1
|
Guo X, Liu C, Dong Z, Luo G, Li Q, Huang M. Flavonoids from Rhododendron nivale Hook. f ameliorate alcohol-associated liver disease via activating the PPARα signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156215. [PMID: 39556985 DOI: 10.1016/j.phymed.2024.156215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Flavonoids are increasingly recognized for their potent antioxidant properties and potential therapeutic roles in the management of alcohol-associated liver disease (ALD). Extracts derived from Rhododendron nivale Hook. f. (FRN) have been shown to influence glutathione metabolism in aging animal models, exhibiting notable antioxidant effects. However, the specific impact of FRN on ALD remains insufficiently explored. HYPOTHESIS/PURPOSE This study seeks to elucidate the efficacy of FRN in alleviating the pathology associated with ALD, delving into the underlying molecular mechanisms that facilitate its protective effects. STUDY DESIGN We employed network pharmacology to predict the functional roles and pathway enrichments associated with FRN targets. Both a murine model of ALD and in vitro cellular models were utilized to clarify the mechanistic basis by which FRN mitigates ALD. METHODS FRN was extracted and characterized according to well-established methodologies outlined in our previous studies. Potential functions and pathways implicated by FRN were predicted through network pharmacology analyses. A combination of liver transcriptomics, targeted lipidomics, molecular biology techniques, and antagonists of relevant targets were employed to investigate the mechanisms through which FRN exerts its protective effects in ALD. RESULTS Network pharmacology identified multiple target genes modulated by FRN, particularly those within critical ALD-related signaling pathways, such as PPARα signaling and fatty acids (FAs) degradation. Notably, treatment with FRN in the ALD murine model led to a significant attenuation of hepatic lipid accumulation and a restoration of serum AST and ALT to baseline ranges. Subsequent validation through liver transcriptomics and molecular biology techniques revealed an upregulation of PPARα expression concomitant with a downregulation of ACSL1 in FRN-treated ALD mice. Targeted lipidomic and bioinformatic analyses demonstrated that FRN substantially reduced the accumulation of long-chain fatty acids in hepatocytes. Importantly, the reversal of FRN's protective effects on lipid accumulation through the PPARα antagonist GW6471 provides compelling evidence for the critical role of PPARα signaling modulation in mediating the beneficial impact of FRN on ALD. CONCLUSION Our research highlights FRN's capacity to alleviate ALD through PPARα pathway activation, paving the way for innovative treatment strategies. This underscores the significance of natural compounds in pharmacotherapy, suggesting that FRN may provide an effective alternative for managing ALD.
Collapse
Affiliation(s)
- Xiao Guo
- State Key Laboratory of Tibetan Medicine Research and Development, Tibetan Medicine Research Center, Tibetan Medicial College, Qinghai University, Xining, Qinghai 810016, China
| | - Chen Liu
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhen Dong
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Gang Luo
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Qien Li
- State Key Laboratory of Tibetan Medicine Research and Development, Tibetan Medicine Research Center, Tibetan Medicial College, Qinghai University, Xining, Qinghai 810016, China
| | - Meizhou Huang
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
2
|
Yilmaz Y. Postbiotics as Antiinflammatory and Immune-Modulating Bioactive Compounds in Metabolic Dysfunction-Associated Steatotic Liver Disease. Mol Nutr Food Res 2024; 68:e2400754. [PMID: 39499063 DOI: 10.1002/mnfr.202400754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/12/2024] [Indexed: 11/07/2024]
Abstract
Postbiotics, defined as products or metabolic byproducts secreted by live bacteria or released after bacterial lysis, are emerging as promising therapeutic agents for metabolic dysfunction-associated steatotic liver disease (MASLD). This review explores the antiinflammatory and immunomodulatory properties of various postbiotics, including exopolysaccharides, lipoteichoic acid, short-chain fatty acids, hydrogen sulfide, polyamines, tryptophan derivatives, and polyphenol metabolites. These compounds have demonstrated potential in mitigating steatotic liver infiltration, reducing inflammation, and slowing fibrosis progression in preclinical studies. Notably, postbiotics exert their beneficial effects by modulating gut microbiota composition, enhancing intestinal barrier function, optimizing lipid metabolism, reducing hepatic inflammation and steatosis, and exhibiting hepatoprotective properties. However, translating these findings into clinical practice requires well-designed trials to validate efficacy and safety, standardize production and characterization, and explore personalized approaches and synergistic effects with other therapeutic modalities. Despite challenges, the unique biological properties of postbiotics, such as enhanced safety compared to probiotics, make them attractive candidates for developing novel nutritional interventions targeting the multifactorial pathogenesis of MASLD. Further research is needed to establish their clinical utility and potential to improve liver and systemic outcomes in this increasingly prevalent condition.
Collapse
Affiliation(s)
- Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Türkiye
- The Global NASH Council, Washington, DC, 53020, USA
| |
Collapse
|
3
|
Smith ML, Wade JB, Wolstenholme J, Bajaj JS. Gut microbiome-brain-cirrhosis axis. Hepatology 2024; 80:465-485. [PMID: 36866864 PMCID: PMC10480351 DOI: 10.1097/hep.0000000000000344] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023]
Abstract
Cirrhosis is characterized by inflammation, degeneration, and fibrosis of liver tissue. Along with being the most common cause of liver failure and liver transplant, cirrhosis is a significant risk factor for several neuropsychiatric conditions. The most common of these is HE, which is characterized by cognitive and ataxic symptoms, resulting from the buildup of metabolic toxins with liver failure. However, cirrhosis patients also show a significantly increased risk for neurodegenerative diseases such as Alzheimer and Parkinson diseases, and for mood disorders such as anxiety and depression. In recent years, more attention has been played to communication between the ways the gut and liver communicate with each other and with the central nervous system, and the way these organs influence each other's function. This bidirectional communication has come to be known as the gut-liver-brain axis. The gut microbiome has emerged as a key mechanism affecting gut-liver, gut-brain, and brain-liver communication. Clinical studies and animal models have demonstrated the significant patterns of gut dysbiosis when cirrhosis is present, both with or without concomitant alcohol use disorder, and have provided compelling evidence that this dysbiosis also influences the cognitive and mood-related behaviors. In this review, we have summarized the pathophysiological and cognitive effects associated with cirrhosis, links to cirrhosis-associated disruption of the gut microbiome, and the current evidence from clinical and preclinical studies for the modulation of the gut microbiome as a treatment for cirrhosis and associated neuropsychiatric conditions.
Collapse
Affiliation(s)
- Maren L Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - James B Wade
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jennifer Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| |
Collapse
|
4
|
Liu C, Cai T, Cheng Y, Bai J, Li M, Gu B, Huang M, Fu W. Postbiotics Prepared Using Lactobacillus reuteri Ameliorates Ethanol-Induced Liver Injury by Regulating the FXR/SHP/SREBP-1c Axis. Mol Nutr Food Res 2024; 68:e2300927. [PMID: 38937862 DOI: 10.1002/mnfr.202300927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/30/2024] [Indexed: 06/29/2024]
Abstract
SCOPE While probiotics-based therapies have exhibited potential in alleviating alcohol-associated liver disease (ALD), the specific role of postbiotics derived from Lactobacillus reuteri (L. reuteri) in ALD remains elusive. This study aims to investigate the impact of postbiotics on ameliorating alcohol-induced hepatic steatosis and the underlying mechanisms. METHODS AND RESULTS Using network pharmacology, the study elucidates the targets and pathways impacted by postbiotics from L. reuteri, identifying the farnesoid X receptor (FXR) as a promising target for postbiotics against ALD, and lipid metabolism and alcoholism act as crucial pathways associated with postbiotics-targeting ALD. Furthermore, the study conducts histological and biochemical analyses coupled with LC/MS to evaluate the protective effects and mechanisms of postbiotics against ALD. Postbiotics may modulate bile acid metabolism in vivo by regulating FXR signaling, activating the FXR/FGF15 pathway, and influencing the enterohepatic circulation of bile acids (BAs). Subsequently, postbiotics regulate hepatic FXR activated by BAs and modulate the expression of FXR-mediated protein, including short regulatory partner (SHP) and sterol regulatory element binding protein-1c (SREBP-1c), thereby ameliorating hepatic steatosis in mice with ALD. CONCLUSION Postbiotics effectively alleviate ethanol-induced hepatic steatosis by regulating the FXR/SHP/SREBP-1c axis, as rigorously validated in both in vivo and in vitro.
Collapse
Affiliation(s)
- Chen Liu
- Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, sichuan, 646000, China
| | - Tianying Cai
- School of Medicine, Xiamen University, Xiamen, 361100, China
| | - Yonglang Cheng
- Department of General Medicine, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Junjie Bai
- Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, sichuan, 646000, China
| | - Mo Li
- Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, sichuan, 646000, China
| | - Boyuan Gu
- Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, sichuan, 646000, China
| | - Meizhou Huang
- Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, sichuan, 646000, China
| | - Wenguang Fu
- Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, sichuan, 646000, China
| |
Collapse
|
5
|
Wang L, Ren B, Wu S, Song H, Xiong L, Wang F, Shen X. Current research progress, opportunities, and challenges of Limosillactobacillus reuteri-based probiotic dietary strategies. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38920093 DOI: 10.1080/10408398.2024.2369946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Limosillactobacillus reuteri (L. reuteri), a type of Lactobacillus spp., stands out as the most extensively researched probiotic. Its remarkable intestinal adhesion has led to widespread applications in both the food and medical sectors. Notably, recent research highlights the probiotic efficacy of L. reuteri sourced from breast milk, particularly in influencing social behavior and mitigating atopic dermatitis. In this review, our emphasis is on surveying recent literature regarding the promotion of host's health by L. reuteri. We aim to provide a concise summary of the latest regulatory effects and potential mechanisms attributed to L. reuteri in the realms of metabolism, brain- and immune-related functions. The mechanism through which L. reuteri promotes host health by modulating the intestinal microenvironment primarily involves promoting intestinal epithelial renewal, bolstering intestinal barrier function, regulating gut microbiota and its metabolites, and suppressing inflammation and immune responses. Additionally, this review delves into new technologies, identifies shortcomings, and addresses challenges in current L. reuteri research. Finally, the application prospects of L. reuteri are provided. Therefore, a better understanding of the role and mechanisms of L. reuteri will contribute significantly to the development of new probiotic functional foods and enable precise, targeted interventions for various diseases.
Collapse
Affiliation(s)
- Luanfeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Bo Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Shufeng Wu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Ling Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
6
|
Li X, Xu X, Tao S, Su Y, Wen L, Wang D, Liu J, Feng Q. Gut microbes combined with metabolomics reveal the protective effects of Qijia Rougan decoction against CCl 4-induced hepatic fibrosis. Front Pharmacol 2024; 15:1347120. [PMID: 38606180 PMCID: PMC11007057 DOI: 10.3389/fphar.2024.1347120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Background: The occurrence and development of Hepatic fibrosis (HF) are closely related to the gut microbial composition and alterations in host metabolism. Qijia Rougan decoction (QJ) is a traditional Chinese medicine compound utilized clinically for the treatment of HF with remarkable clinical efficacy. However, its effect on the gut microbiota and metabolite alterations is unknown. Therefore, our objective was to examine the impact of QJ on the gut microbiota and metabolism in Carbon tetrachloride (CCl4)-induced HF. Methods: 40% CCl4 was used to induce HF, followed by QJ administration for 6 weeks. Serum biochemical analyses, histopathology, immunohistochemistry, RT-PCR, 16S rRNA gene sequencing, and non-targeted metabolomics techniques were employed in this study to investigate the interventional effects of QJ on a CCl4-induced HF model in rats. Results: This study demonstrated that QJ could effectively ameliorate CCl4-induced hepatic inflammation and fibrosis. Moreover, QJ upregulated the expression of intestinal tight junction proteins (TJPs) and notably altered the abundance of some gut microbes, for example, 10 genera closely associated with HF-related indicators and TJPs. In addition, metabolomics found 37 key metabolites responded to QJ treatment and strongly associated with HF-related indices and TJPs. Furthermore, a tight relation between 10 genera and 37 metabolites was found post correlation analysis. Among them, Turicibacter, Faecalibaculum, Prevotellaceae UCG 001, and unclassified Peptococcaceae may serve as the core gut microbes of QJ that inhibit HF. Conclusion: These results suggest that QJ ameliorates hepatic inflammation and fibrosis, which may be achieved by improving intestinal tight junctions and modulating gut microbiota composition as well as modulating host metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | - Dong Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jibin Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quansheng Feng
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Huang L, Li Y, Tang R, Yang P, Zhuo Y, Jiang X, Che L, Lin Y, Xu S, Li J, Fang Z, Zhao X, Li H, Yang M, Feng B, Wu D, Hua L. Bile acids metabolism in the gut-liver axis mediates liver injury during lactation. Life Sci 2024; 338:122380. [PMID: 38142738 DOI: 10.1016/j.lfs.2023.122380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
AIMS The obesity epidemic, especially in pregnant women, linked to a higher risk of liver diseases. Bile acids (BAs) are known to participate in liver metabolism, but this function during obesogenic reproductive process remains largely uncertain. The study aims to identify whether a high-fat diet (HFD) during pregnancy negatively disturbs liver metabolism and the potential role of BAs and gut microbiota (GM)in a sow model. MAIN METHODS Reproductive (RP) or non-reproductive (NRP) sows were fed a 15 % HFD containing compound oil. Body condition, blood parameters, and BAs levels/profile during gestation and lactation were monitored. The tissues and colonic GM were collected after euthanasia at the end of lactation. HepG2 hepatocytes were used to test the effects of BAs on liver damage and the mechanism. KEY FINDINGS Reproductive sows fed an HFD (HF-RP) experienced increased weight loss, and elevated plasma non-esterified fatty acid (NEFA) during lactation, consistent with exacerbated lipolysis, aggravating the risk of liver damage. HF-RP sows exhibited an enlarged BAs pool size and alterations in composition (higher levels of CDCA and LCA species) along with a drastic change in the GM (increased Firmicutes/Bacteroidetes ratio and declined Lactobacillus abundance). Furthermore, the liver FXR-SHP pathway, BAs synthesis and transport underwent adaptive regulation to sustain the BAs homeostasis and hepatic lipid metabolism. CDCA alleviated endoplasmic reticulum (ER) stress induced by palmitic acid via FXR pathway, in HepG2 cells. SIGNIFICANCE Lactation BAs metabolism signal in gut-liver axis coordinated the risk of liver damage induced by exacerbated lipolysis in obesogenic pregnancy.
Collapse
Affiliation(s)
- Long Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yingjie Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Rui Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Pu Yang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jian Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xilun Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hua Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Min Yang
- Pet Nutrition and Health Research Center, Chengdu Agricultural College, Chengdu 611130, PR China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Lun Hua
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
8
|
Diaz LA, Winder GS, Leggio L, Bajaj JS, Bataller R, Arab JP. New insights into the molecular basis of alcohol abstinence and relapse in alcohol-associated liver disease. Hepatology 2023:01515467-990000000-00605. [PMID: 37862466 DOI: 10.1097/hep.0000000000000645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
Alcohol use disorder remains a significant public health concern, affecting around 5% of adults worldwide. Novel pathways of damage have been described during the last years, providing insight into the mechanism of injury due to alcohol misuse beyond the direct effect of ethanol byproducts on the liver parenchyma and neurobehavioral mechanisms. Thus, the gut-liver-brain axis and immune system involvement could be therapeutic targets for alcohol use disorder. In particular, changes in gut microbiota composition and function, and bile acid homeostasis, have been shown with alcohol consumption and cessation. Alcohol can also directly disrupt intestinal and blood-brain barriers. Activation of the immune system can be triggered by intestinal barrier dysfunction and translocation of bacteria, pathogen-associated molecular patterns (such as lipopolysaccharide), cytokines, and damage-associated molecular patterns. These factors, in turn, promote liver and brain inflammation and the progression of liver fibrosis. Other involved mechanisms include oxidative stress, apoptosis, autophagy, and the release of extracellular vesicles and miRNA from hepatocytes. Potential therapeutic targets include gut microbiota (probiotics and fecal microbiota transplantation), neuroinflammatory pathways, as well as neuroendocrine pathways, for example, the ghrelin system (ghrelin receptor blockade), incretin mimetics (glucagon-like peptide-1 analogs), and the mineralocorticoid receptor system (spironolactone). In addition, support with psychological and behavioral treatments is essential to address the multiple dimensions of alcohol use disorder. In the future, a personalized approach considering these novel targets can contribute to significantly decreasing the alcohol-associated burden of disease.
Collapse
Affiliation(s)
- Luis Antonio Diaz
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institutes of Health, NIDA and NIAAA, Baltimore, Maryland, USA
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Health Care System, Richmond, Virginia, USA
| | - Ramon Bataller
- Liver Unit, Hospital Clinic, Institut d'Investigacions August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Medicine, Division of Gastroenterology, Schulich School of Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
9
|
Zhang L, Lin W, Cai Y, Huang Z, Zhao R, Yan T, Xu H, Liu Z. Farnesoid X receptor activation is required for the anti-inflammatory and anti-oxidative stress effects of Alisol B 23-acetate in carbon tetrachloride-induced liver fibrosis in mice. Int Immunopharmacol 2023; 123:110768. [PMID: 37573684 DOI: 10.1016/j.intimp.2023.110768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/23/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
Previous studies have shown that Alisol B 23-acetate (23ABA) had potent liver-protection effects, however, its roles and potential mechanisms in carbon tetrachloride (CCl4)-induced liver fibrosis remain to be determined. The present study aimed to investigate the effects of 23ABA on CCl4-induced liver fibrosis and tried to elucidate the underlying mechanisms by focusing on regulating of farnesoid X receptor (FXR). In vivo study found that 23ABA alleviated the CCl4-induced liver injury, and showed no obvious systemic toxicity on mice. 23ABA inhibited the collagen production, decreased sera levels of hyaluronic acid (HA) and procollagen type III (PC-III), lowered mRNA expression of α-smooth muscle actin (α-SMA), fibronectin, collagen I and collagen III in livers of mice. 23ABA inhibited the mRNA expressions and the sera levels of interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α), as well as decreased the expression of cyclooxygenase 2 (COX-2) in fibrotic livers of mice. Besides, 23ABA decreased levels of reactive oxygen species (ROS) and malondialdehyde (MDA), increased glutathione (GSH) level, enhanced activities of superoxide dismutase (SOD) and glutathione reductase (GR) as well as increased mRNA expression of nuclear factor-E2-related factor 2 (Nrf2), glutamate-cysteine ligase, catalytic subunit (GCLC) and glutamate-cysteine ligase, modifier subunit (GCLM). Further study showed that the anti-liver injury and anti-fibrotic effects of 23ABA were abrogated by FXR antagonist guggulsterone (GS) in vivo. In addition, the inhibition effects of 23ABA on liver inflammation and oxidative stress were also weakened by treatment with GS in CCl4-induced fibrotic mice livers. In conclusion, the protective effects of 23ABA against CCl4-induced liver injury and fibrosis, due to FXR-mediated regulation of liver inflammation and oxidative stress.
Collapse
Affiliation(s)
- Libei Zhang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Weiling Lin
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Yunqing Cai
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Ziyou Huang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Rui Zhao
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Tingdong Yan
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Hongtao Xu
- Teaching and Research Section of Clinical Medicine, Jiangsu Vocational College of Medicine, Yancheng 224005, China.
| | - Zhaoguo Liu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
10
|
Liang Y, Wei X, Ren R, Zhang X, Tang X, Yang J, Wei X, Huang R, Hardiman G, Sun Y, Wang H. Study on Anti-Constipation Effects of Hemerocallis citrina Baroni through a Novel Strategy of Network Pharmacology Screening. Int J Mol Sci 2023; 24:4844. [PMID: 36902274 PMCID: PMC10003546 DOI: 10.3390/ijms24054844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Daylily (Hemerocallis citrina Baroni) is an edible plant widely distributed worldwide, especially in Asia. It has traditionally been considered a potential anti-constipation vegetable. This study aimed to investigate the anti-constipation effects of daylily from the perspective of gastro-intestinal transit, defecation parameters, short-chain organic acids, gut microbiome, transcriptomes and network pharmacology. The results show that dried daylily (DHC) intake accelerated the defecation frequency of mice, while it did not significantly alter the levels of short-chain organic acids in the cecum. The 16S rRNA sequencing showed that DHC elevated the abundance of Akkermansia, Bifidobacterium and Flavonifractor, while it reduced the level of pathogens (such as Helicobacter and Vibrio). Furthermore, a transcriptomics analysis revealed 736 differentially expressed genes (DEGs) after DHC treatment, which are mainly enriched in the olfactory transduction pathway. The integration of transcriptomes and network pharmacology revealed seven overlapping targets (Alb, Drd2, Igf2, Pon1, Tshr, Mc2r and Nalcn). A qPCR analysis further showed that DHC reduced the expression of Alb, Pon1 and Cnr1 in the colon of constipated mice. Our findings provide a novel insight into the anti-constipation effects of DHC.
Collapse
Affiliation(s)
- Yuxuan Liang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyi Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Rui Ren
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xuebin Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiyao Tang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jinglan Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoqun Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Gary Hardiman
- The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT7 1NN, UK
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
11
|
Zhang CY, Liu S, Yang M. Antioxidant and anti-inflammatory agents in chronic liver diseases: Molecular mechanisms and therapy. World J Hepatol 2023; 15:180-200. [PMID: 36926234 PMCID: PMC10011909 DOI: 10.4254/wjh.v15.i2.180] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/30/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Chronic liver disease (CLD) is a continuous process that causes a reduction of liver function lasting more than six months. CLD includes alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), chronic viral infection, and autoimmune hepatitis, which can lead to liver fibrosis, cirrhosis, and cancer. Liver inflammation and oxidative stress are commonly associated with the development and progression of CLD. Molecular signaling pathways such as AMP-activated protein kinase (AMPK), C-Jun N-terminal kinase, and peroxisome proliferator-activated receptors (PPARs) are implicated in the pathogenesis of CLD. Therefore, antioxidant and anti-inflammatory agents from natural products are new potent therapies for ALD, NAFLD, and hepatocellular carcinoma (HCC). In this review, we summarize some powerful products that can be potential applied in all the stages of CLD, from ALD/NAFLD to HCC. The selected agents such as β-sitosterol, curcumin, genistein, and silymarin can regulate the activation of several important molecules, including AMPK, Farnesoid X receptor, nuclear factor erythroid 2-related factor-2, PPARs, phosphatidylinositol-3-kinase, and lysyl oxidase-like proteins. In addition, clinical trials are undergoing to evaluate their efficacy and safety.
Collapse
Affiliation(s)
- Chun-Ye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, United States
| |
Collapse
|