1
|
Zhang Q, Yuan Y, Cao S, Kang N, Qiu F. Withanolides: Promising candidates for cancer therapy. Phytother Res 2024; 38:1104-1158. [PMID: 38176694 DOI: 10.1002/ptr.8090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Natural products have played a significant role throughout history in the prevention and treatment of numerous diseases, particularly cancers. As a natural product primarily derived from various medicinal plants in the Withania genus, withanolides have been shown in several studies to exhibit potential activities in cancer treatment. Consequently, understanding the molecular mechanism of withanolides could herald the discovery of new anticancer agents. Withanolides have been studied widely, especially in the last 20 years, and attracted the attention of numerous researchers. Currently, over 1200 withanolides have been classified, with approximately a quarter of them having been reported in the literature to be able to modulate the survival and death of cancer cells through multiple avenues. To what extent, though, has the anticancer effects of these compounds been studied? How far are they from being developed into clinical drugs? What are their potential, characteristic features, and challenges? In this review, we elaborate on the current knowledge of natural compounds belonging to this class and provide an overview of their natural sources, anticancer activity, mechanism of action, molecular targets, and implications for anticancer drug research. In addition, direct targets and clinical research to guide the design and implementation of future preclinical and clinical studies to accelerate the application of withanolides have been highlighted.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - YongKang Yuan
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Shijie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Ning Kang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Feng Qiu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
2
|
Zhang JF, Wu SF, Zhu L, Cai YX, Yu ZP, Kong LY, Luo JG. Withanolides from Physalis angulata var. villosa and the Relative Configurational Revision of Some Known Analogs. JOURNAL OF NATURAL PRODUCTS 2024; 87:38-49. [PMID: 38207331 DOI: 10.1021/acs.jnatprod.3c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Physalis angulata var. villosa is a plant possessing abundant withanolides, but in-depth research is lacking. In our ongoing study of P. angulata var. villosa, 15 previously undescribed withanolides (1-15), along with 21 known analogs (16-36), were isolated from the whole plant. The structures of the withanolides (1-15) were elucidated based on analysis of their 1D and 2D NMR, HRESIMS, and ECD data. Additionally, the application of γ-gauche effects with the help of ROESY correlations led to the formulation of empirical rules for withanolides with 14-OH/15-OAc to rapidly determine the 14-OH orientations, making it possible to propose configurational revisions of 19 previously reported analogs (1'-19'). Withanolides 1, 4-6, and 10 showed potent cytotoxic activities against three human cancer cell lines (HCT-116, MDA-MB-231, and A549).
Collapse
Affiliation(s)
- Jian-Fei Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Si-Fang Wu
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ling Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yu-Xing Cai
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Zhan-Peng Yu
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Jian-Guang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
3
|
Zhang Z, Yang Y, Xu Y, Liu Y, Li H, Chen L. Molecular targets and mechanisms of anti-cancer effects of withanolides. Chem Biol Interact 2023; 384:110698. [PMID: 37690745 DOI: 10.1016/j.cbi.2023.110698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/18/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Withanolides are a class of natural products with a steroidal lactone structure that exhibit a broad spectrum of anti-cancer effects. To date, several studies have shown that their possible mechanisms in cancer development and progression are associated with the regulation of cell proliferation, apoptosis, metastasis, and angiogenesis. Withanolides can also attenuate inflammatory responses, as well as modulate the genomic instability and energy metabolism of cancer cells. In addition, they may improve the safety and efficacy of cancer treatments as adjuvants to traditional cancer therapeutics. Herein, we summarize the molecular targets and mechanisms of withanolides in different cancers, as well as their current clinical studies on them.
Collapse
Affiliation(s)
- Zhiruo Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yueying Yang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
4
|
Yuan-Ce L, Yu-Yan P, Qi Z, Hong-Yang Z, Yan-Wen W, Yu-Mei S, Guang-Zhi Z, Jun-Lin Y. Physalis pubescens L. branch and leaf extracts inhibit lymphoma proliferation by inducing apoptosis and cell cycle arrest. Front Pharmacol 2023; 14:1192225. [PMID: 37554986 PMCID: PMC10404818 DOI: 10.3389/fphar.2023.1192225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/04/2023] [Indexed: 08/10/2023] Open
Abstract
Physalis pubescens L. is an annual or perennial plant in the family Solanaceae It is used in traditional medicine for treating sore throats, coughs, urinary discomfort, and astringent pain, and externally for pemphigus and eczema in northern China. The proliferation inhibitory activity and mechanisms of the ethyl acetate extract (PHY-EA) from the leaves of Physalis pubescens were investigated. High performance liquid chromatography was used to identify the chemical composition of PHY-EA; sulforhodamine B was used to detect the proliferation inhibitory effect of PHY-EA on MCF-7, CA-46, Hela, HepG2, B16, and other tumor cells; flow cytometry was used to detect the effect of PHY-EA on the lymphoma cell cycle and apoptosis; Western blot was used to detect the expression of the cycle- and apoptosis-related proteins. The expression of Ki-67 and cleaved caspase 3 was detected by immunohistochemistry. The results showed that PHY-EA contained physalin B, physalin O, and physalin L. PHY-EA blocked the cell cycle of G2/M→G0/G1 in lymphoma cells and induced apoptosis in tumor cells. Mouse transplantation tumor experiments showed that PHY-EA had a significant inhibitory effect on mouse transplantation tumors, and the tumor volume and weight were significantly reduced. In conclusion, PHY-EA has a good antiproliferative effect on Burkkit lymphoma, indicating its potential medicinal value.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zeng Guang-Zhi
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Yin Jun-Lin
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| |
Collapse
|
5
|
Zhu X, Chen X, Wang G, Lei D, Chen X, Lin K, Li M, Lin H, Li D, Zheng Q. Picropodophyllin Inhibits the Proliferation of Human Prostate Cancer DU145 and LNCaP Cells <i>via</i> ROS Production and PI3K/AKT Pathway Inhibition. Biol Pharm Bull 2022; 45:1027-1035. [DOI: 10.1248/bpb.b21-01006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Xuejie Zhu
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| | - Xiaojie Chen
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| | - Guoli Wang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| | - Dan Lei
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| | - Xiaoyu Chen
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| | - Kehao Lin
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| | - Minjing Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| | - Haiyan Lin
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| | - Defang Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| | - Qiusheng Zheng
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| |
Collapse
|
6
|
Kowalczyk T, Merecz-Sadowska A, Rijo P, Mori M, Hatziantoniou S, Górski K, Szemraj J, Piekarski J, Śliwiński T, Bijak M, Sitarek P. Hidden in Plants-A Review of the Anticancer Potential of the Solanaceae Family in In Vitro and In Vivo Studies. Cancers (Basel) 2022; 14:1455. [PMID: 35326606 PMCID: PMC8946528 DOI: 10.3390/cancers14061455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Many of the anticancer agents that are currently in use demonstrate severe side effects and encounter increasing resistance from the target cancer cells. Thus, despite significant advances in cancer therapy in recent decades, there is still a need to discover and develop new, alternative anticancer agents. The plant kingdom contains a range of phytochemicals that play important roles in the prevention and treatment of many diseases. The Solanaceae family is widely used in the treatment of various diseases, including cancer, due to its bioactive ingredient content. The purpose of this literature review is to highlight the antitumour activity of Solanaceae extracts-single isolated compounds and nanoparticles with extracts-and their synergistic effect with chemotherapeutic agents in various in vitro and in vivo cancer models. In addition, the biological properties of many plants of the Solanaceae family have not yet been investigated, which represents a challenge and an opportunity for future anticancer therapy.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| | - Patricia Rijo
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisbon, Portugal;
- iMed.ULisboa—Research Institute for Medicines, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Sophia Hatziantoniou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Karol Górski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Janusz Piekarski
- Department of Surgical Oncology, Chair of Oncology, Medical University in Lodz, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, 93-513 Lodz, Poland;
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland
| |
Collapse
|
7
|
Abstract
Covering: March 2010 to December 2020. Previous review: Nat. Prod. Rep., 2011, 28, 705This review summarizes the latest progress and perspectives on the structural classification, biological activities and mechanisms, metabolism and pharmacokinetic investigations, biosynthesis, chemical synthesis and structural modifications, as well as future research directions of the promising natural withanolides. The literature from March 2010 to December 2020 is reviewed, and 287 references are cited.
Collapse
Affiliation(s)
- Gui-Yang Xia
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China. .,Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shi-Jie Cao
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
| | - Li-Xia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Feng Qiu
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
8
|
Bai B, Chen Q, Jing R, He X, Wang H, Ban Y, Ye Q, Xu W, Zheng C. Molecular Basis of Prostate Cancer and Natural Products as Potential Chemotherapeutic and Chemopreventive Agents. Front Pharmacol 2021; 12:738235. [PMID: 34630112 PMCID: PMC8495205 DOI: 10.3389/fphar.2021.738235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the second most common malignant cancer in males. It involves a complex process driven by diverse molecular pathways that closely related to the survival, apoptosis, metabolic and metastatic characteristics of aggressive cancer. Prostate cancer can be categorized into androgen dependent prostate cancer and castration-resistant prostate cancer and cure remains elusive due to the developed resistance of the disease. Natural compounds represent an extraordinary resource of structural scaffolds with high diversity that can offer promising chemical agents for making prostate cancer less devastating and curable. Herein, those natural compounds of different origins and structures with potential cytotoxicity and/or in vivo anti-tumor activities against prostate cancer are critically reviewed and summarized according to the cellular signaling pathways they interfere. Moreover, the anti-prostate cancer efficacy of many nutrients, medicinal plant extracts and Chinese medical formulations were presented, and the future prospects for the application of these compounds and extracts were discussed. Although the failure of conventional chemotherapy as well as involved serious side effects makes natural products ideal candidates for the treatment of prostate cancer, more investigations of preclinical and even clinical studies are necessary to make use of these medical substances reasonably. Therefore, the elucidation of structure-activity relationship and precise mechanism of action, identification of novel potential molecular targets, and optimization of drug combination are essential in natural medicine research and development.
Collapse
Affiliation(s)
- Bingke Bai
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Qianbo Chen
- Department of Anesthesiology, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Rui Jing
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yanfei Ban
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Qi Ye
- Department of Biological Science, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiheng Xu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
9
|
Ghazy E, Taghi HS. The Autophagy-Inducing Mechanisms of Vitexin, Cinobufacini, and Physalis alkekengi Hydroalcoholic Extract against Breast Cancer in vitro and in vivo. J Gastrointest Cancer 2021; 53:592-596. [PMID: 34287803 DOI: 10.1007/s12029-021-00668-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Owing to inefficiency of chemotherapy towards cancer treatment, formulation and application of herbal drug compounds will open new avenues with this regard. In this study, the anticancer effects of itexin, cinobufacini, and Physalis alkekengi (P. alkekengi) were assessed. METHODS Herein, synergistic effects of vitexin, cinobufacini, and P. alkekengi hydroalcoholic extract were assessed against estrogen-receptor (EGFR2)-positive breast cancer mouse model. Sixty ER + breast cancer BALB/c mice (six groups each including ten members) were included. The anticancer effects of P. alkekengi hydroalcoholic extract, vitexin, and cinobufacini were administered against EGFR2 cancerous cells for 14 days. The tumor size, cytotoxic effects, and expression of Beclin-1, LC3-II, and ATG5 autophagy-related genes were investigated using RT-qPCR technique. The data was analyzed using chi-square, ANOVA, and multinomial logistic regression tests. KEY FINDINGS The 50% lethal dose (LD50) of P. alkekengi and vitexin against the breast cancer cells included 12 mg/kg, respectively, while cinobufacini LD50 was 24 mg/kg but had no toxicity against CRL7242 breast normal cells. Furthermore, 24 mg/kg of the P. alkekengi, vitexin, and cinobufacini significantly increased the ATG5, Beclin-1, and LC3-II gene expression. CONCLUSION Considering anticancer effects of P. alkekengi, vitexin, and cinobufacini against breast cancer through induction of the autophagy pathway, the compound formulations can be applied as anticancer therapies.
Collapse
Affiliation(s)
- Esraa Ghazy
- Department of Pharmacy, Al-Rasheed University College, Baghdad, Iraq.
| | | |
Collapse
|
10
|
Dai C, Shen L, Jin W, Lv B, Liu P, Wang X, Yin Y, Fu Y, Liang L, Ma Z, Zhang X, Wang Y, Xu D, Chen Z. Physapubescin B enhances the sensitivity of gastric cancer cells to trametinib by inhibiting the STAT3 signaling pathway. Toxicol Appl Pharmacol 2020; 408:115273. [PMID: 33035574 DOI: 10.1016/j.taap.2020.115273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/24/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
Abstract
Given the poor prognosis of unresectable advanced gastric cancer (GC), novel therapeutic strategies are needed. The mitogen-activated protein kinase (MAPK) signaling cascade, the most frequently activated pathway in GC, plays an important role in tumorigenesis and metastasis. The MAPK/extracellular signal-regulated kinase (ERK) pathway is an attractive therapeutic target for GC. In this study, trametinib, a mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) inhibitor, reduced the p-ERK level and significantly increased signal transducer and activator of transcription 3 (STAT3) phosphorylation in GC cells, resulting in reduced sensitivity to trametinib. Physapubescin B (PB), a steroidal compound extracted from the plant Physalis pubescens L., inhibited the proliferation and induced the apoptosis of GC cells by suppressing STAT3 phosphorylation. The combination of PB and trametinib suppressed the STAT3 phosphorylation induced by trametinib, and synergistically suppressed gastric tumor growth in vitro and in vivo. Together, these results indicate that inhibition of both MEK and STAT3 may be effective for patients with MAPK/ERK pathway-addicted GC.
Collapse
Affiliation(s)
- Chunyan Dai
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou 310006, China
| | - Li Shen
- Institute of Basic Theory of TCM, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weiyang Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310006, China
| | - Bing Lv
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou 310006, China
| | - Pei Liu
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou 310006, China
| | - Xi Wang
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou 310006, China
| | - Yifei Yin
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou 310006, China
| | - Yufei Fu
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou 310006, China
| | - Liguo Liang
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou 310006, China
| | - Zhongjun Ma
- School of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China
| | - Xiaojian Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yiping Wang
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou 310006, China.
| | - Daogun Xu
- Department of Colorectal Surgery, Wenling Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Wenling, China.
| | - Zhe Chen
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou 310006, China.
| |
Collapse
|
11
|
Wang C, Li S, Zhao J, Yang H, Yin F, Ding M, Luo J, Wang X, Kong L. Design and SAR of Withangulatin A Analogues that Act as Covalent TrxR Inhibitors through the Michael Addition Reaction Showing Potential in Cancer Treatment. J Med Chem 2020; 63:11195-11214. [DOI: 10.1021/acs.jmedchem.0c01128] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Cheng Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Shang Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Jinhua Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Huali Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Fucheng Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Ming Ding
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Jianguang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| |
Collapse
|
12
|
Gephyromycin C, a novel small-molecule inhibitor of heat shock protein Hsp90, induces G2/M cell cycle arrest and apoptosis in PC3 cells in vitro. Biochem Biophys Res Commun 2020; 531:377-382. [PMID: 32800334 DOI: 10.1016/j.bbrc.2020.07.096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022]
Abstract
Gephyromycin C (GC), a natural compound isolated from a marine-derived actinomycete Streptomyces sp. SS13I, which exerts anti-proliferative effect on PC3 cells. However, its underlying mechanism of the anti-cancer effect remains unknown. The results of SRB assays showed that GC inhibited the proliferation of PC3 cells with an IC50 value of 1.79 ± 0.28 μM. GC also induced G2/M cell cycle arrest which was accompanied by declining levels of cyclin proteins. Possible mechanisms were investigated and it was found that GC bound to Hsp90 and caused the degradation of Hsp90 client proteins (AKT, CHK1, P53, CDK4, Raf-b, and Raf-1). The fluorescent polarization assay with FITC-labeled geldanamycin (FITC-GA) demonstrated that GC was able to compete with FITC-GA in binding to wild type Hsp90 with an IC50 of 2.15 μM. Results of a docking study also suggested that GC interacted with the N-terminal domain of Hsp90. Our results showed that GC could bind to Hsp90, which resulted in down-regulation of Hsp90 client proteins and G2/M arrest in PC3 cells. Since the antitumor effects of this kind of angucycline via targeting Hsp90 has not been reported before, our results indicate that GC is a novel inhibitor of Hsp90 from marine resources and worthy of further study.
Collapse
|
13
|
Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O. Phytochemicals in Cancer Treatment: From Preclinical Studies to Clinical Practice. Front Pharmacol 2020; 10:1614. [PMID: 32116665 PMCID: PMC7025531 DOI: 10.3389/fphar.2019.01614] [Citation(s) in RCA: 435] [Impact Index Per Article: 108.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/10/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer is a severe health problem that continues to be a leading cause of death worldwide. Increasing knowledge of the molecular mechanisms underlying cancer progression has led to the development of a vast number of anticancer drugs. However, the use of chemically synthesized drugs has not significantly improved the overall survival rate over the past few decades. As a result, new strategies and novel chemoprevention agents are needed to complement current cancer therapies to improve efficiency. Naturally occurring compounds from plants known as phytochemicals, serve as vital resources for novel drugs and are also sources for cancer therapy. Some typical examples include taxol analogs, vinca alkaloids such as vincristine, vinblastine, and podophyllotoxin analogs. These phytochemicals often act via regulating molecular pathways which are implicated in growth and progression of cancer. The specific mechanisms include increasing antioxidant status, carcinogen inactivation, inhibiting proliferation, induction of cell cycle arrest and apoptosis; and regulation of the immune system. The primary objective of this review is to describe what we know to date of the active compounds in the natural products, along with their pharmacologic action and molecular or specific targets. Recent trends and gaps in phytochemical based anticancer drug discovery are also explored. The authors wish to expand the phytochemical research area not only for their scientific soundness but also for their potential druggability. Hence, the emphasis is given to information about anticancer phytochemicals which are evaluated at preclinical and clinical level.
Collapse
Affiliation(s)
- Amit S Choudhari
- Combi-Chem Bio-Resource Center, Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
| | - Pallavi C Mandave
- Interactive Research School of Health Affairs, Bharati Vidyapeeth Deemed University, Pune, India
| | - Manasi Deshpande
- Department of Dravyaguna Vigan, Ayurved Pharmacology, College of Ayurved, Bharati Vidyapeeth Deemed University, Pune, India
| | | | - Om Prakash
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
14
|
Phosphatases and solid tumors: focus on glioblastoma initiation, progression and recurrences. Biochem J 2017; 474:2903-2924. [PMID: 28801478 DOI: 10.1042/bcj20170112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 12/15/2022]
Abstract
Phosphatases and cancer have been related for many years now, as these enzymes regulate key cellular functions, including cell survival, migration, differentiation and proliferation. Dysfunctions or mutations affecting these enzymes have been demonstrated to be key factors for oncogenesis. The aim of this review is to shed light on the role of four different phosphatases (PTEN, PP2A, CDC25 and DUSP1) in five different solid tumors (breast cancer, lung cancer, pancreatic cancer, prostate cancer and ovarian cancer), in order to better understand the most frequent and aggressive primary cancer of the central nervous system, glioblastoma.
Collapse
|
15
|
Zhao X, Huang L, Xu W, Chen X, Shen Y, Zeng W, Chen X. Physapubescin B inhibits tumorgenesis and circumvents taxol resistance of ovarian cancer cells through STAT3 signaling. Oncotarget 2017; 8:70130-70141. [PMID: 29050266 PMCID: PMC5642541 DOI: 10.18632/oncotarget.19593] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/28/2017] [Indexed: 01/05/2023] Open
Abstract
Ovarian cancer is the most lethal gynaecological malignancy. Recurrence and subsequent resistance to chemotherapy have become major obstacles to treating these diseases. In the present study, we showed that a natural withanolide isolated from the plant Physalis pubescens L. (Solanaceae), Physapubescin B, exhibited potent anti-tumor activity against ovarian cancer cells. Physapubescin B promoted apoptosis, induced cell-cycle arrest and inhibited invasion of ES-2 and A2780 cells. Physapubescin B treatment also resulted in suppression of the transcriptional activity of STAT3, an oncogenic transcription factor activated in many human malignancies including ovarian cancer, through disturbing the dimerization of STAT3, and thereby inhibited the nuclear translocation of Tyr705/Ser727-phosphorylated STAT3. The IL-6-stimulated activation of STAT3 and its downstream genes Cyclin D1, survivin, and Bcl-xL was also repressed by Physapubescin B. Furthermore, Physapubescin B sensitizes A2780 cells to taxol-induced cell growth inhibition in vitro. These findings strongly suggest that Physapubescin B has potential antitumor activity and may circumvent taxol resistance in human ovarian cancer cells through inhibition of aberrant activation of STAT3.
Collapse
Affiliation(s)
- Xiaofeng Zhao
- Department of Gynecology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang Province, China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Lu Huang
- Department of Gynecology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang Province, China
| | - Wanwan Xu
- Department of Gynecology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang Province, China.,Bengbu Medical College, Bengbu, Anhui Province, China
| | - Xiaoyan Chen
- Department of Gynecology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang Province, China
| | - Yan Shen
- Department of Gynecology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang Province, China
| | - Wenjie Zeng
- Department of Gynecology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang Province, China
| | - Xiao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
16
|
Xu J, Wu Y, Lu G, Xie S, Ma Z, Chen Z, Shen HM, Xia D. Importance of ROS-mediated autophagy in determining apoptotic cell death induced by physapubescin B. Redox Biol 2017; 12:198-207. [PMID: 28258023 PMCID: PMC5333534 DOI: 10.1016/j.redox.2017.02.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 10/26/2022] Open
Abstract
Physapubescin B, a steroidal compound extracted from the plant Physalis pubescens L. (Solanaceae), has been reported to possess anti-cancer potential, whereas the molecular mechanism remains elusive. In this study, we first demonstrated that physapubescin B induced autophagy in human cancer cells based on the evidence that physapubescin B increased lipidation of microtubule-associated protein 1 light chain 3 (LC3) as well as number of GFP-LC3 puncta. We further examined the molecular mechanisms and found that physapubescin B enhanced the autophagic flux through promotion of reactive oxygen species (ROS)-mediated suppression of mammalian target of rapamycin complex I (mTORC1), the key negative regulator of autophagy. Additionally, excessive ROS caused by physapubescin B also induced p53-dependent apoptotic cell death. Furthermore, we provided evidence that inhibition of autophagy either by a chemical inhibitor or gene silencing promoted physapubescin B-induced apoptotic cell death, indicating that autophagy serves as a cell survival mechanism to protect cell death. Thus, our data provide a clue that inhibition of autophagy would serve as a novel strategy for enhancing the anti-cancer potential of physapubescin B.
Collapse
Affiliation(s)
- Jian Xu
- Department of Toxicology, School of Public Health, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China
| | - Yihua Wu
- Department of Toxicology, School of Public Health, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China
| | - Guang Lu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shujun Xie
- Department of Toxicology, School of Public Health, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China
| | - Zhongjun Ma
- School of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China
| | - Zhe Chen
- Chinese Traditional Medicine Hospital of Zhejiang Province, No. 54 You-Dian Road, Hangzhou 310006, PR China
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Dajing Xia
- Department of Toxicology, School of Public Health, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China.
| |
Collapse
|
17
|
Qiu C, Yuan T, Sun D, Gao S, Chen L. Stereo- and region-specific biotransformation of physapubescin by four fungal strains. J Nat Med 2017; 71:449-456. [PMID: 28074432 DOI: 10.1007/s11418-016-1068-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/20/2016] [Indexed: 01/28/2023]
Abstract
Biotransformations of physapubescin (1) were performed by four fungal strains-Mucor subtilissimus AS 3.2454, Mucor polymorphosporus AS 3.3443, Aspergillus niger AS 3.795, and Syncephalastrum racemosum AS 3.264. Four metabolites were prepared in the biotransformation process of 1, and their structures were elucidated as 15α-acetoxy-5,6β:22,26:24,25-triepoxy-26α-hydroxy-3β-methoxy 4β-hydroxyergost-1-one (2), 15α-acetoxy-5,6β:22,26-diepoxy-4β,24β,25α,26(α, β)-tetrahydroxyergost-3β-methoxy-1-one (3a/3b), 15α-acetoxy-5,6β:22,26-diepoxy-4β,24β,25α,26(α, β)-tetrahydroxyergost-2-en-1-one (4a/4b), and physapubescin D (5), by spectroscopic data analysis. Among them, metabolites 2 and 3 are new. All of these fungal strains showed the ability to be highly stereo- and region-specific for the bioconversion of substrate (1). Our research provides a reference for the structural derivatization of withanolides or possibly even other natural products.
Collapse
Affiliation(s)
- Chongyue Qiu
- Key Laboratory of Structure-Based Drug Design & Discovery, Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Wuya College of Innovation, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ting Yuan
- Key Laboratory of Structure-Based Drug Design & Discovery, Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Wuya College of Innovation, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Key Laboratory of Structure-Based Drug Design & Discovery, Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Wuya College of Innovation, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Suyu Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Wuya College of Innovation, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lixia Chen
- Key Laboratory of Structure-Based Drug Design & Discovery, Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Wuya College of Innovation, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
18
|
Chen L, Xia G, Qiu F, Wu C, Denmon AP, Zi X. Physapubescin selectively induces apoptosis in VHL-null renal cell carcinoma cells through down-regulation of HIF-2α and inhibits tumor growth. Sci Rep 2016; 6:32582. [PMID: 27581364 PMCID: PMC5007653 DOI: 10.1038/srep32582] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/10/2016] [Indexed: 11/21/2022] Open
Abstract
We have purified physapubescin, a predominant steroidal lactone, from medicinal plant Physalis pubescens L., commonly named as "hairy groundcherry" in English and "Deng-Long-Cao" in Chinese. Von Hippel-Lindau (VHL)-null 786-O, RCC4 and A498 Renal Cell Carcinoma (RCC) cell lines expressing high levels of Hypoxia Inducible Factor (HIF)-2α are more sensitive to physapubescin-mediated apoptosis and growth inhibitory effect than VHL wild-type Caki-2 and ACHN RCC cell lines. Restoration of VHL in RCC4 cells attenuated the growth inhibitory effect of physapubescin. Physapubescin decreases the expression of HIF-2α and increases the expression of CCAAT/enhancer-binding protein homologus protein (CHOP), which leads to up-regulation of death receptor 5 (DR5), activation of caspase-8 and -3, cleavage of poly (ADP-Ribose) polymerase (PARP) and apoptosis. Under hypoxia conditions, the apoptotic and growth inhibitory effects of physapubescin are further enhanced. Additionally, physapubescin synergizes with TNF-related apoptosis-inducing ligand (TRAIL) for markedly enhanced induction of apoptosis in VHL-null 786-O cells but not in VHL wild-type Caki-2 cells. Physapubescin significantly inhibited in vivo angiogenesis in the 786-O xenograft. Physapubescin as a novel agent for elimination of VHL-null RCC cells via apoptosis is warranted for further investigation.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Caspase 3/genetics
- Caspase 3/metabolism
- Caspase 8/genetics
- Caspase 8/metabolism
- Cell Line, Tumor
- Gene Deletion
- Gene Expression Regulation, Neoplastic
- Humans
- Hypoxia/drug therapy
- Hypoxia/genetics
- Hypoxia/metabolism
- Hypoxia/pathology
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Mice
- Mice, Nude
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/prevention & control
- Physalis/chemistry
- Poly(ADP-ribose) Polymerases/genetics
- Poly(ADP-ribose) Polymerases/metabolism
- Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics
- Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism
- Signal Transduction
- TNF-Related Apoptosis-Inducing Ligand/pharmacology
- Transcription Factor CHOP/agonists
- Transcription Factor CHOP/genetics
- Transcription Factor CHOP/metabolism
- Tumor Burden/drug effects
- Von Hippel-Lindau Tumor Suppressor Protein/genetics
- Von Hippel-Lindau Tumor Suppressor Protein/metabolism
- Withanolides/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Lixia Chen
- Departments of Urology and Pharmacology, Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Guiyang Xia
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Feng Qiu
- School of Chinese Materia Medica and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P. R. China
| | - Chunli Wu
- Departments of Urology and Pharmacology, Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA
- Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety and School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, P. R. China
| | - Andria P. Denmon
- Departments of Urology and Pharmacology, Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA
| | - Xiaolin Zi
- Departments of Urology and Pharmacology, Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA
| |
Collapse
|