1
|
Tang C, Gao J, Li S, Cheng H, Peng YY, Ding Y, Yang H, Ma XM, Wang HY, Long ZY, Lu XM, Wang YT. Chlorogenic acid improves SPS-induced PTSD-like behaviors in rats by regulating the crosstalk between Nrf2 and NF-κB signaling pathway. Free Radic Biol Med 2025; 231:136-152. [PMID: 39999932 DOI: 10.1016/j.freeradbiomed.2025.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/07/2025] [Accepted: 02/22/2025] [Indexed: 02/27/2025]
Abstract
Post-traumatic stress disorder (PTSD) is a long-term delayed mental disorder caused by sudden, threatening or catastrophic life events. Chlorogenic acid (CGA) is a polyphenolic acid rich in Eucommia ulmoides and other plants with potential neuroprotective effects, effectively enhances learning and memory, and exerts a beneficial impact on improving mood and attention. However, the effects and mechanisms of CGA on PTSD-like behaviors remain uncertain. This study is to explore the effects and mechanisms of CGA on PTSD by using network pharmacology analysis, molecular docking and experimental validation, and try to provide new strategies for the treatment of PTSD. The results indicated that 9 core targets with a strong binding affinity with CGA were screened out, and they were mainly enriched in apoptosis, inflammation, and oxidative stress. The followed vivo experiments indicated that CGA could alleviate single prolonged stress (SPS)-induced PTSD-like behaviors, and improve hippocampal pathological damage, apoptosis and synaptic plasticity through antioxidant and anti-inflammatory effects by regulating Nrf2 and NF-κB pathways. Thus, CGA may inhibit hippocampal neuronal apoptosis, reduce neuroinflammatory and oxdiative stress response, and enhance hippocampal synaptic plasticity through regulating the crosstalk between Nrf2 and NF-κB signaling pathway, thereby improving SPS-induced PTSD-like behaviors.
Collapse
Affiliation(s)
- Can Tang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China; State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jie Gao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sen Li
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hui Cheng
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yu-Yuan Peng
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yang Ding
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Huan Yang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xin-Mei Ma
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zai-Yun Long
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Yong-Tang Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
2
|
Li C, Li M, Wang Z. There is a linear negative correlation between lipoprotein(a) and non-alcoholic fatty liver disease. Sci Rep 2025; 15:8538. [PMID: 40074828 PMCID: PMC11903960 DOI: 10.1038/s41598-025-93518-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/07/2025] [Indexed: 03/14/2025] Open
Abstract
This study aimed to investigate the relationship between lipoprotein(a) [Lp(a)] levels and non-alcoholic fatty liver disease (NAFLD), and to analyze its linear association and subgroup differences. This cross-sectional analysis was based on data from 2308 participants in the National Health and Nutrition Examination Survey (NHANES) III. Multivariate logistic regression models were used to assess the association between Lp(a) and NAFLD, adjusting for demographic factors, lifestyle behaviors, comorbidities, and biomarkers. Subgroup analyses were conducted based on age, sex, body mass index (BMI), diabetes, and hypertension. Restricted cubic spline (RCS) regression model was used to explore the nonlinear relationship between Lp(a) and NAFLD. Higher Lp(a) levels were significantly associated with a lower risk of NAFLD. In the fully adjusted model, compared to the lowest quartile group (Q1), the third and fourth quartiles (Q3 and Q4) had significantly reduced risks of NAFLD [Q3: OR = 0.701, 95% CI 0.511, 0.961; P = 0.027; Q4: OR = 0.605, 95% CI 0.438, 0.835; P = 0.002]. Subgroup analysis showed that the association between higher Lp(a) levels and reduced NAFLD risk was significant in individuals aged 50 years and older, those with BMI ≥ 30 kg/m2, non-diabetics, and those with hypertension. RCS analysis further confirmed a linear negative association between Log10Lp(a) and NAFLD risk (P = 0.029, P nonlinearity = 0.888). There is a significant linear negative association between Lp(a) levels and the risk of NAFLD, suggesting that Lp(a) may serve as a potential biomarker for assessing NAFLD risk.
Collapse
Affiliation(s)
- Chunbo Li
- Department of General Surgery, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450000, China
| | - Mengchun Li
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhenwei Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
3
|
Hu Z, Yue H, Jiang N, Qiao L. Diet, oxidative stress and MAFLD: a mini review. Front Nutr 2025; 12:1539578. [PMID: 40104813 PMCID: PMC11913703 DOI: 10.3389/fnut.2025.1539578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/18/2025] [Indexed: 03/20/2025] Open
Abstract
Globally, metabolic dysfunction-associated fatty liver disease (MAFLD), also known as non-alcoholic fatty liver disease (NAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD), is a common chronic liver disease. The progression of MAFLD leads to a vicious cycle in which oxidative stress results from the disease that is augmenting de-novo lipid levels and increases steatosis. Most non-enzymatic antioxidants are present in food. Therefore, the present review summarizes the findings of studies on food-derived antioxidants and presents an oxidative stress-related regulatory network in MAFLD, offering new ideas for MAFLD prevention and treatment.
Collapse
Affiliation(s)
- Zenan Hu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hanxun Yue
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Na Jiang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
4
|
Xia X, Zhang Q, Fang X, Li L, Yang G, Xu X, Yang M. Nuclear factor erythroid 2-related factor 2 ameliorates disordered glucose and lipid metabolism in liver: Involvement of gasdermin D in regulating pyroptosis. Clin Transl Med 2025; 15:e70233. [PMID: 39995148 PMCID: PMC11850759 DOI: 10.1002/ctm2.70233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND The epidemic of metabolic dysfunction-associated fatty liver disease linked to excessive high-fat diet (HFD) consumption has sparked widespread public concern. Nuclear factor erythroid 2-related factor 2 (NRF2) has been reported to improve glucose/lipid metabolism, liver lipid degeneration and alleviate HFD-induced inflammation. However, its pathways and mechanisms of action are not fully understood. METHODS To confirm the effect of NRF2 on glucose/lipid metabolism in the liver, Nrf2-/- mice as well as liver-specific Nrf2 knockout mice, and AAV-TBG-Nrf2 were employed. The hyperinsulinemic-euglycemic clamp was utilized to determine the effect of NRF2 on glucose metabolism. To elucidate the effect of NRF2 on pyroptosis, we performed western blots, immunofluorescence, quantitative real-time PCR, and Flow cytometry experiments. Finally, chromatin immunoprecipitation-seq and dual-luciferase reporter assay was used to underscore the transcriptional regulatory effect of NRF2 on Gsdmd. RESULTS We found that overexpression of Nrf2 inhibited the expression of inflammatory cytokines and pyroptosis markers, including cle-Caspase1, NLRP3 and the N-terminus of gasdermin D (N-GSDMD) both in vivo and in vitro, while Nrf2 deficiency was the opposite. Specifically, with NRF2 expression up-regulated, GSDMD expression decreased and Gsdmd overexpression partially reversed the effect of Nrf2 overexpression on pro-inflammatory phenotype. Mechanistically, we demonstrate that NRF2 binds to the Gsdmd promoter at the -2110 - 1130 bp site, inhibiting the GSDMD expression and thereby improving glucose/lipid metabolism and liver steatosis. CONCLUSION Our data indicate that NRF2 is an effective inhibitor of pyroptosis and has a multi-target effect in the treatment of obesity-related metabolic diseases. KEY POINTS MAFLD is associated with increased hepatocytes NRF2 expression. NRF2 alleviates MAFLD by suppressing pyroptosis. NRF2 directly inhibits GSDMD expression to regulate pyroptosis. Targeting the NRF2-pyroptosis (GSDMD) axis offers a potential therapeutic strategy for MAFLD.
Collapse
Affiliation(s)
- Xuyun Xia
- Department of Endocrinology, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Qin Zhang
- Department of Endocrinology, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Xia Fang
- Department of Endocrinology, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Ling Li
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Xiaohui Xu
- Department of Endocrinology, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
- College of StomatologyChongqing Medical UniversityChongqingChina
| | - Mengliu Yang
- Department of Endocrinology, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| |
Collapse
|
5
|
Chen X, Shen A, Niu S, Xiao M, Zhang J, Lu T, He Z, Li S, Yang W. Modulation of NF-κB/Nrf2 signaling by nobiletin mitigates airway inflammation and oxidative stress in PM2.5-exposed asthmatic mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-14. [PMID: 39953847 DOI: 10.1080/09603123.2025.2466237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Exposure to fine particulate matter (PM2.5) is a significant risk factor for asthma, promoting airway inflammation and oxidative stress. This study evaluates Nobiletin's (NOB) efficacy in mitigating airway inflammation and oxidative lung damage in asthma-induced mice exposed to PM2.5. Using an ovalbumin (OVA) plus PM2.5-induced asthma model in BALB/c mice, we investigated the therapeutic impacts of NOB compared to dexamethasone (DEX). NOB significantly moderated lung index values and inflammatory markers without affecting body weight. Notably, NOB enhanced Nrf2 expression and decreased NF-κB-p65, IKK, and Keap-1 levels, aligning with reductions in malondialdehyde (MDA) and reactive oxygen species (ROS) while increasing superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. These findings suggest that NOB can effectively reduce airway inflammation and oxidative lung damage by modulating the NF-κB/Nrf2 signaling pathways.
Collapse
Affiliation(s)
- Xiaodi Chen
- Department of Food Science, College of Public Health, Shenyang Medical College, Shenyang, China
| | - Ao Shen
- Department of Food Science, College of Public Health, Shenyang Medical College, Shenyang, China
| | - Sen Niu
- Department of Emergency, Children's hospital of Shanxi, Women Health Center of Shanxi, Taiyuan, P.R. China
| | - Miaorong Xiao
- Department of Food Science, College of Public Health, Shenyang Medical College, Shenyang, China
| | - Jin Zhang
- Department of Food Science, College of Public Health, Shenyang Medical College, Shenyang, China
| | - Tongtong Lu
- Department of Food Science, College of Public Health, Shenyang Medical College, Shenyang, China
| | - Zijun He
- Department of Food Science, College of Public Health, Shenyang Medical College, Shenyang, China
| | - Shuzhen Li
- Department of Immunology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Weiwei Yang
- Department of Food Science, College of Public Health, Shenyang Medical College, Shenyang, China
| |
Collapse
|
6
|
Wan X, Ma J, Bai H, Hu X, Ma Y, Zhao M, Liu J, Duan Z. Drug Advances in NAFLD: Individual and Combination Treatment Strategies of Natural Products and Small-Synthetic-Molecule Drugs. Biomolecules 2025; 15:140. [PMID: 39858534 PMCID: PMC11764138 DOI: 10.3390/biom15010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease and is closely associated with metabolic diseases such as obesity, type 2 diabetes mellitus (T2DM), and metabolic syndrome. However, effective treatment strategies for NAFLD are still lacking. In recent years, progress has been made in understanding the pathogenesis of NAFLD, identifying multiple therapeutic targets and providing new directions for drug development. This review summarizes the recent advances in the treatment of NAFLD, focusing on the mechanisms of action of natural products, small-synthetic-molecule drugs, and combination therapy strategies. This review aims to provide new insights and strategies in treating NAFLD.
Collapse
Affiliation(s)
- Xing Wan
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
- Institute of Integrated Traditional Chinese and Western Medicine, Dalian Medical University, Dalian 116051, China
| | - Jingyuan Ma
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China; (J.M.); (Y.M.)
| | - He Bai
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| | - Xuyang Hu
- The Second Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China;
| | - Yanna Ma
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China; (J.M.); (Y.M.)
| | - Mingjian Zhao
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| | - Jifeng Liu
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| | - Zhijun Duan
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| |
Collapse
|
7
|
Yin G, Liang H, Cheng Y, Chen S, Zhang X, Meng D, Yu W, Liu H, Song C, Zhang F. Diosgenin attenuates nonalcoholic fatty liver disease through mTOR-mediated inhibition of lipid accumulation and inflammation. Chem Biol Interact 2025; 405:111306. [PMID: 39536891 DOI: 10.1016/j.cbi.2024.111306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Excessive hepatic lipid accumulation and inflammatory injury are significant pathological manifestations of nonalcoholic fatty liver disease (NAFLD). Our previous research discovered that diosgenin, a natural steroidal saponin derived from Chinese herbs, can reduce hepatic lipid accumulation and steatosis; however, the exact mechanism remains unclear. This study aimed to investigate the protective mechanisms of diosgenin against NAFLD. We utilized network pharmacology and molecular docking approaches to identify the pathways through which diosgenin improves NAFLD. In high-fat diet (HFD)-fed rats, we measured biochemical markers in the serum and liver. Liver histopathology was assessed using HE and oil-red O staining. In free fatty acids (FFAs)-induced HepG2 cells, we employed the cell transfection overexpression method to verify the regulatory relationship of the identified pathways. The mechanisms in vitro and in vivo were examined using quantitative polymerase chain reaction and Western blot analyses. Bioinformatics analysis indicated that the mTOR-FASN/HIF-1α/RELA/VEGFA pathway may be the target pathway for diosgenin in alleviating NAFLD. Diosgenin inhibited hepatic lipid accumulation and pro-inflammatory cytokines in HFD-fed rats, and reduced intracellular lipid accumulation as well as TG, TC, IL-1β, and TNF-α levels in FFAs-induced HepG2 cells. Mechanistically, diosgenin downregulated the expression of p-mTOR, FASN, HIF-1α, RELA, and VEGFA, which are associated with lipid synthesis and inflammation. Overexpression of mTOR abolished the beneficial effects of diosgenin on lipid reduction and inflammation, as well as its inhibitory effects on the expression of FASN, HIF-1α, RELA, and VEGFA. In conclusion, diosgenin alleviates NAFLD through mTOR-mediated inhibition of lipid accumulation and inflammation.
Collapse
Affiliation(s)
- Guoliang Yin
- Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Hongyi Liang
- Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Yiran Cheng
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Suwen Chen
- Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Xin Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Decheng Meng
- Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Wenfei Yu
- Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Hongshuai Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Chaoyuan Song
- Shandong University of Traditional Chinese Medicine, Jinan, 250011, China; Department of Neurology, Zibo Central Hospital, Zibo, 255000, China.
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China.
| |
Collapse
|
8
|
Niu QQ, Xi YT, Zhang CR, Li XY, Li CZ, Wang HD, Li P, Yin YL. Potential mechanism of perillaldehyde in the treatment of nonalcoholic fatty liver disease based on network pharmacology and molecular docking. Eur J Pharmacol 2024; 985:177092. [PMID: 39510336 DOI: 10.1016/j.ejphar.2024.177092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic metabolic liver diseases worldwide. Perillaldehyde (4-propyl-1-en-2-ylcyclohexene-1-aldehyde, PA) is a terpenoid compound extracted from Perilla, which has effective pharmacological activities such as anti-inflammatory, antidepressant, and anticancer. This study aimed to explore the pharmacological effects of PA in intervening with NAFLD and reveal its potential mechanisms. Firstly, we identified the core targets of PA intervention therapy for NAFLD through network pharmacology and molecular docking techniques. After that, in vitro animal experiments such as H&E and Masson staining, immunofluorescence, immunohistochemistry, and Western blot were conducted to validate the results network effectively pharmacology predicted. Network pharmacology analysis suggested that PPAR-α may be the core target of PA intervention in NAFLD. H&E and Masson staining showed that after low-dose (50 mg/kg) PA administration, there was a noticeable improvement in fat deposition in the livers of NAFLD mice, and liver tissue fibrosis was alleviated. Immunohistochemical and immunofluorescence analysis showed that low dose (50 mg/kg) PA could reduce hepatocyte apoptosis, decrease the content of pro-apoptosis protein Bax, and increase the expression of anti-apoptosis protein Bcl-2 in NAFLD mice. Western blot results confirmed that low-dose (50 mg/kg) PA could increase the expression of PPAR-α and inhibit the expression of NF-κB in NAFLD mice. Our study indicated that PA could enhance the activity of PPAR-α and reduce the level of NF-κB in NAFLD mice, which may positively affect the prevention of NAFLD.
Collapse
Affiliation(s)
- Qian-Qian Niu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, 13200, Malaysia
| | - Yu-Ting Xi
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Chun-Rui Zhang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Xi-Yue Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Cheng-Zhi Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Hui-Dan Wang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Peng Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China.
| | - Ya-Ling Yin
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
9
|
Mignini I, Galasso L, Piccirilli G, Calvez V, Termite F, Esposto G, Borriello R, Miele L, Ainora ME, Gasbarrini A, Zocco MA. Interplay of Oxidative Stress, Gut Microbiota, and Nicotine in Metabolic-Associated Steatotic Liver Disease (MASLD). Antioxidants (Basel) 2024; 13:1532. [PMID: 39765860 PMCID: PMC11727446 DOI: 10.3390/antiox13121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025] Open
Abstract
Oxidative stress has been described as one of the main drivers of intracellular damage and metabolic disorders leading to metabolic syndrome, a major health problem worldwide. In particular, free radicals alter lipid metabolism and promote lipid accumulation in the liver, existing in the hepatic facet of metabolic syndrome, the metabolic dysfunction-associated steatotic liver disease (MASLD). Recent literature has highlighted how nicotine, especially if associated with a high-fat diet, exerts a negative effect on the induction and progression of MASLD by upregulating inflammation and increasing oxidative stress, abdominal fat lipolysis, and hepatic lipogenesis. Moreover, considerable evidence shows the central role of intestinal dysbiosis in the pathogenesis of MASLD and the impact of nicotine-induced oxidative stress on the gut microbiome. This results in an intricate network in which oxidative stress stands at the intersection point between gut microbiome, nicotine, and MASLD. The aim of this review is to delve into the molecular mechanisms linking tobacco smoking and MASLD, focusing on nicotine-induced microbiota modifications and their impact on MASLD development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Maria Assunta Zocco
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (I.M.); (L.G.); (G.P.); (V.C.); (F.T.); (G.E.); (R.B.); (L.M.); (M.E.A.); (A.G.)
| |
Collapse
|
10
|
Shi M, Guo Y, Xu J, Yan L, Li X, Liu R, Feng Y, Zhang Y, Zhao Y, Zhang C, Du K, Li M, Zhang Y, Zhang J, Li Z, Ren D, Liu P. Gaudichaudione H ameliorates liver fibrosis and inflammation by targeting NRF2 signaling pathway. Free Radic Biol Med 2024; 224:770-784. [PMID: 39313014 DOI: 10.1016/j.freeradbiomed.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
Gaudichaudione H (GH) is a natural small molecular compound isolated from Garcinia oligantha Merr. (Clusiaceae). Being an uncommon rare caged polyprenylated xanthone, the potential pharmacological functions of GH remain to be fully elucidated currently. In this study, we primarily focused on identifying potential bioavailable targets and elucidating related therapeutic actions. Herein, the network pharmacology analysis, metabolomics analysis and genome-wide mRNA transcription assay were performed firstly to predict the major pharmacological action and potential targets of GH. To confirm the hypothesis, gene knockout model was created using CRISPR/Cas9 method. The pharmacological action of GH was evaluated in vitro and in vivo. Firstly, our results of network pharmacology analysis and omics assay indicated that GH significantly activated NRF2 signaling pathway, and the function could be associated with liver disease treatment. Then, the pharmacological action of GH was evaluated in vitro and in vivo. The treatment with GH significantly increased the protein levels of NRF2 and promoted the transcription of NRF2 downstream genes. Further analysis suggested that GH regulated NRF2 through an autophagy-mediated non-canonical mechanism. Additionally, the administration of GH effectively protected the liver from carbon tetrachloride (CCl4)-induced liver fibrosis and inflammation, which depended on the activation of NRF2 in hepatic stellate cells and inflammatory cells respectively. Collectively, our findings underscore the potential therapeutic effect of GH on alleviating hepatic fibrosis and inflammation through the augmentation of NRF2 signaling pathway, providing a promising avenue for the treatment of liver fibrosis and inflammation in clinical settings.
Collapse
Affiliation(s)
- Mengjiao Shi
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Guo
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiayi Xu
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liangwen Yan
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinyan Li
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rongrong Liu
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yetong Feng
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yinggang Zhang
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yaping Zhao
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chongyu Zhang
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ke Du
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Miaomiao Li
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Zhang
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jian Zhang
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zongfang Li
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Dongmei Ren
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China.
| | - Pengfei Liu
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Genes Related To Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, China.
| |
Collapse
|
11
|
Hanchang W, Woonnoi W, Saetan J, Suttithumsatid W, Tanasawet S, Sanprick A, Moolsup F, Sukketsiri W. Sangyod rice extract mitigates insulin resistance in HepG2 cells and hepatic steatosis in diabetic rats via AMPK/mTOR/MAPK signaling pathways. FOOD BIOSCI 2024; 61:104662. [DOI: 10.1016/j.fbio.2024.104662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Liu M, Guan G, Wang Y, Lu X, Duan X, Xu X. p-Hydroxy benzaldehyde, a phenolic compound from Nostoc commune, ameliorates DSS-induced colitis against oxidative stress via the Nrf2/HO-1/NQO-1/NF-κB/AP-1 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155941. [PMID: 39128305 DOI: 10.1016/j.phymed.2024.155941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Ulcerative colitis (UC), a chronic idiopathic inflammatory bowel disease (IBD), presents with limited current drug treatment options. Consequently, the search for safe and effective drug for UC prevention and treatment is imperative. Our prior studies have demonstrated that the phenolic compound p-Hydroxybenzaldehyde (HD) from Nostoc commune, effectively mitigates intestinal inflammation. However, the mechanisms underlying HD's anti-inflammatory effects remain unclear. PURPOSE This study delved into the pharmacodynamics of HD and its underlying anti-inflammation mechanisms. METHODS For in vivo experiments, dextran sodium sulfate (DSS)-induced colitis mouse model was established. In vitro inflammation model was established using lipopolysaccharide (LPS)-induced RAW264.7 and bone marrow-derived macrophages (BMDMs). The protective effect of HD against colitis was determined by monitoring clinical symptoms and histological morphology in mice. The levels of inflammatory factors and oxidative stress markers were subsequently analyzed with enzyme-linked immunosorbent assay (ELISA) and biochemical kits. Furthermore, western blotting (WB), immunofluorescence (IF), luciferase reporter gene, drug affinity reaction target stability (DARTS) assay, molecular docking, and molecular dynamics (MD) simulation were used to determine the potential target and molecular mechanism of HD. RESULTS Our findings indicate that HD significantly alleviated the clinical symptoms and histological morphology of colitis in mice, and curtailed the production of pro-inflammatory cytokines, including TNF-α, IL-6, IFN-γ, COX-2, and iNOS. Furthermore, HD stimulated the production of SOD, CAT, and GSH-px, enhanced total antioxidant capacity (T-AOC), and reduced MDA levels. Mechanically, HD augmented the expression of Nrf2, HO-1, and NQO-1, while concurrently downregulating the phosphorylation of p65, IκBα, c-Jun, and c-Fos. ML385 and siNrf2 largely attenuated the protective effect of HD in enteritis mice and RAW 264.7 cells, as well as the promotion of HO-1 expression levels. ZnPP-mediated HO-1 knockdown reversed HD-induced inhibition of colonic inflammation. Luciferase reporter assay and IF assay confirmed the transcriptional activation of Nrf2 by HD. DARTS analysis, molecular docking, and MD results showed high binding strength, interaction efficiency and remarkable stability between Nrf2 and HD. CONCLUSION These outcomes extend our previous research results that HD can combat oxidative stress through the Nrf2/HO-1/NQO-1/NF-κB/AP-1 pathways, effectively alleviating colitis, and propose new targets for HD to protect against intestinal barrier damage.
Collapse
Affiliation(s)
- Meng Liu
- School of Pharmacy, Guilin Medical University, Guilin 541199, China; School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Guoqiang Guan
- School of Pharmacy, Guilin Medical University, Guilin 541199, China; School of Biomedical Industry, Guilin Medical University, Guilin 541199, China
| | - Yuhui Wang
- School of Pharmacy, Guilin Medical University, Guilin 541199, China; School of Biomedical Industry, Guilin Medical University, Guilin 541199, China
| | - Xi Lu
- School of Pharmacy, Guilin Medical University, Guilin 541199, China; School of Biomedical Industry, Guilin Medical University, Guilin 541199, China
| | - Xiaoqun Duan
- School of Pharmacy, Guilin Medical University, Guilin 541199, China; School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China; School of Biomedical Industry, Guilin Medical University, Guilin 541199, China.
| | - Xiaotian Xu
- School of Pharmacy, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
13
|
Cheng Y, Feng S, Sheng C, Yang C, Li Y. Nobiletin from citrus peel: a promising therapeutic agent for liver disease-pharmacological characteristics, mechanisms, and potential applications. Front Pharmacol 2024; 15:1354809. [PMID: 38487166 PMCID: PMC10938404 DOI: 10.3389/fphar.2024.1354809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/30/2024] [Indexed: 03/17/2024] Open
Abstract
Nobiletin (NOB) is a flavonoid derived from citrus peel that has potential as an alternative treatment for liver disease. Liver disease is a primary health concern globally, and there is an urgent need for effective drugs. This review summarizes the pharmacological characteristics of NOB and current in vitro and in vivo studies investigating the preventive and therapeutic effects of NOB on liver diseases and its potential mechanisms. The findings suggest that NOB has promising therapeutic potential in liver diseases. It improves liver function, reduces inflammation and oxidative stress, remodels gut microflora, ameliorates hepatocellular necrosis, steatosis, and insulin resistance, and modulates biorhythms. Nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear transcription factor kappa (NF-κB), AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor α(PPAR-α), extracellular signal-regulated kinase (ERK), protein kinase B (AKT), toll-like receptor 4 (TLR4) and transcription factor EB (TFEB) signaling pathways are important molecular targets for NOB to ameliorate liver diseases. In conclusion, NOB may be a promising drug candidate for treating liver disease and can accelerate its application from the laboratory to the clinic. However, more high-quality clinical trials are required to validate its efficacy and identify its molecular mechanisms and targets.
Collapse
Affiliation(s)
- Yongkang Cheng
- Department of Pediatric Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin, China
- Children’s Hospital of The First Hospital of Jilin University, Changchun, Jilin, China
| | - Sansan Feng
- Department of Pediatric Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin, China
- Children’s Hospital of The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chuqiao Sheng
- Department of Pediatric Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin, China
- Children’s Hospital of The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chunfeng Yang
- Department of Pediatric Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin, China
- Children’s Hospital of The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yumei Li
- Department of Pediatric Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin, China
- Children’s Hospital of The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
14
|
Xu H, Yuan M, Niu K, Yang W, Jiang M, Zhang L, Zhou J. Involvement of Bile Acid Metabolism and Gut Microbiota in the Amelioration of Experimental Metabolism-Associated Fatty Liver Disease by Nobiletin. Molecules 2024; 29:976. [PMID: 38474489 DOI: 10.3390/molecules29050976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Metabolism-associated fatty liver disease (MAFLD), a growing health problem worldwide, is one of the major risks for the development of cirrhosis and liver cancer. Oral administration of nobiletin (NOB), a natural citrus flavonoid, modulates the gut microbes and their metabolites in mice. In the present study, we established a mouse model of MAFLD by subjecting mice to a high-fat diet (HFD) for 12 weeks. Throughout this timeframe, NOB was administered to investigate its potential benefits on gut microbial balance and bile acid (BA) metabolism using various techniques, including 16S rRNA sequencing, targeted metabolomics of BA, and biological assays. NOB effectively slowed the progression of MAFLD by reducing serum lipid levels, blood glucose levels, LPS levels, and hepatic IL-1β and TNF-α levels. Furthermore, NOB reinstated diversity within the gut microbial community, increasing the population of bacteria that produce bile salt hydrolase (BSH) to enhance BA excretion. By exploring further, we found NOB downregulated hepatic expression of the farnesoid X receptor (FXR) and its associated small heterodimer partner (SHP), and it increased the expression of downstream enzymes, including cholesterol 7α-hydroxylase (CYP7A1) and cytochrome P450 27A1 (CYP27A1). This acceleration in cholesterol conversion within the liver contributes to mitigating MAFLD. The present findings underscore the significant role of NOB in regulating gut microbial balance and BA metabolism, revealing that long-term intake of NOB plays beneficial roles in the prevention or intervention of MAFLD.
Collapse
Affiliation(s)
- Hongling Xu
- School of Traditional Chinese Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mingming Yuan
- Laboratory Animal Center Affiliate from Research Office, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| | - Kailin Niu
- School of Traditional Chinese Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Yang
- Laboratory Animal Center Affiliate from Research Office, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| | - Maoyuan Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Lei Zhang
- School of Traditional Chinese Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Laboratory Animal Center Affiliate from Research Office, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| | - Jing Zhou
- Laboratory Animal Center Affiliate from Research Office, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| |
Collapse
|