1
|
Li Z, Lin H, Wang L, Cao L, Sui J, Wang K. Optical sensing techniques for rapid detection of agrochemicals: Strategies, challenges, and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156515. [PMID: 35667437 DOI: 10.1016/j.scitotenv.2022.156515] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
In recent years, the irrational use of agrochemicals has caused great harm to the environment and public health. Along with the rapid development of optical technology and nanotechnology, the research of optical sensing methods in agrochemical detection has been developed rapidly owing to its advantages of simplicity, fast response, and cost-effectiveness. In this review, the strategies of employing optical systems based on colorimetric sensor, fluorescence, chemiluminescence, terahertz spectroscopy, surface plasmon resonance, and surface-enhanced Raman spectroscopy for sensing agrochemicals were summarized. In addition, the challenges in the practical application of optical sensing technologies for agrochemical detection were discussed in-depth, and potential future trends and prospects of these techniques were addressed. A variety of nanomaterials have been developed for enhancing the sensitivity of optical sensing systems. The optical properties of nanomaterials are governed by their size, shape, and chemical structure. Although each optical sensing system holds its advantages, there are still many challenges that need to be overcome in practical applications. With the continuous developments in novel functional nanomaterials, sample preparation methods, and spectral processing algorithms, optical sensors are expected to have powerful potential for rapid testing of agrochemicals in the environment and foods.
Collapse
Affiliation(s)
- Zhuoran Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Lei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Limin Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Kaiqiang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China; Fujian Provincial Key Laboratory of Breeding Lateolabrax Japonicus, Ningde, Fujian 355299, China.
| |
Collapse
|
2
|
Duong DST, Jang CH. Determination of chlorothalonil levels through inhibitory effect on papain activity at protein-decorated liquid crystal interfaces. Mikrochim Acta 2022; 189:292. [PMID: 35879491 PMCID: PMC9313939 DOI: 10.1007/s00604-022-05396-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 11/11/2022]
Abstract
A liquid crystal (LC)-based assay was developed to detect chlorothalonil (CHL). The detection principle is based on (i) the electrostatic interaction between the positively charged protein protamine (PRO) with the negatively charged phospholipid dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DOPG) and (ii) the CHL-mediated inhibition of papain (PAP) activity. The aqueous/LC interface was decorated with a monolayer of DOPG and PRO that self-assembled via electrostatic interactions. PAP can hydrolyze PRO, resulting in the realignment of an LC by DOPG, inducing a shift in the LC response from bright to dark. The addition of CHL can inhibit the activity of PAP, leading to the attraction of PRO to DOPG and the consequent disruption of the LC orientation. The orientation change of the LC in the presence or absence of CHL can be observed from the changes in its optical appearance using a polarized light microscope. Under optimal conditions, the developed assay achieved a detection limit of 0.196 pg mL-1 within a range of determination of 0.65-200 pg mL-1. The selectivity of the assay was verified in the presence of carbendazim and imidacloprid. The practical application of the proposed assay was demonstrated by its use to determine the levels of CHL in food extracts and environmental samples, which yielded recoveries and relative standard deviations (RSD) in the ranges of 87.39-99.663% and 1.03-6.32%, respectively.
Collapse
Affiliation(s)
- Duong Song Thai Duong
- Department of Chemistry, Gachon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam-City, Gyeonggi-Do, 461-701, South Korea
| | - Chang-Hyun Jang
- Department of Chemistry, Gachon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam-City, Gyeonggi-Do, 461-701, South Korea.
| |
Collapse
|
3
|
Sheng EZ, Tan YT, Lu YX, Xiao Y, Li ZX. Sensitive Time-Resolved Fluorescence Immunoassay for Quantitative Determination of Oxyfluorfen in Food and Environmental Samples. Front Chem 2021; 8:621925. [PMID: 33490042 PMCID: PMC7817953 DOI: 10.3389/fchem.2020.621925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/24/2020] [Indexed: 01/26/2023] Open
Abstract
The direct and indirect competition time-resolved fluorescence immunoassays (dc-TRFIA, ic-TRFIA) were established by combining the autofluorescence properties of lanthanide europium (Eu) with the monoclonal antibody of oxyfluorfen. The purified Eu antibody was optimized and the conditions such as the working concentration of the Eu antibody, monoclonal antibody, and working buffer were optimized. In the optimal condition, the IC50 of dc-TRFIA was 10.27 ng/mL, the lowest detection limit IC10 was 0.071 ng/mL, the detection range (IC10-IC90) was 0.071-1074.3 ng/mL, and the detection range (IC10-IC90) and IC50 of ic-TRFIA were 0.024-504.6 and 2.76 ng/mL, respectively. The comparison showed that the sensitivity and detection limit of ic-TRFIA were superior to dc-TRFIA. The cross reaction (CR) tests showed that the CR with other oxyfluorfen structure analogs was <0.02%, except that there was a certain CR with the benzofluorfen (CR = 11.58) and the bifenox (CR = 8.23%). The average recoveries of ic-TRFIA were 74.6-108.3%, and the RSDs were between 2.1 and 10.9%, in the addition recovery test with five substrates. The results of the correlation test with the real samples of GC-ECD showed that they were highly correlated (y = 0.975x - 0.4446, R 2 = 0.9901), which proved that the TRFIA method established in this study had high reliability and accuracy and could be used in environment and agricultural products for rapid detection of oxyfluorfen residues.
Collapse
Affiliation(s)
- En Ze Sheng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Yu Ting Tan
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yu Xiao Lu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Yue Xiao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Zhen Xi Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| |
Collapse
|
4
|
Tsagkaris AS, Pulkrabova J, Hajslova J. Optical Screening Methods for Pesticide Residue Detection in Food Matrices: Advances and Emerging Analytical Trends. Foods 2021; 10:E88. [PMID: 33466242 PMCID: PMC7824741 DOI: 10.3390/foods10010088] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/12/2022] Open
Abstract
Pesticides have been extensively used in agriculture to protect crops and enhance their yields, indicating the need to monitor for their toxic residues in foodstuff. To achieve that, chromatographic methods coupled to mass spectrometry is the common analytical approach, combining low limits of detection, wide linear ranges, and high accuracy. However, these methods are also quite expensive, time-consuming, and require highly skilled personnel, indicating the need to seek for alternatives providing simple, low-cost, rapid, and on-site results. In this study, we critically review the available screening methods for pesticide residues on the basis of optical detection during the period 2016-2020. Optical biosensors are commonly miniaturized analytical platforms introducing the point-of-care (POC) era in the field. Various optical detection principles have been utilized, namely, colorimetry, fluorescence (FL), surface plasmon resonance (SPR), and surface enhanced Raman spectroscopy (SERS). Nanomaterials can significantly enhance optical detection performance and handheld platforms, for example, handheld SERS devices can revolutionize testing. The hyphenation of optical assays to smartphones is also underlined as it enables unprecedented features such as one-click results using smartphone apps or online result communication. All in all, despite being in an early stage facing several challenges, i.e., long sample preparation protocols or interphone variation results, such POC diagnostics pave a new road into the food safety field in which analysis cost will be reduced and a more intensive testing will be achieved.
Collapse
Affiliation(s)
- Aristeidis S. Tsagkaris
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague 6—Dejvice, 166 28 Prague, Czech Republic; (J.P.); (J.H.)
| | | | | |
Collapse
|
5
|
Wang B, Park B. Immunoassay Biosensing of Foodborne Pathogens with Surface Plasmon Resonance Imaging: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12927-12939. [PMID: 32816471 DOI: 10.1021/acs.jafc.0c02295] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Surface plasmon resonance imaging (SPRi) has been increasingly used in the label-free detections of various biospecies, such as organic toxins, proteins, and bacteria. In combination with the well-developed microarray immunoassay, SPRi has the advantages of rapid detection in tens of minutes and multiplex detection of different targets with the same biochip. Both prism-based and prism-free configurations of SPRi have been developed for highly integrated portable immunosensors, which have shown great potential on pathogen detection and living cell imaging. This review summarizes the recent advances in immunoassay biosensing with SPRi, with special emphasis on the multiplex detections of foodborne pathogens. Additionally, various spotting techniques, surface modification protocols, and signal amplification methods have been developed to improve the specificity and sensitivity of the SPRi biochip. The challenges in multiplex detections of foodborne pathogens in real-world samples are addressed, and future perspectives of miniaturizing SPRi immunosensors with nanotechnologies are discussed.
Collapse
Affiliation(s)
- Bin Wang
- United States National Poultry Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 950 College Station Road, Athens, Georgia 30605, United States
| | - Bosoon Park
- United States National Poultry Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 950 College Station Road, Athens, Georgia 30605, United States
| |
Collapse
|
6
|
Oxidase-mimicking activity of ultrathin MnO2 nanosheets in a colorimetric assay of chlorothalonil in food samples. Food Chem 2020; 331:127090. [DOI: 10.1016/j.foodchem.2020.127090] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/03/2020] [Accepted: 05/16/2020] [Indexed: 12/11/2022]
|
7
|
Sheng E, Lu Y, Tan Y, Xiao Y, Li Z, Dai Z. Ratiometric Fluorescent Quantum Dot-Based Biosensor for Chlorothalonil Detection via an Inner-Filter Effect. Anal Chem 2020; 92:4364-4370. [PMID: 32050759 DOI: 10.1021/acs.analchem.9b05199] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new sensitive sensor for detecting chlorothalonil (CHL) based on the inner-filter effect (IFE) between gold nanoparticles (AuNPs) and ratiometric fluorescent quantum dots (RF-QDs) was developed. Here, RF-QDs were designed by two different color CdTe QDs. Based on the IFE, the AuNPs can quench the fluorescence of the RF-QDs. Because of the electrostatic attraction between protamine (PRO) and the AuNPs, the PRO can restore fluorescence effectively. Papain (PAP) can easily hydrolyze PRO and causes the quench of fluorescence quenching. The addition of CHL can inhibit PAP activity and restore the fluorescent signal. Through the characterization of the structural changes of PAP, the inhibition and mechanism of CHL on PAP activity were studied. The ability of CHL to inhibit PAP activity was evaluated by measuring the fluorescence of the RF-QDs. Under the optimal conditions, this sensing platform shows a response to CHL in the range of 0.34-2320 ng/mL and a detection limit of 0.0017 ng/mL. Based on the CHL inhibition of PAP activity, the RF-QDs showed good selectivity for CHL. The practical application of the proposed system was demonstrated by detecting CHL in food and environmental samples with satisfying results.
Collapse
Affiliation(s)
- Enze Sheng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yuxiao Lu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yuting Tan
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yue Xiao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zhenxi Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zhihui Dai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.,Nanjing Normal University Center for Analysis and Testing, Nanjing 210023, P. R. China
| |
Collapse
|
8
|
Possibilities and Prospects of Immunosensors for a Highly Sensitive Pesticide Detection in Vegetables and Fruits: a Review. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01630-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Yamasaki T, Miyake S, Sato N, Hirakawa Y, Iwasa S, Narita H, Watanabe T. Development of Enzyme-Linked Immunosorbent Assay for Analysis of Total Aflatoxins Based on Monoclonal Antibody Reactive with Aflatoxins B 1, B 2, G 1 and G 2. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2019; 59:200-205. [PMID: 30429417 DOI: 10.3358/shokueishi.59.200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A direct competitive enzyme-linked immunosorbent assay (dc-ELISA) was developed for the determination of total amount of aflatoxin B1, B2, G1 and G2 (AFB1, AFB2, AFG1 and AFG2), using a mouse monoclonal antibody that shows similar reactivity to each of these AFs. The working range of the developed dc-ELISA was 50-230 pg/mL for AFB1, 50-270 pg/mL for AFB2, 60-390 pg/mL for AFG1 and 65-700 pg/mL for AFG2. The recovery of AFs from spiked roasted peanuts was 98%. Further, when 4 samples actually contaminated with AFB1, AFB2, AFG1 and AFG2 were examined, the results of dc-ELISA were highly correlated with the values assigned by the Food Analysis Performance Assessment Scheme. The developed dc-ELISA appears to be suitable for the determination of total AFs at concentrations around the maximum permitted level (10 μg/kg for all foods) in Japan.
Collapse
Affiliation(s)
- Tomomi Yamasaki
- Kyoto Women's University.,Advanced Science, Technology & Management Research Institute of Kyoto
| | - Shiro Miyake
- Advanced Science, Technology & Management Research Institute of Kyoto.,HORIBA, Ltd.,Azabu University
| | | | - Yuki Hirakawa
- Kyoto Women's University.,Advanced Science, Technology & Management Research Institute of Kyoto
| | | | | | | |
Collapse
|
10
|
Hao Y, Zhang H, Zhang P, Yu S, Ma D, Li L, Feng Y, Min L, Shen W, Zhao Y. Chlorothalonil inhibits mouse ovarian development through endocrine disruption. Toxicol Lett 2019; 303:38-47. [PMID: 30586609 DOI: 10.1016/j.toxlet.2018.12.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 11/08/2018] [Accepted: 12/21/2018] [Indexed: 11/27/2022]
Abstract
Although many studies have investigated the toxic effects and even the reproductive toxicity of chlorothalonil, almost no studies have focused on the ovary, the organ of oocyte development. Puberty is a critical window for development of the female reproductive system. Therefore, this investigation aimed to explore the effects and underlying mechanisms of chlorothalonil at low doses on peripubertal mouse ovarian development. Chlorothalonil is frequently used in horticulture with short intervals between applications, therefore, vegetables and fruits may be potential sources of chlorothalonil contamination. For the first time, this study demonstrated that chlorothalonil inhibited ovarian development during puberty in mice, and at levels currently assumed to have no adverse health consequences for humans. Chlorothalonil exposure inhibited mouse ovarian development by increasing the number of primary follicles and decreasing the number of mature follicles. It acted by decreasing the levels of hormone production proteins, such as FSH receptor and estrogen receptor alpha, while increasing the levels of DNA repairing marker RAD51 and cell apoptosis. These results suggest that chlorothalonil may disrupt endocrine function and inhibit murine ovarian development. Therefore it may pose a potential health risk to female reproductive systems in other species, especially to the ovary.
Collapse
Affiliation(s)
- Yanan Hao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China; College of Biological Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Pengfei Zhang
- College of Biological Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China; College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Shuai Yu
- College of Biological Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China; College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Dongxue Ma
- College of Biological Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China; College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Lan Li
- College of Biological Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China; College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yanni Feng
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Lingjiang Min
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Wei Shen
- College of Biological Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Yong Zhao
- College of Biological Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China.
| |
Collapse
|
11
|
Liu Q, Han P, Wang H, Gong W, Feng X. Antibody-free colorimetric detection of chlorothalonil in cucumberviathe inhibition of an enzyme-triggered reaction. RSC Adv 2019; 9:9893-9898. [PMID: 35520916 PMCID: PMC9062364 DOI: 10.1039/c9ra00291j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/14/2019] [Indexed: 12/02/2022] Open
Abstract
Currently known rapid determination of fungicides usually relies on antibody-based immunoassay. This paper reports a simple antibody-free colorimetric assay for chlorothalonil via the inhibition of an enzyme-triggered reaction. The enzymatic activity of glyceraldehyde-3-phosphate dehydrogenase was significantly inhibited by chlorothalonil, and the color change of NBT-PMS system induced from NADH formation was suppressed, which could be used indirectly to assay chlorothalonil. The limit of detection (LOD) was 0.05 μM with a linear range from 0.5 to 10 μM, and the detection of 1 μM chlorothalonil in solution was achieved with a naked-eye readout. In addition, the colorimetric measurement results of the cucumber samples showed a good recovery rate, although the sensitivity was less effective than the instrumental method. Nevertheless, the results demonstrates that the chlorometric method provides potential opportunities for reliable, cost-effective quantitative detection for chlorothalonil residues in vegetables. Colorimetric detection of chlorothalonil in cucumber via the inhibition of an enzyme-triggered reaction.![]()
Collapse
Affiliation(s)
- Qingju Liu
- Beijing Research Center for Agriculture Standards and Testing
- Beijing 100097
- China
- Risk Assessment Lab for Agro-products (Beijing)
- Ministry of Agriculture
| | - Ping Han
- Beijing Research Center for Agriculture Standards and Testing
- Beijing 100097
- China
- Risk Assessment Lab for Agro-products (Beijing)
- Ministry of Agriculture
| | - Hui Wang
- Beijing Research Center for Agriculture Standards and Testing
- Beijing 100097
- China
- Risk Assessment Lab for Agro-products (Beijing)
- Ministry of Agriculture
| | - Wenwen Gong
- Beijing Research Center for Agriculture Standards and Testing
- Beijing 100097
- China
- Risk Assessment Lab for Agro-products (Beijing)
- Ministry of Agriculture
| | - Xiaoyuan Feng
- Beijing Research Center for Agriculture Standards and Testing
- Beijing 100097
- China
- Risk Assessment Lab for Agro-products (Beijing)
- Ministry of Agriculture
| |
Collapse
|
12
|
Lima TS, A. La-Scalea M, Raminelli C, Simões FR, Franco E, da Silva GD, Salvador MA, Homem-de-Mello P, de Oliveira HPM, Codognoto L. Voltammetric determination of chlorothalonil and its respective reduction mechanism studied by density functional theory. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-4162-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Hirakawa Y, Yamasaki T, Harada A, Iwasa S, Narita H, Miyake S. Development of an Immunosensor Based on Surface Plasmon Resonance for Simultaneous Residue Analysis of Three Pesticides -Boscalid, Clothianidin, and Nitenpyram- in Vegetables. ANAL SCI 2018; 34:533-539. [PMID: 29743423 DOI: 10.2116/analsci.17p487] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A simultaneous immunosensor based on surface plasmon resonance (SPR) was developed for determination of 3 pesticides -boscalid, clothianidin and nitenpyram- instead of the direct competitive enzyme-linked immunosorbent assays (dcELISAs) widely used as individual determination methods. Carboxy groups that introduced compounds to their pesticides were designed, and conjugates of them and bovine serum albumin were immobilized onto separate channels of the same sensor chip. When a mixture of 3 monoclonal antibodies reacted to each pesticide, and 3 pesticides were injected into the SPR immunosensor, each channel showed specific reactivity at 15 - 93 ng mL-1 for boscalid, 6.7 - 27 ng mL-1 for clothianidin, and 7.3 - 62 ng mL-1 for nitenpyram. Recovery tests using vegetables spiked with a mixture of 3 pesticides showed good results: 75 - 90%, 88 - 104%, and 72 - 105%, respectively, with a high correlation to results of the dcELISAs. The SPR immunosensor would be useful for the determination of pesticide residues in vegetables.
Collapse
Affiliation(s)
- Yuki Hirakawa
- Advanced Science, Technology & Management Research Institute of Kyoto.,Kyoto Women's University
| | - Tomomi Yamasaki
- Advanced Science, Technology & Management Research Institute of Kyoto.,Kyoto Women's University
| | | | | | | | - Shiro Miyake
- Advanced Science, Technology & Management Research Institute of Kyoto.,Advanced R&D Center, HORIBA, Ltd
| |
Collapse
|
14
|
Capoferri D, Della Pelle F, Del Carlo M, Compagnone D. Affinity Sensing Strategies for the Detection of Pesticides in Food. Foods 2018; 7:E148. [PMID: 30189666 PMCID: PMC6165126 DOI: 10.3390/foods7090148] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/28/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023] Open
Abstract
This is a review of recent affinity-based approaches that detect pesticides in food. The importance of the quantification and monitoring of pesticides is firstly discussed, followed by a description of the different approaches reported in the literature. The different sensing approaches are reported according to the different recognition element used: antibodies, aptamers, or molecularly imprinted polymers. Schemes of detection and the main features of the assays are reported and commented upon. The large number of affinity sensors recently developed and tested on real samples demonstrate that this approach is ready to be validated to monitor the amount of pesticides used in food commodities.
Collapse
Affiliation(s)
- Denise Capoferri
- Faculty of Biosciences and Technologies for Food, Agriculture and Environment, University of Teramo, via R. Balzarini 1, 64100 Teramo, Italy.
| | - Flavio Della Pelle
- Faculty of Biosciences and Technologies for Food, Agriculture and Environment, University of Teramo, via R. Balzarini 1, 64100 Teramo, Italy.
| | - Michele Del Carlo
- Faculty of Biosciences and Technologies for Food, Agriculture and Environment, University of Teramo, via R. Balzarini 1, 64100 Teramo, Italy.
| | - Dario Compagnone
- Faculty of Biosciences and Technologies for Food, Agriculture and Environment, University of Teramo, via R. Balzarini 1, 64100 Teramo, Italy.
| |
Collapse
|
15
|
Liu Q, Han P, Gong W, Wang H, Feng X. Colorimetric determination of the pesticide chlorothalonil based on the aggregation of gold nanoparticles. Mikrochim Acta 2018; 185:354. [DOI: 10.1007/s00604-018-2890-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/26/2018] [Indexed: 01/07/2023]
|
16
|
Guo Y, Liu R, Liu Y, Xiang D, Liu Y, Gui W, Li M, Zhu G. A non-competitive surface plasmon resonance immunosensor for rapid detection of triazophos residue in environmental and agricultural samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:783-791. [PMID: 28946376 DOI: 10.1016/j.scitotenv.2017.09.157] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/31/2017] [Accepted: 09/16/2017] [Indexed: 05/15/2023]
Abstract
The wide application of an organophosphate pesticide triazophos raises concern on the environmental pollution and the potential risk to human health. Thus, it is crucial to regularly monitor triazophos residue in the environment and agro-products. Herein we described a non-competitive immunoassay for trace detection of triazophos using a direct surface plasmon resonance (SPR) biosensor. Two anti-triazophos monoclonal antibodies (mAbs) were immobilized on the sensor chip and characterized by SPR-based kinetic analysis. The mAb with relatively slow dissociation rate was used for direct immunosensing of triazophos. The biosensor assay showed a high specificity and a low detection limit of 0.096ngmL-1 to triazophos, with the linear detection range of 0.98-8.29ngmL-1. Under the optimal condition, the sensor chip could be regenerated for 160cycles at least. Moreover, the sensitive method was applied to determine triazophos in the spiked environmental water and agricultural products, as well as in unknown real-life samples (including Chinese cabbage, cucumber, and apple). Desirable results demonstrated that the newly-developed immunosensor could be used as a rapid, convenient, and reliable tool to regularly monitor triazophos and meet the detection requirement of its maximum residue limits.
Collapse
Affiliation(s)
- Yirong Guo
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Rui Liu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Ying Liu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Dandan Xiang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Yihua Liu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China.
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Mingyu Li
- State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Dragone R, Grasso G, Muccini M, Toffanin S. Portable Bio/Chemosensoristic Devices: Innovative Systems for Environmental Health and Food Safety Diagnostics. Front Public Health 2017; 5:80. [PMID: 28529937 PMCID: PMC5418341 DOI: 10.3389/fpubh.2017.00080] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/29/2017] [Indexed: 11/16/2022] Open
Abstract
This mini-review covers the newly developed biosensoristic and chemosensoristic devices described in recent literature for detection of contaminants in both environmental and food real matrices. Current needs in environmental and food surveillance of contaminants require new simplified, sensitive systems, which are portable and allow for rapid and on-site monitoring and diagnostics. Here, we focus on optical and electrochemical bio/chemosensoristic devices as promising tools with interesting analytical features that can be potentially exploited for innovative on-site and real-time applications for diagnostics and monitoring of environmental and food matrices (e.g., agricultural waters and milk). In near future, suitably developed and implemented bio/chemosensoristic devices will be a new and modern technological solution for the identification of new quality and safety marker indexes as well as for a more proper and complete characterization of abovementioned environmental and food matrices. Integrated bio/chemosensoristic devices can also allow an “holistic approach” that may prove to be more suitable for diagnostics of environmental and food real matrices, where the copresence of more bioactive substances is frequent. Therefore, this approach can be focused on the determination of net effect (mixture effect) of bioactive substances present in real matrices.
Collapse
Affiliation(s)
- Roberto Dragone
- Institute of Nanostructured Materials (ISMN), Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Gerardo Grasso
- Institute of Nanostructured Materials (ISMN), Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Michele Muccini
- Institute of Nanostructured Materials (ISMN), Consiglio Nazionale delle Ricerche (CNR), Bologna, Italy
| | - Stefano Toffanin
- Institute of Nanostructured Materials (ISMN), Consiglio Nazionale delle Ricerche (CNR), Bologna, Italy
| |
Collapse
|
18
|
Yamasaki T, Miyake S, Nakano S, Morimura H, Hirakawa Y, Nagao M, Iijima Y, Narita H, Ichiyama S. Development of a Surface Plasmon Resonance-Based Immunosensor for Detection of 10 Major O-Antigens on Shiga Toxin-Producing Escherichia coli, with a Gel Displacement Technique To Remove Bound Bacteria. Anal Chem 2016; 88:6711-7. [PMID: 27243947 DOI: 10.1021/acs.analchem.6b00797] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A surface plasmon resonance-based immunosensor (SPR-immunosensor) was developed for the detection of Shiga toxin-producing Escherichia coli (STEC) belonging to the O-antigen groups O26, O91, O103, O111, O115, O121, O128, O145, O157, and O159. The polyclonal antibodies (PoAbs) generated against each of the STEC O-antigen types in rabbits were purified and were immobilized on the sensor chip at 0.5 mg/mL. The limit of detection for STEC O157 by the SPR-immunosensor was found to be 6.3 × 10(4) cells for 75 s. Each of the examined 10 O-antigens on the STECs was detected by the corresponding PoAb with almost no reaction to the other PoAbs. The detected STECs were sufficiently removed from the PoAbs using gelatin or agarose gel without deactivation of the PoAbs, enabling repeatable use of the sensor chip. The developed SPR-immunosensor can be applied for the detection of multiple STEC O-antigens. Furthermore, the new antigen removal technique using the gel displacement approach can be utilized with various immunosensors to improve the detection of pathogens in clinical and public health settings.
Collapse
Affiliation(s)
- Tomomi Yamasaki
- Advanced Science, Technology & Management Research Institute of Kyoto , Shimogyo-ku, Kyoto 600-8813, Japan
| | - Shiro Miyake
- Advanced Science, Technology & Management Research Institute of Kyoto , Shimogyo-ku, Kyoto 600-8813, Japan.,Research & Development Division, HORIBA, Ltd., Minami-ku, Kyoto 601-8510, Japan
| | - Satoshi Nakano
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine , Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroyuki Morimura
- Research & Development Division, HORIBA, Ltd., Minami-ku, Kyoto 601-8510, Japan
| | - Yuki Hirakawa
- Advanced Science, Technology & Management Research Institute of Kyoto , Shimogyo-ku, Kyoto 600-8813, Japan
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine , Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoshio Iijima
- Department of Microbiology, Kobe Institute of Health , Chuo-ku, Kobe 650-0046, Japan
| | - Hiroshi Narita
- Department of Food and Nutrition, Kyoto Women's University , Higashiyama-ku, Kyoto 605-8501, Japan
| | - Satoshi Ichiyama
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine , Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
19
|
Trammell SA, Nita R, Martin B, Moore MH, Fontana J, Talebzadeh S, Knight DA. Photo-enhanced hydrolysis of bis(4-nitrophenyl) phosphate using Cu(ii) bipyridine-capped plasmonic nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra07119h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A 1000-fold increase in the rate of BNPP hydrolysis occurs under green laser irradiation of a copper(ii) complex on gold.
Collapse
Affiliation(s)
- Scott A. Trammell
- Center for Bio/Molecular Science and Engineering
- Code 6900
- US Naval Research Laboratory
- Washington
- USA
| | - Rafaela Nita
- Chemistry Department
- Florida Institute of Technology
- Melbourne
- USA
| | - Brett Martin
- Center for Bio/Molecular Science and Engineering
- Code 6900
- US Naval Research Laboratory
- Washington
- USA
| | - Martin H. Moore
- Center for Bio/Molecular Science and Engineering
- Code 6900
- US Naval Research Laboratory
- Washington
- USA
| | - Jake Fontana
- Center for Bio/Molecular Science and Engineering
- Code 6900
- US Naval Research Laboratory
- Washington
- USA
| | | | | |
Collapse
|
20
|
Hirakawa Y, Yamasaki T, Harada A, Ohtake T, Adachi K, Iwasa S, Narita H, Miyake S. Analysis of the Fungicide Boscalid in Horticultural Crops Using an Enzyme-Linked Immunosorbent Assay and an Immunosensor Based on Surface Plasmon Resonance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8075-8082. [PMID: 26340386 DOI: 10.1021/acs.jafc.5b03637] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A direct competitive enzyme-linked immunosorbent assay (dc-ELISA) and an immunosensor based on surface plasmon resonance (SPR-sensor) were developed for fungicide boscalid determination in horticultural crops. To produce antiboscalid monoclonal antibodies (MoAb BSC7 and MoAb BSC72) for these assays, a hapten of boscalid was synthesized and conjugated to keyhole limpet hemocyanin for Balb/c mouse immunization. The working range of the dc-ELISA was 0.8-16 ng/mL with MoAb BSC7 and 2.5-120 ng/mL with MoAb BSC72, and that of the SPR-sensor was 17-80 ng/mL with MoAb BSC7. The dc-ELISA and SPR-sensor were compared for their sensitivity in determining boscalid residues at the maximum residue limit of 1-40 mg/kg for horticultural crops in Japan. Recovery of the spiked boscalid was 85-109% by the SPR-sensor and 100-124% by the dc-ELISA. On real tomato samples, the results obtained by both of these immunoassays correlated well with the results obtained by high-performance liquid chromatography.
Collapse
Affiliation(s)
- Yuki Hirakawa
- Advanced Scientific Technology & Management Research Institute of Kyoto , Shimogyo-ku, Kyoto 600-8813, Japan
| | - Tomomi Yamasaki
- Advanced Scientific Technology & Management Research Institute of Kyoto , Shimogyo-ku, Kyoto 600-8813, Japan
| | - Ayako Harada
- Toyohashi University of Technology , Toyohashi, Aichi 441-8580, Japan
| | - Toshiya Ohtake
- Aichi Agricultural Research Center , Nagakute, Aichi 480-1193, Japan
| | - Kayo Adachi
- Aichi Science & Technology Foundation , Toyota, Aichi 470-0356, Japan
| | - Seiji Iwasa
- Toyohashi University of Technology , Toyohashi, Aichi 441-8580, Japan
| | - Hiroshi Narita
- Kyoto Women's University , Higashiyama-ku, Kyoto 605-8501, Japan
| | - Shiro Miyake
- Advanced Scientific Technology & Management Research Institute of Kyoto , Shimogyo-ku, Kyoto 600-8813, Japan
- Research & Development Division, Horiba, Ltd. , Minami-ku, Kyoto 601-8510, Japan
| |
Collapse
|