1
|
Ma J, Huang W, Ma Y, Li J, Feng N, Wen B, Jia F, Wang Y, Gao Z. Effect of Chinese bayberry residue on quality of Chinese quinoa ( Chenopodium quinoa Willd.) Rice wine. Food Chem X 2024; 23:101584. [PMID: 39007111 PMCID: PMC11245981 DOI: 10.1016/j.fochx.2024.101584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Chinese bayberry residue (CBR) is a by-product of processing, which can be used as an auxiliary material during the processing of quinoa rice wine. In this study, the effects of CBR on the chemical profile, bioactive function, taste traits, and flavor of Chinese quinoa rice wine (CQRW) were investigated. The results showed that adding CBR increased the total phenolics, the total flavonoids, and antioxidant capacity. Malic acid content was the highest in Chinese rice wine (CRW), while the total content of components detected in HPLC-MS/MS was the highest in 10%CBR + CQRW. The CQRW exhibited the highest amino acid content, followed by 20%CBR + CQRW. E-tongue analysis results showed that 10%CBR + CQRW, 20%CBR + CQRW, and CQRW had the closest taste traits. Moreover, GC-MS analysis identified 72 aroma compounds in 10%CBR + CQRW sample, more than other samples. In summary, adding 10% CBR significantly improved the quality of CQRW.
Collapse
Affiliation(s)
- Jian Ma
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
- Ministerial and Provincial Co-Innovation Center for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Agriculture College of Shanxi Agricultural university, Taigu, Shanxi 030801, PR China
- Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Wuyang Huang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Yanhong Ma
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
- Ministerial and Provincial Co-Innovation Center for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Agriculture College of Shanxi Agricultural university, Taigu, Shanxi 030801, PR China
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jian Li
- Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Naihong Feng
- Institute of Economic Crops, Shanxi Agricultural University, Taiyuan, Shanxi 030031, PR China
| | - Bo Wen
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Feihong Jia
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Yu Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Zhiqiang Gao
- Ministerial and Provincial Co-Innovation Center for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Agriculture College of Shanxi Agricultural university, Taigu, Shanxi 030801, PR China
| |
Collapse
|
2
|
Tian H, Xiong J, Sun J, Du F, Xu G, Yu H, Chen C, Lou X. Dynamic transformation in flavor during hawthorn wine fermentation: Sensory properties and profiles of nonvolatile and volatile aroma compounds coupled with multivariate analysis. Food Chem 2024; 456:139982. [PMID: 38876062 DOI: 10.1016/j.foodchem.2024.139982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Fermentation stage is a crucial factor for flavor profiles formation of hawthon wine. Thus, comprehensive knowledge of dynamic relationship between nonvolatile (NVOCs) and volatile aroma compounds (VOCs) from hawthorn wine at different fermentation stages was investigated by GC-MS and HPLC coupled with multivariate analysis. The increase of alcohols/esters/acids but decrease of terpenes/aldehydes/ketones was observed as fermentation extension. Specifically, OAV of ethyl acetate, ethyl caprylate, and ethyl caprate was > 50 from the 3rd day to 10th day, giving more fruity properties. Multivariate analysis showed that 1-hexanol, ethyl myristate, isobutyric acid, et al., were linked to the sensory evaluation of "sweet", "floral" and "fruity", and fructose, glucose and bitter amino acids were responsible for reduction of "bitterness" and "astringency". Additionally, VOCs were positively correlated with organic acids while negative to amino acids/soluble sugars, probably due to metabolization as precursors, providing references for aroma enhancement by regulating NVOCs precursors.
Collapse
Affiliation(s)
- Huaixiang Tian
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Juanjuan Xiong
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jiashu Sun
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Fenglin Du
- Shaanxi Leadflow Technology Co., Ltd, Shaanxi 30032, China
| | - Guofang Xu
- Shaanxi Leadflow Technology Co., Ltd, Shaanxi 30032, China
| | - Haiyan Yu
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Chen Chen
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xinman Lou
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
3
|
Liu K, Su R, Wang Q, Shen X, Jiang B, Yang L, Li Z, Zheng J, Li P. Interaction and dynamic changes of microbial communities and volatile flavor compounds during the fermentation process of coffee flower rice wine. Front Microbiol 2024; 15:1476091. [PMID: 39364163 PMCID: PMC11446889 DOI: 10.3389/fmicb.2024.1476091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/04/2024] [Indexed: 10/05/2024] Open
Abstract
To develop a unique flavor of rice wine, coffee flowers (by-products of the coffee industry) were added because of their biologically active compounds that are conducive to health, and the fermentation parameters were optimized. In addition, the dynamic changes of microbial communities and volatile flavor compounds (VFCs) during the different fermentation stages were investigated. After the optimization of the fermentation parameters, a novel product, i.e., the coffee flower rice wine (CFRW), was obtained with a bright yellow transparent, fragrant, and harmonious aroma and mellow and refreshing taste by sensory evaluation, when 4.62% of the coffee flowers and 1.93% koji were added and fermented at 24.10°C for 3.88 days. The results showed that Lactococcus was the dominant bacteria, accounting for 87.0-95.7%, while Rhizopus and Cladosporium were the main fungi, accounting for 68.2% and 11.3% on average, respectively, in the fermentation process of the CFRW. Meanwhile, twenty-three VFCs were detected in the CFRW, which included three alcohols, six terpenes, ten esters, three aromatics, and one furan. The correlation analysis revealed that there were 16 significant positive correlations and 23 significant negative correlations between the bacterium and VFCs (|ρ| > 0.6, p < 0.05), while there were 12 significant positive correlations and one significant negative correlation between the fungi and VFCs (|ρ| > 0.6, p < 0.05). Furthermore, five VFCs, including linalool, geraniol, ethyl acetate, 1-hexanol, and 3-methyl-1-butanol, contributed vital flavors to the CFRW, and they were all significantly negatively correlated with the changes of Massilia and Acinetobacter (|ρ| > 0.6, p < 0.05). Moreover a significant positive correlation was found between the relative abundance of Lactococcus and the contents of 3-methyl-1-butanol and ethyl acetate (|ρ| > 0.6, p < 0.05). Therefore, this study provides a valuable theoretical basis for further improving the quality and production technology of CFRW.
Collapse
Affiliation(s)
- Kunyi Liu
- School of Wuliangye Technology and Food Engineering and School of Modern Agriculture, Yibin Vocational and Technical College, Yibin, China
| | - Rui Su
- Sericulture and Apiculture Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi, China
| | - Qi Wang
- School of Wuliangye Technology and Food Engineering and School of Modern Agriculture, Yibin Vocational and Technical College, Yibin, China
| | - Xiaojing Shen
- College of Science, Yunnan Agricultural University, Kunming, China
| | - Bin Jiang
- School of Wuliangye Technology and Food Engineering and School of Modern Agriculture, Yibin Vocational and Technical College, Yibin, China
| | - Liran Yang
- School of Wuliangye Technology and Food Engineering and School of Modern Agriculture, Yibin Vocational and Technical College, Yibin, China
| | - Zelin Li
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jia Zheng
- Wuliangye Yibin Co., Ltd., Yibin, China
| | - Pingping Li
- Sericulture and Apiculture Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi, China
| |
Collapse
|
4
|
Zhao Y, Gu M, Jiang P, Fang S, Yan N, Kong F, Ma D, Ren D, Pang X, Qiu J. Characterisation of aroma compounds, sensory characteristics, and bioactive components of a new type of huangjiu fermented with Chinese wild rice (Zizania latifolia). Food Chem 2024; 452:139524. [PMID: 38703742 DOI: 10.1016/j.foodchem.2024.139524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Chinese wild rice (CWR) is a nutritious and healthy whole grain, worth developing. To develop and use its value, a new type of huangjiu was brewed with CWR, and the flavour characteristics, sensory quality, functional and bioactive components were evaluated. CWR (67 flavour substances) and glutinous rice (GR)-CWR huangjiu (62 flavour substances) had a better flavour than GR huangjiu (54 flavour substances), and the overall style of GR-CWR huangjiu was more skewed towards GR. The fruity, honey, caramel-like, herb and smoky aroma attributes of CWR huangjiu were higher than those of GR huangjiu (P < 0.05), while only the alcoholic was weaker (P < 0.05) due to the lower alcohol content. The huangjiu brewed using CWR had a better taste than that brewed using only GR. Furthermore, CWR huangjiu had the highest content of total dietary fiber (732.0 ± 15.2 mg/100 g), followed by GR-CWR (307.0 ± 8.5 mg/100 g), and GR (127.0 ± 2.3 mg/100 g). CWR huangjiu also had the highest total phenolic compounds (3.32 ± 0.05 mg/100 g/%vol) and total saponins (2.46 ± 0.03 mg/100 g/%vol) contents, followed by GR-CWR and GR. This study provides guidance for exploring further possibilities for CWR in the future.
Collapse
Affiliation(s)
- Yuzong Zhao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, China
| | - Mingyue Gu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, China
| | - Peng Jiang
- Qingdao Agricultural Product Quality and Safety Center, Qingdao 266199, China
| | - Song Fang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, China
| | - Ning Yan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, China
| | - Fanyu Kong
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, China
| | - Donglin Ma
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dongliang Ren
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Xueli Pang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, China.
| | - Jun Qiu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, China.
| |
Collapse
|
5
|
Li C, Tang C, Zeng X, Zhang Y, He L, Yan Y. Exploration of carbonyl compounds in red-fleshed kiwifruit wine and perceptual interactions among non-volatile organic acids. Food Chem 2024; 448:139118. [PMID: 38552459 DOI: 10.1016/j.foodchem.2024.139118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 04/24/2024]
Abstract
Carbonyl compounds are vital constituents that contribute to the flavor profile of alcoholic beverages. We examined 3-nitrophenylhydrazine as a derivatizing reagent for the measurement of 34 carbonyl compounds using UPLC-MS/MS. Adding formic acid and sodium acetate to the mobile phase significantly enhanced the detection limit of carbonyl compounds. The technique exhibited a notable extraction efficiency, yielding recovery percentages ranging from 83.6% to 117.1%, coupled with exceptional sensitivity, as evidenced by detection limits spanning from 0.07 μg/L to 4.80 μg/L. The relative standard deviation was <6.9%, indicating the precision and reliability of the analytical methodology. The method was verified by analyzing carbonyl compounds from red-fleshed kiwifruit wine. Furthermore, sensory assessment revealed that the amalgamation of tartaric acid, malic acid, and citric acid contributes to sour taste perception at sub-threshold concentrations through an additive interaction with supra-threshold non-volatile organic acids such as lactic acid and acetic acid.
Collapse
Affiliation(s)
- Cen Li
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Cui Tang
- Liupanshui Agricultural and Rural Bureau, Liupanshui 553002, Guizhou Province, China
| | - Xiangyong Zeng
- School of Liquor and Food Engineering, Guizhou University, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guiyang 550025, Guizhou Province, China
| | - Yi Zhang
- Liupanshui liangdu kiwifruit Co. Ltd., Liupanshui 553001, Guizhou Province, China
| | - Laping He
- School of Liquor and Food Engineering, Guizhou University, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guiyang 550025, Guizhou Province, China
| | - Yan Yan
- School of Liquor and Food Engineering, Guizhou University, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guiyang 550025, Guizhou Province, China.
| |
Collapse
|
6
|
Wu F, Fan S, He G, Liang S, Xu Y, Tang K. Comparison of Aroma Compounds and Sensory Characteristics between Two Different Types of Rice-Based Baijiu. Foods 2024; 13:681. [PMID: 38472793 DOI: 10.3390/foods13050681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Rice-based Baijiu has gained popularity in the Chinese market. Qingya-flavored Baijiu, a variant of Xiaoqu-fermented Baijiu, employs rice as its primary raw material, with an improved production process compared to traditional rice-flavored Baijiu. We comprehensively characterized and compared the aroma profiles of these two rice-based Baijiu types using static sensory experiments (QDA, quantitative descriptive analysis) and dynamic sensory experiments (TDS, temporal dominance of sensations). Qingya-flavored Baijiu exhibited pronounced plant, oily, and roasted aromas, while traditional rice-flavored Baijiu displayed more prominent fruity, floral, and sour notes. Utilizing GC-O-MS (gas chromatography-olfactometry-mass spectrometry) and multi-method quantification, we qualitatively and quantitatively analyzed 61 key aroma compounds, identifying 22 compounds with significant aroma contributions based on odor activity values (OAVs). Statistical analyses, combining sensory and chemical results, were conducted to predict important aroma compounds responsible for the aroma differences between the two Baijiu types. Aroma Recombination and Omission experiments showed that seven compounds play key roles in the aroma of Qingya-flavored Baijiu, including (2E,4E)-Deca-2,4-dienal, linalool, apricolin, ethyl acetate, ethyl isobutyrate, ethyl caprylate, and ethyl isovalerate.
Collapse
Affiliation(s)
- Fan Wu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Shaohui Fan
- Guangdong Shiwan Baijiu Group Company Ltd., Foshan 528000, China
| | - Guoliang He
- Guangdong Shiwan Baijiu Group Company Ltd., Foshan 528000, China
| | - Siyu Liang
- Guangdong Shiwan Baijiu Group Company Ltd., Foshan 528000, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Ke Tang
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
7
|
Lin L, Fan W, Xu Y, Zhu D, Yang T, Li J. Characterization of Key Odorants in Chinese Texiang Aroma and Flavor Type Baijiu (Chinese Liquor) by Means of a Molecular Sensory Science Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1256-1265. [PMID: 38169436 DOI: 10.1021/acs.jafc.3c07053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The popularity of texiang aroma type baijiu (liquor), known for its unique production technology and multilayered flavor, has been steadily increasing among consumers. So far, no research has determined its key aroma compounds for characterizing the unique flavor, which is the purpose of this paper. Using gas chromatography-olfactometry (GC-O) coupled with the GC-mass spectrometry (GC-MS) method, 87 aroma-active compounds were identified and screened out with intensity values ≥2.0. 1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) was first confirmed by GC-O in Chinese liquor. According to a quantitative study and odor activity values (OAVs), 42 odorants were determined as important aroma compounds. These odorants were recombined based on quantitative concentrations, successfully simulating the overall aroma profile. Omission experiments verified ethyl hexanoate, β-damascenone, and 2-furfuryl ethyl ether as the key aroma compounds and revealed that ethyl acetate, furfural, and ethyl 2-phenylacetate were important aroma compounds to the overall flavor of texiang aroma and flavor type liquor.
Collapse
Affiliation(s)
- Luyao Lin
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology, Ministry of Education, and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenlai Fan
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology, Ministry of Education, and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology, Ministry of Education, and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dongcai Zhu
- Jiangnan University-Lidu Liquor Industry (Yuan Dynasty) Ancient Cellar Microbial Joint Research and Development Center, Jiangxi Lidu Liquor Industry Co., Ltd., Nanchang, Jiangxi 331725, China
| | - Tao Yang
- Jiangnan University-Lidu Liquor Industry (Yuan Dynasty) Ancient Cellar Microbial Joint Research and Development Center, Jiangxi Lidu Liquor Industry Co., Ltd., Nanchang, Jiangxi 331725, China
| | - Jie Li
- Jiangnan University-Lidu Liquor Industry (Yuan Dynasty) Ancient Cellar Microbial Joint Research and Development Center, Jiangxi Lidu Liquor Industry Co., Ltd., Nanchang, Jiangxi 331725, China
| |
Collapse
|
8
|
Ren T, Li B, Xu F, Chen Z, Lu M, Tan S. Research on the Effect of Oriental Fruit Moth Feeding on the Quality Degradation of Chestnut Rose Juice Based on Metabolomics. Molecules 2023; 28:7170. [PMID: 37894648 PMCID: PMC10608842 DOI: 10.3390/molecules28207170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/06/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
As a native fruit of China, chestnut rose (Rosa roxburghii Tratt) juice is rich in bioactive ingredients. Oriental fruit moth (OFM), Grapholita molesta (Busck), attacks the fruits and shoots of Rosaceae plants, and its feeding affects the quality and yield of chestnut rose. To investigate the effects of OFM feeding on the quality of chestnut rose juice, the bioactive compounds in chestnut rose juice produced from fruits eaten by OFM were measured. The electronic tongue senses, amino acid profile, and untargeted metabolomics assessments were performed to explore changes in the flavour and metabolites. The results showed that OFM feeding reduced the levels of superoxide dismutase (SOD), tannin, vitamin C, flavonoid, and condensed tannin; increased those of polyphenols, soluble solids, total protein, bitterness, and amounts of bitter amino acids; and decreased the total amino acid and umami amino acid levels. Furthermore, untargeted metabolomics annotated a total of 426 differential metabolites (including 55 bitter metabolites), which were mainly enriched in 14 metabolic pathways, such as flavonoid biosynthesis, tryptophan metabolism, tyrosine metabolism, and diterpenoid biosynthesis. In conclusion, the quality of chestnut rose juice deteriorated under OFM feeding stress, the levels of bitter substances were significantly increased, and the bitter taste was subsequently enhanced.
Collapse
Affiliation(s)
- Tingyuan Ren
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (B.L.); (F.X.); (Z.C.); (M.L.); (S.T.)
| | | | | | | | | | | |
Collapse
|
9
|
Mao X, Yue SJ, Xu DQ, Fu RJ, Han JZ, Zhou HM, Tang YP. Research Progress on Flavor and Quality of Chinese Rice Wine in the Brewing Process. ACS OMEGA 2023; 8:32311-32330. [PMID: 37720734 PMCID: PMC10500577 DOI: 10.1021/acsomega.3c04732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023]
Abstract
Chinese rice wine (CRW) is a traditional and unique alcoholic beverage in China, favored by many consumers for its rich aroma, unique taste, and complex ingredients. Its flavor is primarily composed of volatile and nonvolatile compounds. These flavor compounds are partly derived from grains and starters (Qu), while the other part is produced by microbial metabolism and chemical reactions during the brewing process. Additionally, ethyl carbamate (EC) in CRW, a hazardous chemical, necessitates controlling its concentration during brewing. In recent years, numerous new brewing techniques for CRW have emerged. Therefore, this paper aims to collect aroma descriptions and thresholds of flavor compounds in CRW, summarize the relationship between the brewing process of CRW and flavor formation, outline methods for reducing the concentration of EC in the brewing process of CRW, and summarize the four stages (pretreatment of grains, fermentation, sterilization, and aging process) of new techniques. Furthermore, we will compare the advantages and disadvantages of different approaches, with the expectation of providing a valuable reference for improving the quality of CRW.
Collapse
Affiliation(s)
- Xi Mao
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Shi-Jun Yue
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Ding-Qiao Xu
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Rui-Jia Fu
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Jian-Zhang Han
- Xi’an
DaKou Wine Company Ltd., Xi’an 710300, Shaanxi Province, China
| | - Hao-Ming Zhou
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| |
Collapse
|
10
|
Wang K, Wu H, Wang J, Ren Q. Microbiota Composition during Fermentation of Broomcorn Millet Huangjiu and Their Effects on Flavor Quality. Foods 2023; 12:2680. [PMID: 37509772 PMCID: PMC10379140 DOI: 10.3390/foods12142680] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Broomcorn millet Huangjiu brewing is usually divided into primary fermentation and post-fermentation. Microbial succession is the major factor influencing the development of the typical Huangjiu flavor. Here, we report the changes in flavor substances and microbial community during the primary fermentation of broomcorn millet Huangjiu. Results indicated that a total of 161 volatile flavor compounds were measured during primary fermentation, and estragole was detected for the first time in broomcorn millet Huangjiu. A total of 82 bacteria genera were identified. Pediococcus, Pantoea, and Weissella were the dominant genera. Saccharomyces and Rhizopus were dominant among the 30 fungal genera. Correlation analysis showed that 102 microorganisms were involved in major flavor substance production during primary fermentation, Lactobacillus, Photobacterium, Hyphodontia, Aquicella, Erysipelothrix, Idiomarina, Paraphaeosphaeria, and Sulfuritalea were most associated with flavoring substances. Four bacteria, Lactobacillus (R1), Photobacterium (R2), Idiomarina (R3), and Pediococcus (R4), were isolated and identified from wheat Qu, which were added to wine Qu to prepare four kinds of fortified Qu (QR1, QR2, QR3, QR4). QR1 and QR2 fermentation can enhance the quality of Huangjiu. This work reveals the correlation between microorganisms and volatile flavor compounds and is beneficial for regulating the micro-ecosystem and flavor of the broomcorn millet Huangjiu.
Collapse
Affiliation(s)
- Ke Wang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Huijun Wu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Jiaxuan Wang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Qing Ren
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|