1
|
Hu J, Gong C, Jia Y, Feng H, Chen J, Qin G, Liang A, Peng A, Huang Y, Sun M, Rao H, Wang X. Preparation of pH-Responsive Kas@ZnO Quantum Dots for Synergistic Control of Rice Blast and Enhanced Disease Resistance in Rice. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60842-60855. [PMID: 39447151 DOI: 10.1021/acsami.4c12611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The construction of controlled-release formulations improves the sustained-release performance and utilization efficiency of pesticides, which are important aspects in plant protection and environmental chemistry. The current study employs kasugamycin (Kas), which is widely used to control Magnaporthe oryzae, conjugated with carboxyl-functionalized ZnO quantum dots via amide linkages to yield a pH-responsive pesticide delivery system (Kas@ZnO). Physicochemical characterizations indicated the successful preparation of the Kas@ZnO nanoparticles. In vitro drug release assessments indicated that Kas@ZnO exhibited a loading capacity of 21.05% and could effect the controlled release of Kas in an acidic environment, which is beneficial given the unique acidic microenvironment of M. oryzae. Bioactivity assays demonstrated that Kas@ZnO could simultaneously inhibit mycelial growth and spore germination. Additionally, bioactivity tests showed that the control efficacy of Kas@ZnO against rice blast reached 67.43% after 14 days of in vivo spray inoculation, which was higher than that obtained with Kas (55.50%), suggesting improved beneficial effects of Kas@ZnO application over a prolonged duration. Moreover, Kas@ZnO enhanced the activity of defense-related enzymes in rice and upregulated the expression of defense-related genes, such as OsPR2, OsPR3, OsPR5, OsWRKY45, OsLYP6, and OsNAC4. Ultimately, the biosafety assessments revealed that Kas@ZnO did not exert any harmful effects on rice and demonstrated slight toxicity toward zebrafish. These findings indicate that Kas@ZnO can function as a pH-sensitive pesticide delivery system, allowing for targeted release of the pesticide within plant tissues. This technology demonstrates significant potential for eco-friendly plant disease management.
Collapse
Affiliation(s)
- Jie Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Changwei Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Jia
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Hui Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinfeng Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Ge Qin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Ao Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Anchun Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanyan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xuegui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
Delai C, Muhae-Ud-Din G, Abid R, Tian T, Liu R, Xiong Y, Ma S, Ghorbani A. A comprehensive review of integrated management strategies for damping-off disease in chili. Front Microbiol 2024; 15:1479957. [PMID: 39483761 PMCID: PMC11524829 DOI: 10.3389/fmicb.2024.1479957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Damping-off disease in chili (Capsicum annum L.) cultivation is a significant global issue, severely affecting seeds, seedlings, and young plants, regardless of the location of cultivation, whether in greenhouses or open fields. Despite chili being a widely popular vegetable used in various cuisines globally, farmers face challenges in meeting the growing demand due to the extensive damage caused by this disease, ranging from 20 to 85%. The shelf life and quality of mature pods are also severely affected. Damping-off disease is mainly caused by soil-borne fungus from the Pythium species, with additional contributions from Phytophthora, Fusarium, and Rhizoctonia species. These pathogens' adaptability to diverse environmental conditions and resistance to synthetic fungicides make controlling damping-off on a commercial scale challenging. However, integrated disease management has shown promising results as a remedial approach. In this review, we discuss the current state of chili diseases, the nature of the pathogens causing damping-off, the epidemiology of the disease, and various control mechanisms. In this review, we broadly discuss the current state of chili diseases, the nature of the pathogens causing damping-off, the epidemiology of the disease, and various control mechanisms. Furthermore, we highlight the importance and efficacy of integrated disease management techniques, along with future prospects in unexplored areas, such as host-pathogen interaction and sustainable disease control measures. The information in this review aims to assist chili growers in understanding the epidemiology and management of damping-off in chili cultivation.
Collapse
Affiliation(s)
- Chen Delai
- School of Agriculture and Bioengineering, Longdong University, Qingyang, China
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Qingyang, China
| | - Ghulam Muhae-Ud-Din
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Rimsha Abid
- Institute of Plant Protection, MNS University of Agriculture, Multan, Pakistan
| | - Tian Tian
- School of Agriculture and Bioengineering, Longdong University, Qingyang, China
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Qingyang, China
| | - Ruirui Liu
- School of Agriculture and Bioengineering, Longdong University, Qingyang, China
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Qingyang, China
| | - Yan Xiong
- School of Agriculture and Bioengineering, Longdong University, Qingyang, China
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Qingyang, China
| | - Shirong Ma
- School of Agriculture and Bioengineering, Longdong University, Qingyang, China
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Qingyang, China
| | - Abazar Ghorbani
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Ghorbani A, Emamverdian A, Pehlivan N, Zargar M, Razavi SM, Chen M. Nano-enabled agrochemicals: mitigating heavy metal toxicity and enhancing crop adaptability for sustainable crop production. J Nanobiotechnology 2024; 22:91. [PMID: 38443975 PMCID: PMC10913482 DOI: 10.1186/s12951-024-02371-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024] Open
Abstract
The primary factors that restrict agricultural productivity and jeopardize human and food safety are heavy metals (HMs), including arsenic, cadmium, lead, and aluminum, which adversely impact crop yields and quality. Plants, in their adaptability, proactively engage in a multitude of intricate processes to counteract the impacts of HM toxicity. These processes orchestrate profound transformations at biomolecular levels, showing the plant's ability to adapt and thrive in adversity. In the past few decades, HM stress tolerance in crops has been successfully addressed through a combination of traditional breeding techniques, cutting-edge genetic engineering methods, and the strategic implementation of marker-dependent breeding approaches. Given the remarkable progress achieved in this domain, it has become imperative to adopt integrated methods that mitigate potential risks and impacts arising from environmental contamination on yields, which is crucial as we endeavor to forge ahead with the establishment of enduring agricultural systems. In this manner, nanotechnology has emerged as a viable field in agricultural sciences. The potential applications are extensive, encompassing the regulation of environmental stressors like toxic metals, improving the efficiency of nutrient consumption and alleviating climate change effects. Integrating nanotechnology and nanomaterials in agrochemicals has successfully mitigated the drawbacks associated with traditional agrochemicals, including challenges like organic solvent pollution, susceptibility to photolysis, and restricted bioavailability. Numerous studies clearly show the immense potential of nanomaterials and nanofertilizers in tackling the acute crisis of HM toxicity in crop production. This review seeks to delve into using NPs as agrochemicals to effectively mitigate HM toxicity and enhance crop resilience, thereby fostering an environmentally friendly and economically viable approach toward sustainable agricultural advancement in the foreseeable future.
Collapse
Affiliation(s)
- Abazar Ghorbani
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran.
| | - Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Necla Pehlivan
- Biology Department, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, 53100, Türkiye
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, 117198, Russia
| | - Seyed Mehdi Razavi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
4
|
Saha B, McNinch CM, Lu S, Ho MCW, De Carvalho SS, Barillas-Mury C. In-depth transcriptomic analysis of Anopheles gambiae hemocytes uncovers novel genes and the oenocytoid developmental lineage. BMC Genomics 2024; 25:80. [PMID: 38243165 PMCID: PMC10799387 DOI: 10.1186/s12864-024-09986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/07/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Hemocytes are immune cells that patrol the mosquito hemocoel and mediate critical cellular defense responses against pathogens. However, despite their importance, a comprehensive transcriptome of these cells was lacking because they constitute a very small fraction of the total cells in the insect, limiting the study of hemocyte differentiation and immune function. RESULTS In this study, an in-depth hemocyte transcriptome was built by extensive bulk RNA sequencing and assembly of hemocyte RNAs from adult A. gambiae female mosquitoes, based on approximately 2.4 billion short Illumina and about 9.4 million long PacBio high-quality reads that mapped to the A. gambiae PEST genome (P4.14 version). A total of 34,939 transcripts were annotated including 4,020 transcripts from novel genes and 20,008 novel isoforms that result from extensive differential splicing of transcripts from previously annotated genes. Most hemocyte transcripts identified (89.8%) are protein-coding while 10.2% are non-coding RNAs. The number of transcripts identified in the novel hemocyte transcriptome is twice the number in the current annotation of the A. gambiae genome (P4.14 version). Furthermore, we were able to refine the analysis of a previously published single-cell transcriptome (scRNAseq) data set by using the novel hemocyte transcriptome as a reference to re-define the hemocyte clusters and determine the path of hemocyte differentiation. Unsupervised pseudo-temporal ordering using the Tools for Single Cell Analysis software uncovered a novel putative prohemocyte precursor cell type that gives rise to prohemocytes. Pseudo-temporal ordering with the Monocle 3 software, which analyses changes in gene expression during dynamic biological processes, determined that oenocytoids derive from prohemocytes, a cell population that also gives rise to the granulocyte lineage. CONCLUSION A high number of mRNA splice variants are expressed in hemocytes, and they may account for the plasticity required to mount efficient responses to many different pathogens. This study highlights the importance of a comprehensive set of reference transcripts to perform robust single-cell transcriptomic data analysis of cells present in low abundance. The detailed annotation of the hemocyte transcriptome will uncover new facets of hemocyte development and function in adult dipterans and is a valuable community resource for future studies on mosquito cellular immunity.
Collapse
Affiliation(s)
- Banhisikha Saha
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA
| | - Colton M McNinch
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, 20892, Bethesda, MD, USA
| | - Stephen Lu
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Margaret C W Ho
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, 20892, Bethesda, MD, USA
| | - Stephanie Serafim De Carvalho
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA.
| |
Collapse
|