1
|
Wu Z, Huang M, Jiang J, Zhang C, Hao G, Chen M, Li QX, Jia M, Liu J, Li X. Ningnanmycin Activates Defense Systems against Potato Virus Y in Nicotiana benthamiana. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39569937 DOI: 10.1021/acs.jafc.4c05534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Ningnanmycin has been proven to effectively inhibit infection by potato virus Y (PVY), although its underlying mechanisms remain unclear. In this study, we report a novel finding that ningnanmycin affects PVY replication. Two approaches were employed: studies using PVY movement-deficient mutants suggest that ningnanmycin, at a concentration of 500 μg/mL, inhibits PVY replication. Ningnanmycin interacts with the PVY-encoded coat protein (CP) with a binding constant of 1.34 μmol/L, and key amino acids Glu168 and Thr206 are involved in this interaction. Additionally, ningnanmycin induces the expression of antiviral response genes in Nicotiana benthamiana, including PRXIIB, PRXIIE, PUB4, and PER42. Furthermore, studies revealed that the overexpression of PUB4 in N. benthamiana confers resistance to PVY infection. These findings highlight the mechanisms by which ningnanmycin activates the PUB4 gene and suppresses CP assembly, thereby inhibiting PVY in N. benthamiana. This study represents an important step toward elucidating the molecular mechanism underlying the antiviral activity of ningnanmycin.
Collapse
Affiliation(s)
- Zilin Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
- State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, Joint International Research Laboratory of Crop Molecular Breeding, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Min Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Junmei Jiang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Chun Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Gefei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Moxian Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Mengao Jia
- Guizhou Academy of Tobacco Science, Guiyang 550081, P. R. China
| | - Junfeng Liu
- State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, Joint International Research Laboratory of Crop Molecular Breeding, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xiangyang Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Yang X, Liu D, Wei C, Li J, Zhao C, Tian Y, Li X, Song B, Song R. Rational design of 2 H-chromene-based antiphytovirals that inhibit virion assembly by outcompeting virus capsid-RNA interactions. iScience 2024; 27:111210. [PMID: 39555397 PMCID: PMC11565046 DOI: 10.1016/j.isci.2024.111210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/30/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Although the determination of the structural basis of potato virus Y (PVY) coat protein (CP) provides the possibility for CP-based antiviral drug design, the role of many specific residues on CP in regulating virion pathogenicity is largely unknown, and fewer small-molecular drugs have been discovered to act on these potential sites. In this study, a series of derivatives of 2,2-dimethyl-2H-chromene are rationally designed by employing a molecular hybridization strategy. We screen a case of phytovirucide C50 that could form a stable H-bond with Ser125 of PVY CP to exert antiviral properties. Ser125 is further identified to be crucial for CP-viral RNA (vRNA) interaction, enabling PVY virion assembly. This interaction can be significantly inhibited through competitive binding with compound C50. The study enhances our understanding of anti-PVY drug mechanisms and provides a basis for developing new CP-targeting virus particle assembly inhibitors.
Collapse
Affiliation(s)
- Xiong Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang City, Guizhou Province 550025, P.R. China
| | - Deguo Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an City, Shandong Province 271018, P.R. China
| | - Chunle Wei
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang City, Guizhou Province 550025, P.R. China
| | - Jianzhuan Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang City, Guizhou Province 550025, P.R. China
| | - Chunni Zhao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang City, Guizhou Province 550025, P.R. China
| | - Yanping Tian
- College of Plant Protection, Shandong Agricultural University, Tai’an City, Shandong Province 271018, P.R. China
| | - Xiangdong Li
- College of Plant Protection, Shandong Agricultural University, Tai’an City, Shandong Province 271018, P.R. China
| | - Baoan Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang City, Guizhou Province 550025, P.R. China
| | - Runjiang Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang City, Guizhou Province 550025, P.R. China
| |
Collapse
|
3
|
Zhang W, Guo P, Zhang Y, Zhou Q, Sun Y, Xu H. Application of Difluoromethyl Isosteres in the Design of Pesticide Active Molecules. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21344-21363. [PMID: 39305256 DOI: 10.1021/acs.jafc.4c04239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Difluoromethyl (CF2H) groups have been found in many listed pesticides due to their unique physical and chemical properties and outstanding biological activity. In pesticide molecules, compared with the drastic changes brought by trifluoromethyl, difluoromethyl usually moderately regulates the metabolic stability, lipophilicity, bioavailability, and binding affinity of compounds. Therefore, difluoromethylation has become an effective means to modify the biological activity of pesticide molecules. This paper reviews the representative literatures and patents containing difluoromethyl groups in the past 10 years, and introduces the research progress. The aim is to provide an effective reference value for the study of difluoromethyl in pesticides.
Collapse
Affiliation(s)
- Wanjie Zhang
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Pengxiang Guo
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Yannian Zhang
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Qin Zhou
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Yan Sun
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Hongliang Xu
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
4
|
Wei C, Zhao C, Li J, Li C, Song B, Song R. Innovative Arylimidazole-Fused Phytovirucides via Carbene-Catalyzed [3+4] Cycloaddition: Locking Viral Cell-To-Cell Movement by Out-Competing Virus Capsid-Host Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309343. [PMID: 38477505 PMCID: PMC11109656 DOI: 10.1002/advs.202309343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/22/2024] [Indexed: 03/14/2024]
Abstract
The control of potato virus Y (PVY) induced crop failure is a challengeable issue in agricultural chemistry. Although many anti-PVY agents are designed to focus on the functionally important coat protein (CP) of virus, how these drugs act on CP to inactivate viral pathogenicity, remains largely unknown. Herein, a PVY CP inhibitor -3j (S) is disclosed, which is accessed by developing unusually efficient (up to 99% yield) and chemo-selective (> 99:1 er in most cases) carbene-catalyzed [3+4] cycloaddition reactions. Compound -3j bears a unique arylimidazole-fused diazepine skeleton and shows chirality-preferred performance against PVY. In addition, -3j (S) as a mediator allows ARG191 (R191) of CP to be identified as a key amino acid site responsible for intercellular movement of virions. R191 is further demonstrated to be critical for the interaction between PVY CP and the plant functional protein NtCPIP, enabling virions to cross plasmodesmata. This key step can be significantly inhibited through bonding with the -3j (S) to further impair pathogenic behaviors involving systemic infection and particle assembly. The study reveals the in-depth mechanism of action of antiviral agents targeting PVY CP, and contributes to new drug structures and synthetic strategies for PVY management.
Collapse
Affiliation(s)
- Chunle Wei
- National Key Laboratory of Green PesticideKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyang550025China
| | - Chunni Zhao
- National Key Laboratory of Green PesticideKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyang550025China
| | - Jiao Li
- National Key Laboratory of Green PesticideKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyang550025China
| | - Chunyi Li
- National Key Laboratory of Green PesticideKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyang550025China
| | - Baoan Song
- National Key Laboratory of Green PesticideKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyang550025China
| | - Runjiang Song
- National Key Laboratory of Green PesticideKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyang550025China
| |
Collapse
|
5
|
Wang Y, Guo S, Sun W, Tu H, Tang Y, Xu Y, Guo R, Zhao Z, Yang Z, Wu J. Synthesis of 4 H-Pyrazolo[3,4- d]pyrimidin-4-one Hydrazine Derivatives as a Potential Inhibitor for the Self-Assembly of TMV Particles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2879-2887. [PMID: 38241724 DOI: 10.1021/acs.jafc.3c05334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Tobacco mosaic virus coat protein (TMV-CP), as a potential target for the development of antiviral agents, can assist in the long-distance movement of viruses and plays an extremely important role in virus replication and propagation. This work focuses on the synthesis and the action mechanism of novel 4H-pyrazolo[3,4-d] pyrimidin-4-one hydrazine derivatives. The synthesized compounds exhibited promising antiviral activity on TMV. Specifically, compound G2 exhibited high inactivating activity (93%) toward TMV, slightly better than commercial reagent NNM (90%). The action of mechanism was further explored by employed molecular docking, molecular dynamics simulation, microscale thermophoresis, qRT-PCR, and transmission electron microscopy. Results indicated that G2 had the capability to interact with amino acid residues such as Trp352, Tyr139, and Asn73 in the active pocket of TMV-CP, creating strong hydrophobic interactions and thus obstructing the virus's self-assembly.
Collapse
Affiliation(s)
- Ya Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shengxin Guo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Wei Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hong Tu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yao Tang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ying Xu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Renjiang Guo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhichao Zhao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhaokai Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jian Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
6
|
Sun YD, Yokomi R. Genotype Sequencing and Phylogenetic Analysis Revealed the Origins of Citrus Yellow Vein Clearing Virus California Isolates. Viruses 2024; 16:188. [PMID: 38399964 PMCID: PMC10891506 DOI: 10.3390/v16020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The Citrus yellow vein clearing virus (CYVCV) causes a viral disease that has been reported in some citrus-growing regions in countries in Eurasia including Pakistan, India, Türkiye, Iran, China, and South Korea. Recently, CYVCV was detected in a localized urban area in a town in the middle of California's citrus-growing region and marks the first occurrence of the virus in North America. CYVCV has been reported to be spread by aphid and whitefly vectors and is graft and mechanically transmitted. Hence, it is an invasive pathogen that presents a significant threat to the California citrus industry, especially lemons, which are highly symptomatic to CYVCV. To elucidate the origin of the CYVCV California strain, we used long-read sequencing technology and obtained the complete genomes of three California CYVCV isolates, CA1, CA2, and CA3. The sequences of these isolates exhibited intergenomic similarities ranging from 95.4% to 97.4% to 54 publicly available CYVCV genome sequences, which indicated a relatively low level of heterogeneity. However, CYVCV CA isolates formed a distinct clade from the other isolates when aligned against other CYVCV genomes and coat protein gene sequences as shown by the neighbor network analysis. Based on the rooted Maximum Likelihood phylogenetic trees, CYVCV CA isolates shared the most recent common ancestor with isolates from India/South Asia. Bayesian evolutionary inferences resulted in a spatiotemporal reconstruction, suggesting that the CYVCV CA lineage diverged from the Indian lineage possibly around 1995. This analysis placed the origin of all CYVCV to around 1990, with South Asia and/or Middle East as the most plausible geographic source, which matches to the first discovery of CYVCV in Pakistan in 1988. Moreover, the spatiotemporal phylogenetic analysis indicated an additional virus diffusion pathway: one from South Asia to China and South Korea. Collectively, our phylogenetic inferences offer insights into the probable dynamics of global CYVCV dissemination, emphasizing the need for citrus industries and regulatory agencies to closely monitor citrus commodities crossing state and international borders.
Collapse
Affiliation(s)
- Yong-Duo Sun
- United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648, USA
| | - Raymond Yokomi
- United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648, USA
| |
Collapse
|
7
|
Wu Z, Luo D, Zhang S, Zhang C, Zhang Y, Chen M, Li X. A systematic review of southern rice black-streaked dwarf virus in the age of omics. PEST MANAGEMENT SCIENCE 2023; 79:3397-3407. [PMID: 37291065 DOI: 10.1002/ps.7605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 06/10/2023]
Abstract
Southern rice black-streaked dwarf virus (SRBSDV) is one of the most damaging rice viruses. The virus decreases rice quality and yield, and poses a serious threat to food security. From this perspective, this review performed a survey of published studies in recent years to understand the current status of SRBSDV and white-backed planthopper (WBPH, Sogatella furcifera) transmission processes in rice. Recent studies have shown that the interactions between viral virulence proteins and rice susceptibility factors shape the transmission of SRBSDV. Moreover, the transmission of SRBSDV is influenced by the interactions between viral virulence proteins and S. furcifera susceptibility factors. This review focused on the molecular mechanisms of key genes or proteins associated with SRBSDV infection in rice via the S. furcifera vector, and the host defense response mechanisms against viral infection. A sustainable control strategy using RNAi was summarized to address this pest. Finally, we also present a model for screening anti-SRBSDV inhibitors using viral proteins as targets. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zilin Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Dan Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Shanqi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Chun Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
8
|
Lin S, Chen X, Xie L, Zhang Y, Zeng F, Long Y, Ren L, Qi X, Wei J. Biocontrol potential of lipopeptides produced by Paenibacillus polymyxa AF01 against Neoscytalidium dimidiatum in pitaya. Front Microbiol 2023; 14:1188722. [PMID: 37266020 PMCID: PMC10231640 DOI: 10.3389/fmicb.2023.1188722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Pitaya canker, caused by Neoscytalidium dimidiatum, is one of the most important fungal diseases that cause significant losses in production. To replace chemical pesticides, the use of biocontrol strains to manage plant diseases has been the focus of research. In this study, the bacterial strain AF01, identified as Paenibacillus polymyxa, exhibited significant antifungal effects against N. dimidiatum and four other pitaya fungal pathogens. The strain P. polymyxa AF01 produces 13 fusaricidins, which directly inhibit mycelial growth, spore germination and germ tube elongation by causing the membrane integrity and cell ultrastructure to incur irreversible damage. Pot experiment and yield test confirmed that AF01 provided preservative effects by reducing the disease index. In comparison to the untreated control groups, RNA-seq data showed that P. polymyxa AF01 selectively blocked some transcription and translation processes and inhibited RNA and DNA structural dynamics, energy production and conversion, and signal transduction, particularly cell wall biosynthesis, changes in membrane permeability, and impairment of protein biosynthesis. Thus, P. polymyxa AF01 could be potentially useful as a suitable biocontrol agent for pitaya canker.
Collapse
Affiliation(s)
- Shanyu Lin
- College of Agriculture, Guangxi University, Nanning, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Science, Nanning, Guangxi, China
| | - Xiaohang Chen
- Baise Agricultural Scientific Research Institute, Baise, China
| | - Ling Xie
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Science, Nanning, Guangxi, China
| | - Yan Zhang
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Science, Nanning, Guangxi, China
| | - Fenghua Zeng
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Science, Nanning, Guangxi, China
| | - Yanyan Long
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Science, Nanning, Guangxi, China
| | - Liyun Ren
- College of Agricultural Engineering, Guangxi Vocational University of Agriculture, Nanning, China
| | - Xiuling Qi
- College of Agricultural Engineering, Guangxi Vocational University of Agriculture, Nanning, China
| | - Jiguang Wei
- College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
9
|
Wang P, Liu J, Lyu Y, Huang Z, Zhang X, Sun B, Li P, Jing X, Li H, Zhang C. A Review of Vector-Borne Rice Viruses. Viruses 2022; 14:v14102258. [PMID: 36298813 PMCID: PMC9609659 DOI: 10.3390/v14102258] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022] Open
Abstract
Rice (Oryza sativa L.) is one of the major staple foods for global consumption. A major roadblock to global rice production is persistent loss of crops caused by plant diseases, including rice blast, sheath blight, bacterial blight, and particularly various vector-borne rice viral diseases. Since the late 19th century, 19 species of rice viruses have been recorded in rice-producing areas worldwide and cause varying degrees of damage on the rice production. Among them, southern rice black-streaked dwarf virus (SRBSDV) and rice black-streaked dwarf virus (RBSDV) in Asia, rice yellow mottle virus (RYMV) in Africa, and rice stripe necrosis virus (RSNV) in America currently pose serious threats to rice yields. This review systematizes the emergence and damage of rice viral diseases, the symptomatology and transmission biology of rice viruses, the arm races between viruses and rice plants as well as their insect vectors, and the strategies for the prevention and control of rice viral diseases.
Collapse
Affiliation(s)
- Pengyue Wang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Jianjian Liu
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Hubei Engineering Research Center for Pest Forewarning and Management, College of Agronomy, Yangtze University, Jingzhou 434025, China
| | - Yajing Lyu
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Ziting Huang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoli Zhang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Bingjian Sun
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Pengbai Li
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinxin Jing
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Honglian Li
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chao Zhang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence:
| |
Collapse
|
10
|
Design, Synthesis, and Bioactivities of Novel Tryptophan Derivatives Containing 2,5-Diketopiperazine and Acyl Hydrazine Moieties. Molecules 2022; 27:molecules27185758. [PMID: 36144506 PMCID: PMC9506431 DOI: 10.3390/molecules27185758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022] Open
Abstract
Based on the scaffolds widely used in drug design, a series of novel tryptophan derivatives containing 2,5-diketopiperazine and acyl hydrazine moieties have been designed, synthesized, characterized, and evaluated for their biological activities. The bioassay results showed that the target compounds possessed moderate to good antiviral activities against tobacco mosaic virus (TMV), among which compounds 4, 9, 14, 19, and 24 showed higher inactivation, curative, and protection activities in vivo than that of ribavirin (39 ± 1, 37 ± 1, 39 ± 1 at 500 mg/L) and comparable to that of ningnanmycin (58 ± 1, 55 ± 1, 57 ± 1% at 500 mg/L). Thus, these compounds are a promising candidate for anti-TMV development. Most of these compounds showed broad-spectrum fungicidal activities against 13 kinds of phytopathogenic fungi and selective fungicidal activities against Alternaria solani, Phytophthora capsica, and Sclerotinia sclerotiorum. Additionally, some of these compounds exhibited larvicidal activities against Tetranychus cinnabarinus, Plutella xylostella, Culex pipiens pallens, Mythimna separata, Helicoverpa armigera, and Pyrausta nubilalis.
Collapse
|