1
|
Liu Y, Zhang Y, Chen C, Pan S, Lu X, Shi Z, Yang Z, Sun R, Zhang G, Wang B, Huang Y, Qin Y, Li X, Yang X. The Hoverfly Attracting Property of a Methyl Salicylate-Containing ( E)-β-Farnesene Analog (3e) and Potential Mechanism by Mediating the EcorOBP15 and EcorOR3. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2312-2321. [PMID: 39818784 DOI: 10.1021/acs.jafc.4c09298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Using natural enemies provides a sustainable method to control major agricultural pests. Hoverflies are significant natural enemies of aphids and efficient pollinators. Herbivore-induced plant volatiles (HIPVs), including (E)-β-farnesene (EBF) and methyl salicylate (MeSA), are key olfactory cues mediating hoverflies behavior. Our previous work identified compound 3e, an EBF analog containing a MeSA moiety, exhibited aphid-repelling and ladybug-attracting activities. However, whether 3e can attract hoverflies remains unknown. Therefore, this study explored the attractant property and potential mechanism of 3e toward hoverflies. Laboratory bioassays and field trials indicated 3e has an obvious hoverfly attracting property. The attraction mechanism studies demonstrate that, similar to EBF, 3e can interact with EcorOBP15 and EcorOR3, with its greater chemical softness, larger hydrophobic and charge regions enhancing these interactions. Furthermore, 3e exhibited low toxicity to honeybees (Apis mellifera) and hoverflies (Eupeodes corollae). Consequently, 3e could be a promising eco-friendly behavioral regulator for integrated aphid management in sustainable agriculture.
Collapse
Affiliation(s)
- Yan Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yimeng Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Chen Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Shixiang Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xingxing Lu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhuo Shi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhaokai Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Ruihong Sun
- Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai'an, Shandong 271000, China
| | - Ganyu Zhang
- Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai'an, Shandong 271000, China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yiwen Huang
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yaoguo Qin
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xuesheng Li
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Agricultural College, Guangxi University, Nanning, Guangxi 530004, China
| | - Xinling Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Chen Y, Peng J, Xie W, Zhang H, Yuchi Z, Liu J, Li Y. Computer-aided design of novel anthranilic diamides containing fluorinated alkoxy groups as potential ryanodine receptor insecticides. PEST MANAGEMENT SCIENCE 2025. [PMID: 39878126 DOI: 10.1002/ps.8678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Increasing the diversity of lead compounds has been shown to enhance the efficacy of diamide insecticides. Fifty novel compounds were precisely designed and synthesized utilizing fragment-based assembly and virtual screening coupling. RESULTS The median lethal concentration (LC50) values of compounds X-30 and X-40 against Mythimna separata were 0.09 and 0.08 mg L-1, respectively, which are lower than that of chlorantraniliprole (CHL, 0.11 mg L-1). Notably, compounds X-10, X-18, X-25, X-32 and X-43 had corresponding LC50 values of 2.0 × 10-4, 5.0 × 10-4, 6.0 × 10-4, 9.0 × 10-4 and 7.0 × 10-4 mg L-1 against Plutella xylostella, respectively. The best compound X-10 exhibited five-fold greater efficacy than CHL (1.0 × 10-3 mg L-1). The LC50 values of compounds X-21, X-29, and X-40 against Spodoptera frugiperda were 0.27, 0.26 and 0.25 mg L-1, respectively, which are slightly lower than that of CHL (0.33 mg L-1). In the case of Ostrinia furnacalis, compound X-43 showed good efficacy with LC50 values comparable to those of CHL (1.38 versus 1.57 mg L-1). Calcium imaging experiments demonstrated that X-21 acted on S. frugiperda ryanodine receptors. Furthermore, this series of compounds showed safety toward nontarget mammals compared to CHL. CONCLUSION The introduction of fluorinated alkoxy groups at the 3-position of the pyrazole ring leads to good insecticidal activity and improved insect selectivity. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yue Chen
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Tianjin, China
| | - Jinmin Peng
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Tianjin, China
| | - Weibin Xie
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Tianjin, China
| | - Hongyuan Zhang
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Tianjin, China
| | - Zhiguang Yuchi
- Tianjin University, Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Jingbo Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, China
| | - Yuxin Li
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Tianjin, China
- Nankai University & Cangzhou Bohai New Area Institute of Green Chemical Engineering, Cangzhou, China
| |
Collapse
|
3
|
Wu ZW, Ye CY, Ye ZT, Zhang XX, Zhang QY, Zhang Y, Zhou J, Su HEM, Chen XY, Su T, Yu JS, Qian X. Discovery of Enantiopure ( S)-Methoprene Derivatives as Potent Biochemical Pesticide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24979-24988. [PMID: 39443167 DOI: 10.1021/acs.jafc.4c05795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
(S)-Methoprene has been widely applied as a powerful biochemical pesticide to control disease vectors and other pestiferous arthropods of economic importance. As a juvenile hormone analogue, many products based on (S)-methoprene are developed and commercialized in the USA, Europe, and elsewhere. However, the agricultural use of (S)-methoprene and its analogues remains underexplored. Here, based on an intermediate derivatization strategy and structural modification, a series of enantiopure (S)-methoprene derivatives were designed for their expected bioactivity against two crop-threatening pests. Six compounds showed more than 2-fold stronger inhibition of emergence against Plutella xylostella than (S)-methoprene, among which one that was designated as B2 showed even superior activity to the conventional chemical pesticide and biopesticide with IE50 of 0.02 mg/L. Nine compounds exhibited over 2-fold higher bioactivity against Aphis craccivora growth than (S)-methoprene. The physicochemical property evaluation and toxicological test showed that the potent (S)-methoprene derivatives were low toxic to the nontarget organism and the environment. Molecular docking studies further demonstrated that the high bioactivity of B2 may be partially attributed to its great affinity for binding to juvenile hormone receptors of P. xylostella. The current study suggests that B2 is a biochemical pesticide candidate with potency to be developed as a new agrochemical for lepidopteran control.
Collapse
Affiliation(s)
- Zhong-Wei Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Chen-Yu Ye
- Institute of Eco-Chongming, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, China
| | - Zhong-Tian Ye
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xue-Xin Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Qin-Yu Zhang
- Institute of Eco-Chongming, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, China
| | - Ying Zhang
- Institute of Eco-Chongming, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Heng E M Su
- Synergetica International Inc., Marlboro, New Jersey 07746, United States
| | - Xiao-Yong Chen
- Institute of Eco-Chongming, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, China
| | - Tianyun Su
- EcoZone International LLC, Riverside, California 92506, United States
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xuhong Qian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Ren J, Ji X, Zhang J, Yu Z, Wang X, Xiong L, Yang N, Tang L, Li Z, Fan Z. Discovery of Trisubstituted N-Phenylpyrazole Containing Diamides with Improved Insecticidal Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8072-8080. [PMID: 38547359 DOI: 10.1021/acs.jafc.3c08759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
To increase the structural diversity of insecticides and meet the needs of effective integrated insect management, the structure of chlorantraniliprole was modified based on a previously established three-dimensional quantitative structure-activity relationship (3D-QSAR) model. The pyridinyl moiety in the structure of chlorantraniliprole was replaced with a 4-fluorophenyl group. Further modifications of this 4-fluorophenyl group by introducing a halogen atom at position 2 and an electron-withdrawing group (e.g., iodine, cyano, and trifluoromethyl) at position 5 led to 34 compounds with good insecticidal efficacy against Mythimna separata, Plutella xylostella, and Spodoptera frugiperda. Among them, compound IV f against M. separata showed potency comparable to that of chlorantraniliprole. IV p against P. xylostella displayed a 4.5 times higher potency than chlorantraniliprole. In addition, IV d and chlorantraniliprole exhibited comparable potencies against S. frugiperda. Transcriptome analysis showed that the molecular target of compound IV f is the ryanodine receptor. Molecular docking was further performed to verify the mode of action and insecticidal activity against resistant P. xylostella.
Collapse
Affiliation(s)
- Jinzhou Ren
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xia Ji
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jin Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhenwu Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xinyuan Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lixia Xiong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Na Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Liangfu Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhengming Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
5
|
Liu J, Guo B, Zhong S, Shi Y, Li Z, Yu Z, Hao Z, Zhang L, Li F, Wang Y, Li Y. Novel Evodiamine-Based Sulfonamide Derivatives as Potent Insecticide Candidates Targeting Insect Ryanodine Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1292-1301. [PMID: 38178001 DOI: 10.1021/acs.jafc.3c05680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Pests represent an important impediment to efficient agricultural production and pose a threat to global food security. On the basis of our prior research focused on identifying insecticidal leads targeting insect ryanodine receptors (RyRs), we aimed to identify evodiamine scaffold-based novel insecticides. Thus, a variety of evodiamine-based derivatives were designed, synthesized, and assessed for their insecticidal activity against the larvae of Mythimna separata (M. separata) and Plutella xylostella (P. xylostella). The preliminary bioassay results revealed that more than half of the target compounds exhibited superior activity compared to evodiamine, matrine, and rotenone against M. separata. Among these, compound 21m displayed the most potent larvicidal efficiency, with a remarkable mortality rate of 93.3% at 2.5 mg/L, a substantial improvement over evodiamine (10.0% at 10 mg/L), matrine (10.0% at 200 mg/L), and rotenone (30.0% at 200 mg/L). In the case of P. xylostella, compounds 21m and 21o displayed heightened larvicidal activity, boasting LC50 values of 9.37 × 10-2 and 0.13 mg/L, respectively, surpassing that of evodiamine (13.41 mg/L), matrine (291.78 mg/L), and rotenone (18.39 mg/L). A structure-activity relationship analysis unveiled that evodiamine-based derivatives featuring a cyclopropyl sulfonyl group at the nitrogen atom of the B ring and a fluorine atom in the E ring exhibited more potent larvicidal effects. This finding was substantiated by calcium imaging experiments and molecular docking, which suggested that 21m could target insect RyRs, including resistant mutant RyRs of P. xylostella (G4946E and I4790M), with higher affinity than chlorantraniliprole (CHL). Additionally, cytotoxicity assays highlighted that the potent compounds 21i, 21m, and 21o displayed favorable selectivity and low toxicity toward nontarget organisms. Consequently, compound 21m emerges as a promising candidate for further development as an insecticide targeting insect RyRs.
Collapse
Affiliation(s)
- Jingbo Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300392, P. R. China
| | - Bingyan Guo
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300392, P. R. China
| | - Siying Zhong
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300392, P. R. China
| | - Yabing Shi
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300392, P. R. China
| | - Zhengping Li
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300392, P. R. China
| | - Zhenwu Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zesheng Hao
- Key Laboratory for Chemical Pesticide of Shandong Province, Shandong Academy of Pesticide Sciences, Jinan 250100, P. R. China
| | - Li Zhang
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300392, P. R. China
| | - Fengyun Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P. R. China
| | - Yuanhong Wang
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300392, P. R. China
| | - Yuxin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
6
|
Yang S, Tang J, Peng H, Pu C, Fan S, Zhao C, Xu H. Discovery of novel thiazolyl anthranilic diamide derivatives as insecticidal candidates. PEST MANAGEMENT SCIENCE 2023; 79:5260-5269. [PMID: 37599274 DOI: 10.1002/ps.7734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Agricultural pests have caused huge losses in agricultural production and threaten global food security. Synthetic insecticides remain the major control method. However, with the rapid development of pest resistance and the increasingly stringent regulations on pesticide usage, the development of efficient insecticides with novel structures is particularly urgent. RESULTS Twenty-six novel anthranilic diamide derivatives containing the thiazole moiety were designed based on the scaffold hopping strategy. Bioassay results indicated that compound 6e exhibited excellent insecticidal activity against a susceptible strain of diamondback moth (Plutella xylostella) with a median lethal concentration (LC50 ) of 0.65 mg L-1 , which was similar to chlorantraniliprole (LC50 = 0.53 mg L-1 ). Compound 6e showed marginally lower (LC50 = 50.45 mg L-1 ) insecticidal activity than chlorantraniliprole (LC50 = 31.98 mg L-1 ) on chlorantraniliprole-resistant P. xylostella larvae, suggesting a cross-resistance of compound 6e with chlorantraniliprole (resistance ratios, 77.6-fold and 60.3-fold, respectively). Compound 6e also showed good insecticidal activity against fall armyworm and beet armyworm with pest mortalities of 74% and 64%, respectively, at 5 mg L-1 concentration. In addition, compounds 6e and 12a showed delayed toxicity against red imported fire ant with mortality rates of 84% and 85% (respectively) after 5 days of treatment at 1.0 mg L-1 , which were superior to that of chlorantraniliprole. CONCLUSION The introduction of thiazole into anthranilic diamide scaffolds resulted in insecticidal leads 6e and 12a with excellent insecticidal activities and potential application in controlling red imported fire ants. The work also guides the discovery of insecticidal molecules with thiazole-containing anthranilic diamide scaffold. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuai Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, People's Republic of China
| | - Jiahong Tang
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, People's Republic of China
| | - Hongxiang Peng
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, People's Republic of China
| | - Chunmei Pu
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, People's Republic of China
| | - Shuting Fan
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, People's Republic of China
| | - Chen Zhao
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, People's Republic of China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, People's Republic of China
| |
Collapse
|
7
|
Yu Z, Huang Y, Cheng J, Li K, Hong Z, Ren J, Yuan H, Tang L, Wang Z, Fan Z. 3D-QSAR Combination with Molecular Dynamics Simulations to Effectively Design the Active Ryanodine Receptor Agonists against Spodoptera frugiperda. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16504-16520. [PMID: 37902622 DOI: 10.1021/acs.jafc.3c05223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Computer-aided molecular modeling was applied to design a series of Spodoptera frugiperda RyR agonists. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used to generate 3D-QSAR models. MD simulations in the complex with S. frugiperda native, mutant RyR, and mammalian RyR1 under physiological conditions were used to validate the detailed binding mechanism. Binding free energy calculation by molecular mechanics generalized surface area (MM-GBSA) explained the role of key amino acid residues in ligand-receptor binding. Therefore, 14 new compounds were effectively designed and synthesized, and a bioassay indicated that compounds A-2 and A-3 showed comparable activity to that of chloranthraniliprole with LC50 values of 0.27, 0.18, and 0.20 mg L-1, respectively, against S. frugiperda. Most target compounds also displayed good activity against Mythinma separata at 0.1 mg L-1. Molecular docking and MM-GBSA calculations demonstrated that A-3 had a better binding capacity with native and mutant S. frugiperda RyRs.
Collapse
Affiliation(s)
- Zhenwu Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuting Huang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Kun Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Zeyu Hong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Jinzhou Ren
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Haolin Yuan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Liangfu Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Zhihong Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
8
|
Gao W, Zhang J, Zhang Y, Huang Y, Wang C, Liang Q, Yu Z, Fan R, Tang L, Fan Z. CoMFA Directed Molecular Design for Significantly Improving Fungicidal Activity of Novel [1,2,4]-Triazolo-[3,4- b][1,3,4]-thiadizoles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14125-14136. [PMID: 37750514 DOI: 10.1021/acs.jafc.3c02444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Target based molecular design via the aid of computation is one of the most efficient methods in the discovery of novel pesticides. Here, a combination of the comparative molecular field analysis (CoMFA) and molecular docking was applied for discovery of potent fungicidal [1,2,4]-triazolo-[3,4-b][1,3,4]-thiadiazoles. Bioassay results indicated that the synthesized target compounds 3a, 3b, and 3c exhibited good activity against Alternaria solani, Botrytis cinerea, Cercospora arachidicola, Fusarium graminearum, Physalospora piricola, Rhizoctonia solani, and Sclerotinia sclerotiorum with an EC50 value falling between 0.64 and 16.10 μg/mL. Specially, 3c displayed excellent fungicidal activity against C. arachidicola and R. solani, which was 5 times more potent than the lead YZK-C22. The enzymatic inhibition assay and fluorescence quenching analysis with R. solani pyruvate kinase (RsPK) showed a weaker binding affinity between RsPK and 3a, 3b, or 3c. Transcriptomic analyses showed that 3c exerted its fungicidal activity by disrupting steroid biosynthesis and ribosome biogenesis in eukaryotes. These findings support that 3c is a promising fungicide candidate, and a fine modification from a lead may lead to a totally different mode of action.
Collapse
Affiliation(s)
- Wei Gao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Jin Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Yue Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Yuting Huang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Conglin Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Qiming Liang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Zecong Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Ruihang Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Liangfu Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, P. R. China
| |
Collapse
|
9
|
Yang G, Wang Y, Zhou C, Li Y, Gu Y, Li Z, Xu Z, Cheng J, Xu X. Discovery of Novel Diamides Scaffold Containing Monofluoro-acrylamides Activating the Insect Ryanodine Receptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14137-14150. [PMID: 37733789 DOI: 10.1021/acs.jafc.3c02737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The research and development of organofluorine chemistry has flourished; in particular, monofluoroalkene has aroused considerable interest from medicinal and organic chemists. It is a significant attempt to introduce monofluoroalkene into agrochemicals. In this study, monofluoroalkene was introduced into diamide molecules and inserted between the aliphatic amide and benzene ring, and 44 compounds have been successfully synthesized. The bioassay results showed that compounds with monofluoro-acrylamide moiety (Z-isomers) had excellent larvicidal activity against lepidopteran pests at 5 mg·L-1. The LC50 values of compounds B16, B18, and B21 against Mythimna separata were 1.02, 1.32, and 0.78 mg·L-1, respectively. 3D-QSAR analysis including the CoMFA model and the CoMSIA model was conducted to illustrate the contributions of steric, electrostatic, hydrophobic, and hydrogen bond fields on the bioactivity. Moreover, typical symptoms caused by chlorantraniliprole including dehydration, shrinkage, and blackening were also observed on the test larvae treated with monofluoro-acrylamide diamide compounds. M. separata central neurons calcium imaging experiment of compound B18 indicated that the monofluoro-acrylamide diamide compounds were potential insect ryanodine receptor activators. The molecular docking was performed in the CHL binding domain of Plutella xylostella RyR and revealed that the predicted binding mode of compound B21 was slightly different from that of CHL. The MM|GBSA dG Bind values of B21 and CHL with P. xylostella RyR were respectively -85.797 and -95.641 kcal·mol-1. The present work explored the insecticidal properties of a new diamide scaffold containing a monofluoro-acrylamide fragment and extended the application of monofluoroalkene in the agrochemical field.
Collapse
Affiliation(s)
- Guantian Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yutong Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yuxin Li
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yucheng Gu
- Jealott's Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
10
|
Pang X, Han L, Zhou C, Li Y, Xu X, Shao X, Li Z. Design, Synthesis, and Insecticidal Evaluation of N-Pyridylpyrazole Amide Derivatives Containing 4,5-Dihydroisoxazole Amide as Potential Ryanodine Receptor Activators. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13688-13695. [PMID: 37671936 DOI: 10.1021/acs.jafc.3c03199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Using the 4,5-dihydroisoxazol amide structure to expand the aliphatic amide moiety of chlorantraniliprole, a series of 28 novel N-pyridylpyrazolecarboxamide derivatives containing 4,5-dihydroisoxazol amide fragment were designed and synthesized. All target compounds had been properly characterized and confirmed by 1H NMR, 13C NMR, and HRMS, and the effects were evaluated against Mythimna separata (M. separata) and Plutella xylostella (P. xylostella). The bioassay results indicated that most of the target compounds exhibited good insecticidal activities against M. separata and P. xylostella at 50 mg/L; especially, compound A4 showed an LC50 value of 3.27 mg/L against M. separata. Calcium imaging experiments indicated that the target compound A4 had a similar mechanism of action to chlorantraniliprole, causing an increase in the cytoplasmic Ca2+ concentration. The molecular docking revealed the possible binding mode of compound A4 with a ryanodine receptor.
Collapse
Affiliation(s)
- Xiwen Pang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Li Han
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yuxin Li
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|