1
|
Bakare-Abidola T, Russell WJA, Jorgensen K, Pérez RL. Enhanced extraction of methylene blue by dodecyl-methyl imidazolium dodecyl sulfate GUMBOS - magnetic alginate beads. CHEMOSPHERE 2025; 370:143991. [PMID: 39701321 DOI: 10.1016/j.chemosphere.2024.143991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
In this study, dodecyl-methyl imidazolium dodecyl sulfonate ([C12MIm][DS]) GUMBOS were synthesized and incorporated into alginate with γ-Fe2O3 to fabricate magnetic adsorbent beads ([C₁₂MIm][DS]-beads) for methylene blue (MB) removal. Characterization via ESI-MS, FT-IR, SEM, BET, and TGA confirmed their structure and properties. The beads achieved a maximum adsorption capacity of 4.5 mg/g at pH 10 with an initial MB concentration of 500 mg/L, following pseudo-first-order kinetics and the Langmuir isotherm model. Thermodynamic studies confirmed the process was exothermic. Even after six recycling cycles, the beads retained similar morphology and an MB removal percentage of 57.6%. The beads demonstrated high adsorption efficiency (70%) in the presence of Cu2⁺, ibuprofen, and malachite green, comparable to MB removal alone. These results highlight the potential of [C12MIm][DS]-beads as effective adsorbents for water remediation applications.
Collapse
Affiliation(s)
- Taiwo Bakare-Abidola
- Center for Advanced Materials Science (CAMS), Department of Biochemistry, Chemistry, and Physics, Georgia Southern University, Statesboro, GA, 30458, United States
| | - William J A Russell
- Center for Advanced Materials Science (CAMS), Department of Biochemistry, Chemistry, and Physics, Georgia Southern University, Statesboro, GA, 30458, United States
| | - Kyle Jorgensen
- Center for Advanced Materials Science (CAMS), Department of Biochemistry, Chemistry, and Physics, Georgia Southern University, Statesboro, GA, 30458, United States
| | - Rocío L Pérez
- Center for Advanced Materials Science (CAMS), Department of Biochemistry, Chemistry, and Physics, Georgia Southern University, Statesboro, GA, 30458, United States.
| |
Collapse
|
2
|
Venkataraman S, Karthikanath PR, Gokul CS, Adhithya M, Vaishnavi VK, Rajendran DS, Vaidyanathan VK, Natarajan R, Balakumaran PA, Kumar VV. Recent advances in phytase thermostability engineering towards potential application in the food and feed sectors. Food Sci Biotechnol 2025; 34:1-18. [PMID: 39758718 PMCID: PMC11695551 DOI: 10.1007/s10068-024-01690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 01/07/2025] Open
Abstract
This review comprehensively examines the advancements in engineering thermostable phytase through genetic modification and immobilization techniques, focusing on developments from the last seven years. Genetic modifications, especially protein engineering, have enhanced enzyme's thermostability and functionality. Immobilization on various supports has further increased thermostability, with 50-60 % activity retention at higher temperature (more than 50 °C). In the food industry, phytase is used in flour processing and bread making, reducing phytate content by around 70 %, thereby improving nutritional value and mineral bioavailability. In the feed industry, it serves as a poultry feed additive, breaking down phytates to enhance nutrient availability and feed efficiency. The enzyme's robustness at high temperatures makes it valuable in feed processing. The integration of microbial production of phytase with genetically engineered strains followed by carrier free immobilization represents a synergistic approach to fortify enzyme structure and improve thermal stability. These advancement in the development of phytase enzyme capable of withstanding high temperatures, thereby pivotal for industrial utilization.
Collapse
Affiliation(s)
- Swethaa Venkataraman
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203 India
| | - P. R. Karthikanath
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019 Kerala India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - C. S. Gokul
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019 Kerala India
| | - M. Adhithya
- Department of Botany, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024 Tamil Nadu India
| | - V. K. Vaishnavi
- Department of Botany, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024 Tamil Nadu India
| | - Devi Sri Rajendran
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203 India
| | - Vasanth Kumar Vaidyanathan
- Department of Electronics and Communication Engineering, Hindustan Institute of Technology and Science, Chennai, India
| | - Ramesh Natarajan
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203 India
| | - Palanisamy Athiyaman Balakumaran
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019 Kerala India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203 India
| |
Collapse
|
3
|
Ariaeenejad S, Zeinalabedini M, Sadeghi A, Gharaghani S, Mardi M. Enhancing nutritional and potential antimicrobial properties of poultry feed through encapsulation of metagenome-derived multi-enzymes. BMC Biotechnol 2024; 24:76. [PMID: 39379947 PMCID: PMC11463139 DOI: 10.1186/s12896-024-00904-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND The encapsulation of metagenome-derived multi-enzymes presents a novel approach to improving poultry feed by enhancing nutrient availability and reducing anti-nutritional factors. By integrating and encapsulated enzymes such as carbohydrate-hydrolyzing enzymes, protease, lipase, and laccase into feed formulations, this method not only improves feed digestibility but also potentially contributes to animal health and productivity through antimicrobial properties. RESULTS This study investigates the encapsulation of metagenome-derived enzymes, including carbohydrate-hydrolyzing enzymes, protease, lipase, and laccase, using Arabic and Guar gums as encapsulating agents. The encapsulated multi-enzymes exhibited significant antimicrobial activity, achieving a 92.54% inhibition rate against Escherichia coli at a concentration of 6 U/mL. Fluorescence tracking with FITC-labeled enzymes confirmed efficient encapsulation and distribution, while physical characterization, including moisture content and solubility assessments, along with Atomic Force Microscopy (AFM) imaging, validated successful encapsulation. The encapsulated enzymes also effectively hydrolyzed poultry feed, leading to an increase in phenolic content and antioxidant activity, as confirmed by 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. CONCLUSIONS The encapsulated multi-enzymes improved the overall feed quality by increasing reducing sugars and enhancing physical properties such as solubility and water-holding capacity. The encapsulated multi-enzymes improved the overall feed quality by increasing reducing sugars, antioxidant activity and enhancing physical properties such as solubility and water-holding capacity. Scanning Electron Microscopy (SEM) and Fourier-Transform Infrared Spectroscopy (FTIR) analyses confirmed the enzymatic breakdown of the feed structure. These results suggest that supplementing poultry feed with encapsulated multi-enzymes can enhance its physical, nutritional, and functional properties, leading to improved digestibility and overall feed quality.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Mehrshad Zeinalabedini
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Akram Sadeghi
- Department of Microbial Biotechnology, Agricultural Research Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics & Drug Design (LBD), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Mohsen Mardi
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
4
|
Weng Y, Xu X, Yan P, You J, Chen X, Song H, Zhao CX. Enzyme encapsulation in metal-organic frameworks using spray drying for enhanced stability and controlled release: A case study of phytase. Food Chem 2024; 452:139533. [PMID: 38705119 DOI: 10.1016/j.foodchem.2024.139533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Encapsulating enzymes in metal-organic frameworks is a common practice to improve enzyme stability against harsh conditions. However, the synthesis of enzyme@MOFs has been primarily limited to small-scale laboratory settings, hampering their industrial applications. Spray drying is a scalable and cost-effective technology, which has been frequently used in industry for large-scale productions. Despite these advantages, its potential for encapsulating enzymes in MOFs remains largely unexplored, due to challenges such as nozzle clogging from MOF particle formation, utilization of toxic organic solvents, controlled release of encapsulated enzymes, and high temperatures that could compromise enzyme activity. Herein, we present a novel approach for preparing phytase@MIL-88 A using solvent-free spray drying. This involves atomizing two MOF precursor solutions separately using a three-fluid nozzle, with enzyme release controlled by manipulating defects within the MOFs. The physicochemical properties of the spray dried particles are characterized using X-ray diffraction, Fourier-transform infrared spectroscopy, and scanning electron microscopy. Leveraging the efficiency and scalability of spray drying in industrial production, this scalable encapsulation technique holds considerable promise for broad industrial applications.
Collapse
Affiliation(s)
- Yilun Weng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Xin Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Penghui Yan
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jiakang You
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
5
|
Kotwal N, Pathania D, Singh A, Din Sheikh ZU, Kothari R. Enzyme immobilization with nanomaterials for hydrolysis of lignocellulosic biomass: Challenges and future Perspectives. Carbohydr Res 2024; 543:109208. [PMID: 39013334 DOI: 10.1016/j.carres.2024.109208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Enzyme immobilization has emerged as a prodigious strategy in the enzymatic hydrolysis of lignocellulosic biomass (LCB) promising enhanced efficacy and stability of the enzymes. Further, enzyme immobilization on magnetic nanoparticles (MNPs) facilitates the easy recovery and reuse of biocatalysts. This results in the development of a nanobiocatalytic system, that serves as an eco-friendly and inexpensive LCB deconstruction approach. This review provides an overview of nanomaterials used for immobilization with special emphasis on the nanomaterial-enzyme interactions and strategies of immobilization. After the succinct outline of the immobilization procedures and supporting materials, a comprehensive assessment of the catalysis enabled by nanomaterial-immobilized biocatalysts for the conversion and degradation of lignocellulosic biomasses is provided by gathering state-of-the-art examples. The challenges and future directions associated with this technique providing a potential solution in the present article. Insight on the recent advancements in the process of nanomaterial-based immobilization for the hydrolysis of lignocellulosic biomass has also been highlighted in the article.
Collapse
Affiliation(s)
- Neha Kotwal
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, (Bagla) Samba, J&K, 181143, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, (Bagla) Samba, J&K, 181143, India.
| | - Anita Singh
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, (Bagla) Samba, J&K, 181143, India; Department of Environmental Studies, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, Haryana, India.
| | - Zaheer Ud Din Sheikh
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, (Bagla) Samba, J&K, 181143, India
| | - Richa Kothari
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, (Bagla) Samba, J&K, 181143, India
| |
Collapse
|
6
|
Colin C, Akpo E, Perrin A, Cornu D, Cambedouzou J. Encapsulation in Alginates Hydrogels and Controlled Release: An Overview. Molecules 2024; 29:2515. [PMID: 38893391 PMCID: PMC11173704 DOI: 10.3390/molecules29112515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
This review aims to gather the current state of the art on the encapsulation methods using alginate as the main polymeric material in order to produce hydrogels ranging from the microscopic to macroscopic sizes. The use of alginates as an encapsulation material is of growing interest, as it is fully bio-based, bio-compatible and bio-degradable. The field of application of alginate encapsulation is also extremely broad, and there is no doubt it will become even broader in the near future considering the societal demand for sustainable materials in technological applications. In this review, alginate's main properties and gelification mechanisms, as well as some factors influencing this mechanism, such as the nature of the reticulation cations, are first investigated. Then, the capacity of alginate gels to release matter in a controlled way, from small molecules to micrometric compounds, is reported and discussed. The existing techniques used to produce alginates beads, from the laboratory scale to the industrial one, are further described, with a consideration of the pros and cons with each techniques. Finally, two examples of applications of alginate materials are highlighted as representative case studies.
Collapse
|
7
|
Yang E, Dong H, Khongkomolsakul W, Dadmohammadi Y, Abbaspourrad A. Improving the thermal stability of phytase using core-shell hydrogel beads. Food Chem X 2024; 21:101082. [PMID: 38162037 PMCID: PMC10753051 DOI: 10.1016/j.fochx.2023.101082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024] Open
Abstract
A core-shell hydrogel bead system was designed to maintain the catalytic activity of phytase and protect its enzymatic functionality from heat treatment. The designed structure consists of a chitosan-phytase complex core and an alginate-carrageenan hydrogel shell. The core-shell hydrogel was optimized to improve phytase encapsulation efficiency and increase the thermal stability of the encapsulated phytase. After heat treatment, encapsulated phytase retained ∼ 70 % of its catalytic activity and the same secondary structure of free phytase. Fourier transform infrared spectroscopy indicated strong intermolecular interactions between chitosan and phytase in the core, but little interaction between the core and the alginate and κ-carrageenan shell, this supports the structural and functional stability of the phytase. Differential scanning calorimetry confirmed that the designed core-shell structure had a higher melting point. Encapsulating phytase in a core-shell hydrogel bead can enhance the thermal stability of phytase, which broadens the potential applications for phytase delivery.
Collapse
Affiliation(s)
- Eunhye Yang
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, NY 14853, United States
| | - Hongmin Dong
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, NY 14853, United States
| | - Waritsara Khongkomolsakul
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, NY 14853, United States
| | - Younas Dadmohammadi
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, NY 14853, United States
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, NY 14853, United States
| |
Collapse
|
8
|
Wang W, Liu J, Khan MJ, Wang R, Francesco S, Sun J, Mao X, Huang WC. Magnetic macroporous chitin microsphere as a support for covalent enzyme immobilization. Int J Biol Macromol 2024; 256:128214. [PMID: 37992928 DOI: 10.1016/j.ijbiomac.2023.128214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
In this study, a novel magnetic macroporous chitin microsphere (MMCM) was developed for enzyme immobilization. Chitin nanofibers were prepared and subsequently subjected to self-assembly with magnetic nanoparticles and PMMA (polymethyl methacrylate). Following this, microspheres were formed through spray drying, achieving a porous structure through etching. The MMCM serves as an effective support for immobilizing enzymes, allowing for their covalent immobilization both on the microsphere's surface and within its pores. The substantial surface area resulting from the porous structure leads to a 2.1-fold increase in enzyme loading capacity compared to non-porous microspheres. The MMCM enhances stability of the immobilized enzymes under various pH and temperature conditions. Furthermore, after 20 days of storage at 4 °C, the residual activity of the immobilized enzyme was 2.93 times that of the free enzyme. Even after being recycled 10 times, the immobilized enzyme retained 56.7 % of its initial activity. It's noteworthy that the active sites of the enzymes remained unchanged after immobilization using the MMCM, and kinetic analysis revealed that the affinity of the immobilized enzymes rivals that of the free enzymes.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Jiayuan Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Muhammad Junaid Khan
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Rong Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Secundo Francesco
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche via Mario Bianco 9, 20131 Milan, Italy
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Wen-Can Huang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China.
| |
Collapse
|
9
|
Kaur G, Taggar MS, Kalia A. Cellulase-immobilized chitosan-coated magnetic nanoparticles for saccharification of lignocellulosic biomass. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111627-111647. [PMID: 37280490 DOI: 10.1007/s11356-023-27919-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/22/2023] [Indexed: 06/08/2023]
Abstract
Devising and consolidating cost-effective and greener technologies for sustainable energy production pertain to some of the most pressing needs of the present times. Bioconversion of abundantly available lignocellulosic materials into fermentable sugars to produce biofuels involves the cost-extensive requirement of hydrolytic enzymes called cellulases. Cellulases are highly selective and eco-friendly biocatalysts responsible for deconstruction of complex polysaccharides into simple sugars. Currently, immobilization of cellulases is being carried out on magnetic nanoparticles functionalized with suitable biopolymers such as chitosan. Chitosan, a biocompatible polymer, exhibits high surface area, chemical/thermal stability, functionality, and reusability. The chitosan-functionalized magnetic nanocomposites (Ch-MNCs) present a nanobiocatalytic system that enables easy retrieval, separation, and recycling of cellulases, thereby offering a cost-effective and sustainable approach for biomass hydrolysis. These functional nanostructures show enormous potential owing to certain physicochemical and structural features that have been discussed in a comprehensive manner in this review. It provides an insight into the synthesis, immobilization, and application of cellulase immobilized Ch-MNCs for biomass hydrolysis. This review aims to bridge the gap between sustainable utilization and economic viability of employing replenishable agro-residues for cellulosic ethanol production by incorporating the recently emerging nanocomposite immobilization approach.
Collapse
Affiliation(s)
- Gurkanwal Kaur
- Department of Biochemistry, College of Basic Sciences & Humanities, Punjab Agricultural University, Ludhiana-141004, Punjab, India.
| | - Monica Sachdeva Taggar
- Department of Renewable Energy Engineering, College of Agricultural Engineering & Technology, Punjab Agricultural University, Ludhiana-141004, Punjab, India
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana-141004, Punjab, India
| |
Collapse
|
10
|
Wintzheimer S, Luthardt L, Cao KLA, Imaz I, Maspoch D, Ogi T, Bück A, Debecker DP, Faustini M, Mandel K. Multifunctional, Hybrid Materials Design via Spray-Drying: Much more than Just Drying. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306648. [PMID: 37840431 DOI: 10.1002/adma.202306648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Indexed: 10/17/2023]
Abstract
Spray-drying is a popular and well-known "drying tool" for engineers. This perspective highlights that, beyond this application, spray-drying is a very interesting and powerful tool for materials chemists to enable the design of multifunctional and hybrid materials. Upon spray-drying, the confined space of a liquid droplet is narrowed down, and its ingredients are forced together upon "falling dry." As detailed in this article, this enables the following material formation strategies either individually or even in combination: nanoparticles and/or molecules can be assembled; precipitation reactions as well as chemical syntheses can be performed; and templated materials can be designed. Beyond this, fragile moieties can be processed, or "precursor materials" be prepared. Post-treatment of spray-dried objects eventually enables the next level in the design of complex materials. Using spray-drying to design (particulate) materials comes with many advantages-but also with many challenges-all of which are outlined here. It is believed that multifunctional, hybrid materials, made via spray-drying, enable very unique property combinations that are particularly highly promising in myriad applications-of which catalysis, diagnostics, purification, storage, and information are highlighted.
Collapse
Affiliation(s)
- Susanne Wintzheimer
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Leoni Luthardt
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Kiet Le Anh Cao
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Takashi Ogi
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Andreas Bück
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, 91058, Erlangen, Germany
| | - Damien P Debecker
- Université catholique de Louvain (UCLouvain), Institute of Condensed Matter and Nanosciences (IMCN), Place Louis Pasteur, 1, 348, Louvain-la-Neuve, Belgium
| | - Marco Faustini
- Sorbonne Université, Collège de France, CNRS, Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Paris, F-75005, France
- Institut Universitaire de France (IUF), Paris, 75231, France
| | - Karl Mandel
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| |
Collapse
|
11
|
Weng Y, Yang G, Li Y, Xu L, Chen X, Song H, Zhao CX. Alginate-based materials for enzyme encapsulation. Adv Colloid Interface Sci 2023; 318:102957. [PMID: 37392664 DOI: 10.1016/j.cis.2023.102957] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Enzymes are widely used in industry due to their high efficiency and selectivity. However, their low stability during certain industrial processes can result in a significant loss of catalytic activity. Encapsulation is a promising technique that can stabilize enzymes by protecting them from environmental stresses such as extreme temperature and pH, mechanical force, organic solvents, and proteases. Alginate and alginate-based materials have emerged as effective carriers for enzyme encapsulation due to their biocompatibility, biodegradability, and ability to form gel beads through ionic gelation. This review presents various alginate-based encapsulation systems for enzyme stabilization and explores their applications in different industries. We discuss the preparation methods of alginate encapsulated enzymes and analyze the release mechanisms of enzymes from alginate materials. Additionally, we summarize the characterization techniques used for enzyme-alginate composites. This review provides insights into the use of alginate encapsulation as a means of stabilizing enzymes and highlights the potential benefits for various industrial applications.
Collapse
Affiliation(s)
- Yilun Weng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Guangze Yang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Yang Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Letao Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
12
|
Filippovich SY, Isakova EP, Gessler NN, Deryabina YI. Advances in immobilization of phytases and their application. BIORESOURCE TECHNOLOGY 2023; 379:129030. [PMID: 37037335 DOI: 10.1016/j.biortech.2023.129030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
The review describes the advances in the phytase immobilization for the past decade and their biotechnological applications. Different approaches for phytase immobilization are described including the process using organic and inorganic matrices and microbial cells, as well as nanostructures of various nature. Moreover, the immobilization of phytase-producing microbial cells and the use of cross-linked phytase aggregates have been under consideration. A detailed classification of various carriers for immobilization of phytases and the possibility of their applications are presented. A particular attention is drawn to a breakthrough approach of biotechnological significance to the design of microencapsulation of bacterial phytase from Obesumbacterium proteus in the recombinant extremophile of Yarrowia lipolytica.
Collapse
Affiliation(s)
- Svetlana Yu Filippovich
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, Moscow 119071, Russia.
| | - Elena P Isakova
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, Moscow 119071, Russia.
| | - Natalia N Gessler
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, Moscow 119071, Russia.
| | - Yulia I Deryabina
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, Moscow 119071, Russia.
| |
Collapse
|
13
|
Bai X, Sun X, Yu Y, Guo Y, Nian L, Cao C, Cheng S. Immobilization of α-galactosidase in polyvinyl alcohol-chitosan-glycidyl methacrylate hydrogels based on directional freezing-assisted salting-out strategy for hydrolysis of RFOs. Int J Biol Macromol 2023; 242:124808. [PMID: 37211074 DOI: 10.1016/j.ijbiomac.2023.124808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/23/2023]
Abstract
Raffinose family oligosaccharides (RFOs) in food are the main factors causing flatulence in Irritable Bowel Syndrome (IBS) patients and the development of effective approaches for reducing food-derived RFOs is of paramount importance. In this study, polyvinyl alcohol (PVA)-chitosan (CS)-glycidyl methacrylate (GMA) immobilized α-galactosidase was prepared by the directional freezing-assisted salting-out technique, aimed to hydrolyze RFOs. SEM, FTIR, XPS, fluorescence and UV characterization results demonstrated that α-galactosidase was successfully cross-linked in the PVA-CS-GMA hydrogels, forming a distinct porous stable network through the covalent bond between the enzyme and the carrier. Mechanical performance and swelling capacity analysis illustrated that α-gal @ PVA-CS-GMA not only had suitable strength and toughness for longer durability, but also exhibited high water content and swelling capacity for better retention of catalytic activity. The enzymatic properties of α-gal @ PVA-CS-GMA showed an improved Km value, pH and temperature tolerance range, anti-enzymatic inhibitor (melibiose) activity compared to the free α-galactosidase and its reusability was at least 12 times with prolonged storage stability. Finally, it was successfully applied in the hydrolysis of RFOs in soybeans. These findings provide a new strategy for the development of α-galactosidase immobilization system to biological transform the RFOs components in the food for diet intervention of IBS.
Collapse
Affiliation(s)
- Xixi Bai
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoyang Sun
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Yu
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yuheng Guo
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Linyu Nian
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Chongjiang Cao
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Shujie Cheng
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
14
|
Weng Y, Wan A, Li Y, Liu Y, Chen X, Song H, Zhao CX. Scalable manufacturing of enzyme loaded alginate particles with excellent thermal and storage stability for industrial applications. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
15
|
Weng Y, Li Y, Chen X, Song H, Zhao CX. Encapsulation of enzymes in food industry using spray drying: recent advances and process scale-ups. Crit Rev Food Sci Nutr 2023; 64:7941-7958. [PMID: 36971126 DOI: 10.1080/10408398.2023.2193982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Enzymes are widely used in the food industry due to their ability in improving the functional, sensory, and nutritional properties of food products. However, their poor stability under harsh industrial conditions and their compromised shelf-lives during long-term storage limit their applications. This review introduces typical enzymes and their functionality in the food industry and demonstrates spray drying as a promising approach for enzyme encapsulation. Recent studies on encapsulation of enzymes in the food industry using spray drying and the key achievements are summarized. The latest developments including the novel design of spray drying chambers, nozzle atomizers and advanced spray drying techniques are also analyzed and discussed in depth. In addition, the scale-up pathways connecting laboratory scale trials and industrial scale productions are illustrated, as most of the current studies have been limited to lab-scales. Enzyme encapsulation using spray drying is a versatile strategy to improve enzyme stability in an economical and industrial viable way. Various nozzle atomizers and drying chambers have recently been developed to increase process efficiency and product quality. A comprehensive understanding of the complex droplet-to-particle transformations during the drying process would be beneficial for both process optimization and scale-up design.
Collapse
Affiliation(s)
- Yilun Weng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Yang Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|