1
|
Monfoulet LE, Ruskovska T, Ajdžanović V, Havlik J, Vauzour D, Bayram B, Krga I, Corral-Jara KF, Kistanova E, Abadjieva D, Massaro M, Scoditti E, Deligiannidou E, Kontogiorgis C, Arola-Arnal A, van Schothorst EM, Morand C, Milenkovic D. Molecular Determinants of the Cardiometabolic Improvements of Dietary Flavanols Identified by an Integrative Analysis of Nutrigenomic Data from a Systematic Review of Animal Studies. Mol Nutr Food Res 2021; 65:e2100227. [PMID: 34048642 DOI: 10.1002/mnfr.202100227] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Indexed: 12/11/2022]
Abstract
SCOPE Flavanols are important polyphenols of the human diet with extensive demonstrations of their beneficial effects on cardiometabolic health. They contribute to preserve health acting on a large range of cellular processes. The underlying mechanisms of action of flavanols are not fully understood but involve a nutrigenomic regulation. METHODS AND RESULTS To further capture how the intake of dietary flavanols results in the modulation of gene expression, nutrigenomics data in response to dietary flavanols obtained from animal models of cardiometabolic diseases have been collected and submitted to a bioinformatics analysis. This systematic analysis shows that dietary flavanols modulate a large range of genes mainly involved in endocrine function, fatty acid metabolism, and inflammation. Several regulators of the gene expression have been predicted and include transcription factors, miRNAs and epigenetic factors. CONCLUSION This review highlights the complex and multilevel action of dietary flavanols contributing to their strong potential to preserve cardiometabolic health. The identification of the potential molecular mediators and of the flavanol metabolites driving the nutrigenomic response in the target organs is still a pending question which the answer will contribute to optimize the beneficial health effects of dietary bioactives.
Collapse
Affiliation(s)
| | - Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Vladimir Ajdžanović
- Department of Cytology, Institute for Biological Research "Siniša Stanković,", National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, Serbia
| | - Jaroslav Havlik
- Department of Food Science, Czech University of Life Sciences Prague, Prague 6, Suchdol, Czech Republic
| | - David Vauzour
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Banu Bayram
- Department of Nutrition and Dietetics, University of Health Sciences, Istanbul, Turkey
| | - Irena Krga
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France.,Centre of Excellence in Nutrition and Metabolism Research, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Elena Kistanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Desislava Abadjieva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | - Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | - Eirini Deligiannidou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Christos Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Anna Arola-Arnal
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, 43007, Spain
| | | | - Christine Morand
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France
| | - Dragan Milenkovic
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France.,Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California, 95616, USA
| |
Collapse
|
2
|
Aranaz P, Romo-Hualde A, Navarro-Herrera D, Zabala M, López-Yoldi M, González-Ferrero C, Gil AG, Martínez JA, Vizmanos JL, Milagro FI, González-Navarro CJ. Low doses of cocoa extract supplementation ameliorate diet-induced obesity and insulin resistance in rats. Food Funct 2019; 10:4811-4822. [PMID: 31317981 DOI: 10.1039/c9fo00918c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cocoa polyphenols exhibit high antioxidant activity and have been proposed as a potential adjuvant for the treatment of metabolic disturbances. Here, we demonstrate that supplementation with low doses (14 and 140 mg per kg per rat) of a complete cocoa extract induces metabolic benefits in a diet-induced obesity (DIO) model of Wistar rats. After 10 weeks, cocoa extract-supplemented animals exhibited significantly lower body weight gain and food efficiency, with no differences in energy intake. Cocoa significantly reduced visceral (epididymal and retroperitoneal) and subcutaneous fat accumulation accompanied by a significant reduction in the adipocyte size, which was mediated by downregulation of the adipocyte-specific genes Cebpa, Fasn and Adipoq. Additionally, cocoa extract supplementation reduced the triacylglycerol/high density lipoprotein (TAG/HDL) ratio, decreased hepatic triglyceride accumulation, improved insulin sensitivity by reducing HOMA-IR, and significantly ameliorated glucose tolerance after an intraperitoneal glucose tolerance test. Finally, no adverse effect was observed in an in vivo toxicity evaluation of our cocoa extract at doses up to 500 mg kg-1 day-1. Our data demonstrate that low doses of cocoa extract supplementation (14 and 140 mg kg-1 day-1) are safe and sufficient to counteract obesity and type-2 diabetes in rats and provide new insights into the potential application of cocoa supplements in the management of the metabolic syndrome.
Collapse
Affiliation(s)
- Paula Aranaz
- Centre for Nutrition Research, University of Navarra, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Dahunsi SO, Osueke CO, Olayanju TMA, Lawal AI. Co-digestion of Theobroma cacao (Cocoa) pod husk and poultry manure for energy generation: Effects of pretreatment methods. BIORESOURCE TECHNOLOGY 2019; 283:229-241. [PMID: 30913431 DOI: 10.1016/j.biortech.2019.03.093] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
In this study, biogas was produced from the anaerobic co-digestion of Cocoa pod husk (CPH) and poultry manure. Pretreatment of the CPH was carried out using sulfuric acid and hydrogen peroxide. The physicochemical, elemental and structural analyses were carried out on the CPH before and after pretreatment. The microbial composition of the fermenting materials were also determined using standard method while the Fourier Transform Infra-red (FTIR) spectroscopy was used to identify the structural changes that took place after pretreatments. Use of alkaline hydrogen peroxide caused high solubilization of the lignin component of the CPH and reduced up to 81% of lignin i.e. initial value of 21.7% m.m-1 to final value of 4.2% m.m-1. Similarly, the alkali reduced the hemicellulose content of the CPH from 27.0% m.m-1 to 8.5% m.m-1. Overall, there was 68% increase in biogas volume from the alkaline pretreated CPH.
Collapse
Affiliation(s)
- S O Dahunsi
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - C O Osueke
- Department of Mechanical Engineering, Landmark University, Nigeria
| | - T M A Olayanju
- Department of Agricultural and Biosystems Engineering, Landmark University, Nigeria
| | - A I Lawal
- Department of Accounting and Finance, Landmark University, Nigeria
| |
Collapse
|
4
|
Antioxidant Characterization and Biological Effects of Grape Pomace Extracts Supplementation in Caenorhabditis elegans. Foods 2019; 8:foods8020075. [PMID: 30781355 PMCID: PMC6406641 DOI: 10.3390/foods8020075] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022] Open
Abstract
The aim of this work was to evaluate the biological activity of four grape pomace (GP) extracts that are rich in polyphenols using C. elegans as an in vivo model. Different concentrations of the GP extracts were assessed for their effects on the resistance of C. elegans against thermally induced oxidative stress, accumulation of reactive oxygen species (ROS), and lifespan. The cultivation of C. elegans with relatively low concentrations of GP extracts increased their resistance against thermal stress and prolonged their lifespan, while high levels displayed detrimental effects. In the studied extracts, maximum protection was observed for levels of polyphenols around 7 to 9 µg gallic acid equivalents per cultivation plate. The obtained results suggested that small changes in the ROS levels could have beneficial effects, although further studies are required to fully understand the impact of the extracts and assayed doses on ROS levels to explain the mechanism that is involved in the observed effects.
Collapse
|
6
|
Mellor DD, Amund D, Georgousopoulou E, Naumovski N. Sugar and cocoa: sweet synergy or bitter antagonisms. Formulating cocoa and chocolate products for health: a narrative review. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13651] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Duane D. Mellor
- School of Life Sciences Faculty of Health and Life Sciences Coventry University 20 Whitefriars Street Coventry CV1 2DS UK
- Collaborative Research in Bioactives and Biomarkers (CRIBB) Group Faculty of Health University of Canberra Canberra ACT 2617 Australia
| | - Daniel Amund
- School of Life Sciences Faculty of Health and Life Sciences Coventry University 20 Whitefriars Street Coventry CV1 2DS UK
| | - Ekavi Georgousopoulou
- Collaborative Research in Bioactives and Biomarkers (CRIBB) Group Faculty of Health University of Canberra Canberra ACT 2617 Australia
- Department of Nutrition‐Dietetics Faculty of Health Science and Education Harokopio University E. Venizelou 70, Kallithea, Greece 17671 Kallithea‐Athens Greece
| | - Nenad Naumovski
- Collaborative Research in Bioactives and Biomarkers (CRIBB) Group Faculty of Health University of Canberra Canberra ACT 2617 Australia
| |
Collapse
|
7
|
Effect of Cocoa Polyphenolic Extract on Macrophage Polarization from Proinflammatory M1 to Anti-Inflammatory M2 State. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6293740. [PMID: 28744339 PMCID: PMC5506464 DOI: 10.1155/2017/6293740] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/22/2016] [Accepted: 04/20/2017] [Indexed: 02/06/2023]
Abstract
Polyphenols-rich cocoa has many beneficial effects on human health, such as anti-inflammatory effects. Macrophages function as control switches of the immune system, maintaining the balance between pro- and anti-inflammatory activities. We investigated the hypothesis that cocoa polyphenol extract may affect macrophage proinflammatory phenotype M1 by favoring an alternative M2 anti-inflammatory state on macrophages deriving from THP-1 cells. Chemical composition, total phenolic content, and antioxidant capacity of cocoa polyphenols extracted from roasted cocoa beans were determined. THP-1 cells were activated with both lipopolysaccharides and interferon-γ for M1 or with IL-4 for M2 switch, and specific cytokines were quantified. Cellular metabolism, through mitochondrial oxygen consumption, and ATP levels were evaluated. Here, we will show that cocoa polyphenolic extract attenuated in vitro inflammation decreasing M1 macrophage response as demonstrated by a significantly lowered secretion of proinflammatory cytokines. Moreover, treatment of M1 macrophages with cocoa polyphenols influences macrophage metabolism by promoting oxidative pathways, thus leading to a significant increase in O2 consumption by mitochondrial complexes as well as a higher production of ATP through oxidative phosphorylation. In conclusion, cocoa polyphenolic extract suppresses inflammation mediated by M1 phenotype and influences macrophage metabolism by promoting oxidative pathways and M2 polarization of active macrophages.
Collapse
|
8
|
Davison K, Howe PRC. Impact of Cocoa Flavanols on Cardiovascular Health: Additional Consideration of Dose and Food Matrix. Phytother Res 2016; 31:165-166. [DOI: 10.1002/ptr.5729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/30/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Kade Davison
- Alliance for Research in Exercise, Nutrition and Activity, School of Health Sciences; University of South Australia; Adelaide South Australia 5001 Australia
| | - Peter RC Howe
- Alliance for Research in Exercise, Nutrition and Activity, School of Health Sciences; University of South Australia; Adelaide South Australia 5001 Australia
- Clinical Nutrition Research Centre, School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan New South Wales 2308 Australia
| |
Collapse
|