1
|
Bosman RN, Lashbrooke JG. Grapevine mono- and sesquiterpenes: Genetics, metabolism, and ecophysiology. FRONTIERS IN PLANT SCIENCE 2023; 14:1111392. [PMID: 36818850 PMCID: PMC9936147 DOI: 10.3389/fpls.2023.1111392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Mono- and sesquiterpenes are volatile organic compounds which play crucial roles in human perception of table grape and wine flavour and aroma, and as such their biosynthesis has received significant attention. Here, the biosynthesis of mono- and sesquiterpenes in grapevine is reviewed, with a specific focus on the metabolic pathways which lead to formation of these compounds, and the characterised genetic variation underlying modulation of this metabolism. The bottlenecks for terpene precursor formation in the cytosol and plastid are understood to be the HMG-CoA reductase (HMGR) and 1-deoxy-D-xylylose-5-phosphate synthase (DXS) enzymes, respectively, and lead to the formation of prenyldiphosphate precursors. The functional plasticity of the terpene synthase enzymes which act on the prenyldiphosphate precursors allows for the massive variation in observed terpene product accumulation. This diversity is further enhanced in grapevine by significant duplication of genes coding for structurally diverse terpene synthases. Relatively minor nucleotide variations are sufficient to influence both product and substrate specificity of terpene synthase genes, with these variations impacting cultivar-specific aroma profiles. While the importance of these compounds in terms of grape quality is well documented, they also play several interesting roles in the grapevine's ecophysiological interaction with its environment. Mono- and sesquiterpenes are involved in attraction of pollinators, agents of seed dispersal and herbivores, defence against fungal infection, promotion of mutualistic rhizobacteria interaction, and are elevated in conditions of high light radiation. The ever-increasing grapevine genome sequence data will potentially allow for future breeders and biotechnologists to tailor the aroma profiles of novel grapevine cultivars through exploitation of the significant genetic variation observed in terpene synthase genes.
Collapse
|
2
|
Szeto C, Ristic R, Wilkinson K. Thinking Inside the Box: A Novel Approach to Smoke Taint Mitigation Trials. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051667. [PMID: 35268767 PMCID: PMC8911903 DOI: 10.3390/molecules27051667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022]
Abstract
When bushfires occur near wine regions, grapevine exposure to smoke can taint grapes due to the uptake of smoke-derived volatile compounds that can subsequently impart unpleasant smoky, medicinal, burnt rubber and ashy characters to wine. Whereas early research sought to understand the effects of smoke on grapevine physiology, and grape and wine chemistry, research efforts have shifted towards the strategic imperative for effective mitigation strategies. This study evaluated the extent to which excised grape bunches could be reproducibly tainted during smoke exposure in a purpose-built ‘smoke box’. The volatile phenol composition of grapes exposed to smoke for 30 min was similar to that of smoke-affected grapes from field trials involving grapevine exposure to smoke. Some variation was observed between replicate smoke treatments, but implementing appropriate controls and experimental replication enabled the smoke box to be used to successfully evaluate the efficacy of several agrochemical sprays and protective coverings as methods for mitigating the smoke exposure of grapes. Whereas the agrochemical sprays did not provide effective protection from smoke, enclosing grape bunches in activated carbon fabric prevented the uptake of up to 98% of the smoke-derived volatile phenols observed in smoke-affected grapes. As such, the study demonstrated not only a convenient, efficient approach to smoke taint research that overcomes the constraints associated with vineyard-based field trials, but also a promising new strategy for preventing smoke taint.
Collapse
Affiliation(s)
- Colleen Szeto
- Department of Wine Science, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; (C.S.); (R.R.)
- The Australian Research Council Training Centre for Innovative Wine Production, PMB 1, Glen Osmond, SA 5064, Australia
| | - Renata Ristic
- Department of Wine Science, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; (C.S.); (R.R.)
| | - Kerry Wilkinson
- Department of Wine Science, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; (C.S.); (R.R.)
- The Australian Research Council Training Centre for Innovative Wine Production, PMB 1, Glen Osmond, SA 5064, Australia
- Correspondence: ; Tel.: +61-8-8313-7360
| |
Collapse
|
3
|
Rosenkranz M, Chen Y, Zhu P, Vlot AC. Volatile terpenes - mediators of plant-to-plant communication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:617-631. [PMID: 34369010 DOI: 10.1111/tpj.15453] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Plants interact with other organisms employing volatile organic compounds (VOCs). The largest group of plant-released VOCs are terpenes, comprised of isoprene, monoterpenes, and sesquiterpenes. Mono- and sesquiterpenes are well-known communication compounds in plant-insect interactions, whereas the smallest, most commonly emitted terpene, isoprene, is rather assigned a function in combating abiotic stresses. Recently, it has become evident that different volatile terpenes also act as plant-to-plant signaling cues. Upon being perceived, specific volatile terpenes can sensitize distinct signaling pathways in receiver plant cells, which in turn trigger plant innate immune responses. This vastly extends the range of action of volatile terpenes, which not only protect plants from various biotic and abiotic stresses, but also convey information about environmental constraints within and between plants. As a result, plant-insect and plant-pathogen interactions, which are believed to influence each other through phytohormone crosstalk, are likely equally sensitive to reciprocal regulation via volatile terpene cues. Here, we review the current knowledge of terpenes as volatile semiochemicals and discuss why and how volatile terpenes make good signaling cues. We discuss how volatile terpenes may be perceived by plants, what are possible downstream signaling events in receiver plants, and how responses to different terpene cues might interact to orchestrate the net plant response to multiple stresses. Finally, we discuss how the signal can be further transmitted to the community level leading to a mutually beneficial community-scale response or distinct signaling with near kin.
Collapse
Affiliation(s)
- Maaria Rosenkranz
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, 85764, Neuherberg, Germany
| | - Yuanyuan Chen
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, 85764, Neuherberg, Germany
| | - Peiyuan Zhu
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, 85764, Neuherberg, Germany
| | - A Corina Vlot
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, 85764, Neuherberg, Germany
| |
Collapse
|
4
|
Review of the Effects of Grapevine Smoke Exposure and Technologies to Assess Smoke Contamination and Taint in Grapes and Wine. BEVERAGES 2021. [DOI: 10.3390/beverages7010007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Grapevine smoke exposure and the subsequent development of smoke taint in wine has resulted in significant financial losses for grape growers and winemakers throughout the world. Smoke taint is characterized by objectional smoky aromas such as “ashy”, “burning rubber”, and “smoked meats”, resulting in wine that is unpalatable and hence unprofitable. Unfortunately, current climate change models predict a broadening of the window in which bushfires may occur and a rise in bushfire occurrences and severity in major wine growing regions such as Australia, Mediterranean Europe, North and South America, and South Africa. As such, grapevine smoke exposure and smoke taint in wine are increasing problems for growers and winemakers worldwide. Current recommendations for growers concerned that their grapevines have been exposed to smoke are to conduct pre-harvest mini-ferments for sensory assessment and send samples to a commercial laboratory to quantify levels of smoke-derived volatiles in the wine. Significant novel research is being conducted using spectroscopic techniques coupled with machine learning modeling to assess grapevine smoke contamination and taint in grapes and wine, offering growers and winemakers additional tools to monitor grapevine smoke exposure and taint rapidly and non-destructively in grapes and wine.
Collapse
|
5
|
Cebrián-Tarancón C, Oliva J, Cámara MÁ, Alonso GL, Salinas MR. Analysis of Intact Glycosidic Aroma Precursors in Grapes by High-Performance Liquid Chromatography with a Diode Array Detector. Foods 2021; 10:foods10010191. [PMID: 33477839 PMCID: PMC7832828 DOI: 10.3390/foods10010191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 11/16/2022] Open
Abstract
Nowadays, the techniques for the analysis of glycosidic precursors in grapes involve changes in the glycoside structure or it is necessary the use of very expensive analytical techniques. In this study, we describe for the first time an approach to analyse intact glycosidic aroma precursors in grapes by high-performance liquid chromatography with a diode array detector (HPLC-DAD), a simple and cheap analytical technique that could be used in wineries. Briefly, the skin of Muscat of Alexandria grapes was extracted using a microwave and purified using solid-phase extraction combining Oasis MCX and LiChrolut EN cartridges. In total, 20 compounds were selected by HPLC-DAD at 195 nm and taking as a reference the spectrum of phenyl β-D-glucopyranoside, whose DAD spectrum showed a first shoulder from 190 to 230 nm and a second around 200-360 nm. After that, these glycosidic compounds were identified by High-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-qTOF-MS). Disaccharides hexose pentose were the most abundant group observed with respect to the sugars and monoterpendiols the main aglycones found.
Collapse
Affiliation(s)
- Cristina Cebrián-Tarancón
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain; (C.C.-T.); (G.L.A.)
| | - José Oliva
- Departamento de Química Agrícola, Geología y Edafología, Facultad de Química, Universidad de Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain; (J.O.); (M.Á.C.)
| | - Miguel Ángel Cámara
- Departamento de Química Agrícola, Geología y Edafología, Facultad de Química, Universidad de Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain; (J.O.); (M.Á.C.)
| | - Gonzalo L. Alonso
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain; (C.C.-T.); (G.L.A.)
| | - M. Rosario Salinas
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain; (C.C.-T.); (G.L.A.)
- Correspondence: ; Tel.: +34-967-599210; Fax: +34-967-599238
| |
Collapse
|
6
|
Alem H, Rigou P, Schneider R, Ojeda H, Torregrosa L. Impact of agronomic practices on grape aroma composition: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:975-985. [PMID: 30142253 DOI: 10.1002/jsfa.9327] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 05/27/2023]
Abstract
Aroma compounds are secondary metabolites that play a key role in grape quality for enological purposes. Terpenes, C13 -norisoprenoids, phenols, and non-terpenic alcohols are the most important aroma compounds in grapes and they can be found as free volatiles or glycoconjugated (bound) molecules. The non-volatile glycosylated group is the largest, and it is present in all varieties of Vitis vinifera (L.), the most widely used species for wine production. These aroma precursors represent the reserve of aroma molecules that can be released during winemaking. Their relative and absolute concentrations at fruit ripening determine the organoleptic value of the final product. A large range of biotic and abiotic factors can influence their biosynthesis in several ways. Agronomic practices such as irrigation, training systems, leaf removal, and bunch thinning can have an effect at plant level. The spraying of stimulatory compounds on fruit at different developmental stages has also been shown to modify metabolic pathways at fruit level with some impact on the aroma composition of the grapevine fruit. Viticulturists could act to promote aroma precursors to improve the aromatic profile of grapes and the wine ultimately produced. However, agronomic practices do not always have uniform results. The metabolic and physiological changes resulting from agronomic practices are unknown because there has not been sufficient research to date. This review presents the state of the art regarding the influences of vineyard agronomic management on the biosynthesis of grape aroma compounds. Although literature regarding the topic is abundant there are still many unknown biological mechanisms involved and/or that have been insufficiently studied. The aim of this work is therefore to find the gaps in scientific literature so that future investigations can focus on them. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hubert Alem
- UE 999 Pech-Rouge, University of Montpellier, CIRAD, INRA, Montpellier SupAgro, Gruissan, France
- AGAP, University of Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier Cedex 02, France
- Facultad de Agronomía, Cátedra de Fruticultura, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Peggy Rigou
- SPO, University of Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier Cedex 02, France
| | - Rémi Schneider
- Institut Français de la Vigne et du Vin, Gruissan, France
| | - Hernán Ojeda
- UE 999 Pech-Rouge, University of Montpellier, CIRAD, INRA, Montpellier SupAgro, Gruissan, France
| | - Laurent Torregrosa
- UE 999 Pech-Rouge, University of Montpellier, CIRAD, INRA, Montpellier SupAgro, Gruissan, France
- AGAP, University of Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier Cedex 02, France
| |
Collapse
|
7
|
Song C, Härtl K, McGraphery K, Hoffmann T, Schwab W. Attractive but Toxic: Emerging Roles of Glycosidically Bound Volatiles and Glycosyltransferases Involved in Their Formation. MOLECULAR PLANT 2018; 11:1225-1236. [PMID: 30223041 DOI: 10.1016/j.molp.2018.09.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/05/2018] [Accepted: 09/10/2018] [Indexed: 05/18/2023]
Abstract
Plants emit an overabundance of volatile compounds, which act in their producers either as appreciated attractants to lure beneficial animals or as repellent toxins to deter pests in a species-specific and concentration-dependent manner. Plants have evolved solutions to provide sufficient volatiles without poisoning themselves. Uridine-diphosphate sugar-dependent glycosyltransferases (UGTs) acting on volatiles is one important part of this sophisticated system, which balances the levels of bioactive metabolites and prepares them for cellular and long-distance transport and storage but enables the remobilization of disarmed toxins for the benefit of plant protection. This review provides an overview of the research history of glycosidically bound volatiles (GBVs), a relatively new group of plant secondary metabolites, and discusses the role of UGTs in the production of GBVs for plant protection.
Collapse
Affiliation(s)
- Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West Changjiang Road, Hefei, Anhui 230036, China
| | - Katja Härtl
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, Freising 85354, Germany
| | - Kate McGraphery
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, Freising 85354, Germany
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, Freising 85354, Germany
| | - Wilfried Schwab
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West Changjiang Road, Hefei, Anhui 230036, China; Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, Freising 85354, Germany.
| |
Collapse
|
8
|
Sánchez-Gómez R, Torregrosa L, Zalacain A, Ojeda H, Bouckenooghe V, Schneider R, Alonso GL, Salinas MR. The Microvine, a plant model to study the effect of vine-shoot extract on the accumulation of glycosylated aroma precursors in grapes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3031-3040. [PMID: 29194640 DOI: 10.1002/jsfa.8802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/11/2017] [Accepted: 11/25/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND The Microvine plant model displays unique reproductive organ behavior and is suitable for grapevine fruit physiological studies, allowing one to undertake studies up to five times more rapidly than the current situation with grapevines. Recently, vine-shoot aqueous extracts, which have an interesting phenolic and aroma composition, have been proposed as viticultural biostimulants, since their post-veraison foliar application to grapevines impacts the wine aroma profile. Using Microvines, the aim of this study was to determine the effect of vine-shoot extract foliar application on 21 stages of grape development. The application was carried out from BBCH 53 (inflorescences clearly visible) to BBCH 85 (softening of berries) to reveal stage-specific responses of the accumulation of glycosylated aroma precursors at BBCH 89 (berries ripe for harvest), the phenological stage selected to study the treatment effect. RESULTS Microvine use made it possible to carry out 15 sampling time points during 86 days of the experiment, which were established by the cumulative degree days (CDD) parameter. The results confirmed that vine-shoot extract treatment had a positive impact on total glycosylated compounds, especially aglycones such as alcohols, terpenes and C13 -norisoprenoids, with a higher effect when the treatment was applied during ripening. CONCLUSION Extrapolation of the results to grapevines suggests that vine-shoot extract treatment could modulate the synthesis of grape glycosylated aroma precursors. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rosario Sánchez-Gómez
- Universidad de Castilla-La Mancha, ETSI Agrónomos y Montes, Cátedra de Química Agrícola, Albacete, Spain
| | - Laurent Torregrosa
- Montpellier SupAgro, UMT Genovigne, Montpellier, France
- INRA, UE0999, Unité Expérimentale de Pech Rouge, Gruissan, France
| | - Amaya Zalacain
- Universidad de Castilla-La Mancha, ETSI Agrónomos y Montes, Cátedra de Química Agrícola, Albacete, Spain
| | - Hernán Ojeda
- INRA, UE0999, Unité Expérimentale de Pech Rouge, Gruissan, France
| | - Virginie Bouckenooghe
- Institut Français de la Vigne et du Vin, Pôle Rhône-Méditerranée, Montpellier, France
| | - Rémi Schneider
- Oenobrands, Parc Scientifique Agropolis II, Montferrier-sur-Lez, France
| | - Gonzalo L Alonso
- Universidad de Castilla-La Mancha, ETSI Agrónomos y Montes, Cátedra de Química Agrícola, Albacete, Spain
| | - María Rosario Salinas
- Universidad de Castilla-La Mancha, ETSI Agrónomos y Montes, Cátedra de Química Agrícola, Albacete, Spain
| |
Collapse
|
9
|
Moscatel vine-shoot extracts as a grapevine biostimulant to enhance wine quality. Food Res Int 2017; 98:40-49. [PMID: 28610731 DOI: 10.1016/j.foodres.2017.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 11/22/2022]
Abstract
Non-aromatic vine-shoot extracts (Airén) has been recently proposed as "viticultural biostimulants" when applied to grapevine. In this paper, the application of extracts from non-toasted (MVS) and toasted (MVSToasted) vine-shoots from the well-known aromatic variety such Moscatel were applied on Airén grapevine leaves, observing an increased for grape yield and wines with a lower alcohol degree. All wines at the end of the alcoholic fermentation were characterized by their fruity and floral descriptors, especially MVS wines; and 4 months later, MSV and MVSToasted wines surprised by their higher spicy notes, which correspond with the highest OAVs values for compounds such as norisoprenoids (β-damascenone), vanillin derivatives (vanillin, acetovanillone) and volatile phenols (guaiacol, syringol), compared to control wine. Wine phenolic composition was affected positively over all by MVS in case of phenolic acids. These results confirm that Moscatel vine-shoot extracts foliar application into Airén non-aromatic grapevines produce an interesting enhance on wine quality.
Collapse
|
10
|
Pardo-Garcia AI, Wilkinson KL, Culbert JA, Lloyd NDR, Alonso GL, Salinas MR. Accumulation of guaiacol glycoconjugates in fruit, leaves and shoots of Vitis vinifera cv. Monastrell following foliar applications of guaiacol or oak extract to grapevines. Food Chem 2016; 217:782-789. [PMID: 27664698 DOI: 10.1016/j.foodchem.2016.08.090] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/09/2016] [Accepted: 08/24/2016] [Indexed: 11/29/2022]
Abstract
Previous studies have shown that volatile compounds present within a vineyard during the growing season can be absorbed by grapevines, assimilated within grapes, and then released during fermentation to influence the final aroma of wine. For example, the accumulation of volatile phenols in glycoconjugate forms following grapevine exposure to bushfire smoke, and their subsequent release during winemaking. This study investigated the accumulation of guaiacol glycoconjugates in the fruit, shoots and leaves of Monastrell grapevines following foliar applications (at veraison) of either an aqueous solution of guaiacol or an aqueous oak extract. Fruit, shoot and leaf samples were then collected at 3 time points between veraison and maturity, and analysed by gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry, to quantify guaiacol and its glycoconjugates, respectively. Guaiacol glycoconjugates were observed in fruit and leaves in particular, demonstrating glycosylation occurred after grapevine treatment; however, different glycoconjugate profiles were apparent.
Collapse
Affiliation(s)
- Ana I Pardo-Garcia
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain
| | - Kerry L Wilkinson
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA 5064, Australia.
| | - Julie A Culbert
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA 5064, Australia
| | - Natoiya D R Lloyd
- Metabolomics Australia, The Australian Wine Research Institute, PO Box 197, Glen Osmond, SA 5064, Australia
| | - Gonzalo L Alonso
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain
| | - M Rosario Salinas
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain
| |
Collapse
|
11
|
Matsui K. A portion of plant airborne communication is endorsed by uptake and metabolism of volatile organic compounds. CURRENT OPINION IN PLANT BIOLOGY 2016; 32:24-30. [PMID: 27281633 DOI: 10.1016/j.pbi.2016.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 05/08/2023]
Abstract
Plants have the ability to sense volatile organic compounds (VOCs) so as to efficiently adapt to their environment. The mechanisms underlying such plant 'olfactory' systems are largely unknown. Here I would like to propose that the metabolism of VOCs in plant tissues is one of the mechanisms by which plants sense VOCs. During the gas-exchange that is essential for photosynthesis, VOCs in the atmosphere are taken into the intercellular spaces of leaves. Each VOC is partitioned between the gas phase (intercellular space) and liquid phase (cell wall) at a certain ratio determined by Henry's law. The VOCs in the cell wall diffuse through the plasma membrane to the cytosol depending on their oil/water partition coefficients. Plants detoxify some VOCs, especially those that are oxidized, through glycosylation, glutathionylation, and reduction. These metabolic processes lower the concentration of VOCs in the cytosol, which facilitates further cytosolic uptake. As a result, vigorous metabolism of VOCs in the cytosol can lead to a substantial accumulation of VOC metabolites and the depletion of glutathione or NADPH. One such metabolite (a VOC glycoside) is known to mount a direct defense against herbivores, whilst deprivation of glutathione and NADPH can fortify plants with responses similar to the oxidative stress response.
Collapse
Affiliation(s)
- Kenji Matsui
- Department of Biological Chemistry, Faculty of Agriculture, and Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan.
| |
Collapse
|