organisms like beneficial insects and soil microbes. NNs can affect plant microbiomes, but we know little about their effects on microbial communities that mediate plant-insect interactions, including nectar-inhabiting microbes (NIMs). Here we employed two approaches to assess the impacts of NN exposure on several NIM taxa. First, we assayed the in vitro effects of six NN compounds on NIM growth using plate assays. Second, we inoculated a standardised NIM community into the nectar of NN-treated canola (Brassica napus) and assessed microbial survival and growth after 24 h. With few exceptions, in vitro NN exposure tended to decrease bacterial growth metrics. However, the magnitude of the decrease and the NN concentrations at which effects were observed varied substantially across bacteria. Yeasts showed no consistent in vitro response to NNs. In nectar, we saw no effects of NN treatment on NIM community metrics. Rather, NIM abundance and diversity responded to inherent plant qualities like nectar volume. In conclusion, we found no evidence that NIMs respond to field-relevant NN levels in nectar within 24 h, but our study suggests that context, specifically assay methods, time and plant traits, is important in assaying the effects of NNs on microbial communities.
Collapse
Affiliation(s)
- Jacob M Cecala
- Department of Entomology & Nematology, University of California, Davis, California, USA
| | - Rachel L Vannette
- Department of Entomology & Nematology, University of California, Davis, California, USA
| |
Collapse
|
4
|
Álvarez-Pérez S, Lievens B, de Vega C. Floral nectar and honeydew microbial diversity and their role in biocontrol of insect pests and pollination. CURRENT OPINION IN INSECT SCIENCE 2024; 61:101138. [PMID: 37931689 DOI: 10.1016/j.cois.2023.101138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Sugar-rich plant-related secretions, such as floral nectar and honeydew, that are commonly used as nutrient sources by insects and other animals, are also the ecological niche for diverse microbial communities. Recent research has highlighted the great potential of nectar and honeydew microbiomes in biological pest control and improved pollination, but the exploitation of these microbiomes requires a deep understanding of their community dynamics and plant-microbe-insect interactions. Additionally, the successful application of microbes in crop fields is conditioned by diverse ecological, legal, and ethical challenges that should be taken into account. In this article, we provide an overview of the nectar and honeydew microbiomes and discuss their potential applications in sustainable agricultural practices.
Collapse
Affiliation(s)
- Sergio Álvarez-Pérez
- Department of Animal Health, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, B-3001 Heverlee, Belgium
| | - Clara de Vega
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
5
|
Rering CC, Lanier AM, Peres NA. Blueberry floral probiotics: nectar microbes inhibit the growth of Colletotrichum pathogens. J Appl Microbiol 2023; 134:lxad300. [PMID: 38061796 DOI: 10.1093/jambio/lxad300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023]
Abstract
AIMS To identify whether microorganisms isolated from blueberry flowers can inhibit the growth of Colletotrichum, an opportunistic plant pathogen that infects flowers and threatens yields, and to assess the impacts of floral microbes and Colletotrichum pathogens on artificial nectar sugars and honey bee consumption. METHODS AND RESULTS The growth inhibition of Colletotrichum (Colletotrichum acutatum, Colletotrichum fioriniae, and Colletotrichum gloeosporioides) was screened using both artificial nectar co-culture and dual culture plate assays. All candidate nectar microbes were screened for antagonism against a single C. acutatum isolate. Then, the top four candidate nectar microbes showing the strongest inhibition of C. acutatum (Neokomagataea thailandica, Neokomagataea tanensis, Metschnikowia rancensis, and Symmetrospora symmetrica) were evaluated for antagonism against three additional C. acutatum isolates, and single isolates of both C. fioriniae and C. gloeosporioides. In artificial nectar assays, single and three-species cultures inhibited the growth of two of four C. acutatum isolates by ca. 60%, but growth of other Colletotrichum species was not affected. In dual culture plate assays, inhibition was observed for all Colletotrichum species for at least three of four selected microbial antagonists (13%‒53%). Neither honey bee consumption of nectar nor nectar sugar concentrations were affected by any microbe or pathogen tested. CONCLUSIONS Selected floral microbes inhibited growth of all Colletotrichum species in vitro, although the degree of inhibition was specific to the assay and pathogen examined. In all microbial treatments, nectar sugars were preserved, and honey bee preference was not affected.
Collapse
Affiliation(s)
- Caitlin C Rering
- Chemistry Research Unit, Agricultural and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, FL 32608, United States
| | - Alexia M Lanier
- Chemistry Research Unit, Agricultural and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, FL 32608, United States
| | - Natalia A Peres
- Department of Horticulture, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, United States
| |
Collapse
|
6
|
Temmermans J, Legein M, Zhao Y, Kiekens F, Smagghe G, de Coninck B, Lebeer S. The biocontrol agent Lactiplantibacillus plantarum AMBP214 is dispersible to plants via bumblebees. Appl Environ Microbiol 2023; 89:e0095023. [PMID: 37882529 PMCID: PMC10686056 DOI: 10.1128/aem.00950-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/11/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Plant protection products are essential for ensuring food production, but their use poses a threat to human and environmental health, and their efficacy is decreasing due to the acquisition of resistance by pathogens. Stricter regulations and consumer demand for cleaner produce are driving the search for safer and more sustainable alternatives. Microbial biocontrol agents, such as microorganisms with antifungal activity, have emerged as a promising alternative management strategy, but their commercial use has been limited by poor establishment and spread on crops. This study presents a novel system to overcome these challenges. The biocontrol agent Lactiplantibacillus plantarum AMBP214 was spray-dried and successfully dispersed to strawberry flowers via bumblebees. This is the first report of combining spray-dried, non-spore-forming bacteria with pollinator-dispersal, which scored better than the state-of-the-art in terms of dispersal to the plant (CFU/flower), and resuscitation of the biocontrol agent. Therefore, this new entomovectoring system holds great promise for the use of biocontrol agents for disease management in agriculture.
Collapse
Affiliation(s)
- Jari Temmermans
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, Antwerp University, Antwerp, Belgium
| | - Marie Legein
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, Antwerp University, Antwerp, Belgium
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Yijie Zhao
- Laboratory of Plant Health and Protection, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, Leuven, Belgium
| | - Filip Kiekens
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmaceutical Sciences, Antwerp University, Wilrijk, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Barbara de Coninck
- Laboratory of Plant Health and Protection, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, Leuven, Belgium
| | - Sarah Lebeer
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, Antwerp University, Antwerp, Belgium
| |
Collapse
|
7
|
Xi M, Deyett E, Stajich JE, El-Kereamy A, Roper MC, Rolshausen PE. Microbiome diversity, composition and assembly in a California citrus orchard. Front Microbiol 2023; 14:1100590. [PMID: 36910183 PMCID: PMC9992537 DOI: 10.3389/fmicb.2023.1100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
The citrus root and rhizosphere microbiomes have been relatively well described in the literature, especially in the context of Huanglonbing disease. Yet questions addressing the assembly of root microbial endophytes have remained unanswered. In the above ground tree tissues, leaves and stems have been the research focus point, while flush and flower microbiomes, two important tissues in the vegetative and reproductive cycles of the tree, are not well described. In this study, the fungal and bacterial taxa in five biocompartments (bulk soil, rhizosphere, root endosphere, flower and flush) of citrus trees grown in a single California orchard were profiled using an amplicon-based metagenomic Illumina sequencing approach. Trees with no observable signs of abiotic or biotic stresses were sampled for two consecutive years during the floral development phase. The rhizosphere was the most biodiverse compartment compared to bulk soil, root endosphere, flower and flush microbiomes. In addition, the belowground bacteriome was more diverse than the mycobiome. Microbial richness decreased significantly from the root exosphere to the endosphere and was overall low in the above ground tissues. Root endophytic microbial community composition shared strong similarities to the rhizosphere but also contained few taxa from above ground tissues. Our data indicated compartmentalization of the microbiome with distinct profiles between above and below ground microbial communities. However, several taxa were present across all compartments suggesting the existence of a core citrus microbiota. These findings highlight key microbial taxa that could be engineered as biopesticides and biofertilizers for citriculture.
Collapse
Affiliation(s)
- MengYuan Xi
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Elizabeth Deyett
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Ashraf El-Kereamy
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - M Caroline Roper
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Philippe E Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|