1
|
Kruk M, Lalowski P, Płecha M, Ponder A, Rudzka A, Zielińska D, Trząskowska M. Prebiotic potential of spent brewery grain - In vitro study. Food Chem 2025; 463:141254. [PMID: 39298848 DOI: 10.1016/j.foodchem.2024.141254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Spent brewery grain (SBG) is a by-product of the brewery industry. The study aimed to investigate the prebiotic potential of SBG. The chemical composition and fermentation capacity of SBG were checked. The gut microbiota response to SBG was assessed in two in vitro models (batch fermentation and dynamic system). Substances with prebiotic properties, including arabinoxylans (16.7 g/100 g) and polyphenols (49.1 mg/100 g), were identified in SBG. Suitable growth and fermentation by probiotic bacteria were observed. The modulatory effect of gut microbiota depends on the in vitro system used. In batch fermentation, there was no stimulation of Bifidobacterium or lactic acid bacteria (LAB), but short-chain fatty acid (SCFA) and branched short-chain fatty acids (BCFA) synthesis increased. In dynamic, SBG exhibited a moderate bifidogenic effect, promoting Akkermansia and LAB growth while reducing Bacteroides and Escherichia-Shigella. SCFA stabilisation and reduction of BCFA content were noted. Moderate prebiotic effects were observed.
Collapse
Affiliation(s)
- Marcin Kruk
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159c, 02-776 Warsaw, Poland.
| | - Piotr Lalowski
- Faculty of Human Nutrition, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159c, 02-776 Warsaw, Poland
| | - Magdalena Płecha
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Adolfa Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Alicja Ponder
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159c, 02-776 Warsaw, Poland
| | - Agnieszka Rudzka
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| | - Dorota Zielińska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159c, 02-776 Warsaw, Poland
| | - Monika Trząskowska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159c, 02-776 Warsaw, Poland.
| |
Collapse
|
2
|
Parsin S, Kaltschmitt M. Processing of hemicellulose in wheat straw by steaming and ultrafiltration - A novel approach. BIORESOURCE TECHNOLOGY 2024; 393:130071. [PMID: 38000637 DOI: 10.1016/j.biortech.2023.130071] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Water-soluble xylans useable for many potential applications can be produced based on the hydrolysis of wheat straw within a fixed bed using saturated steam to provide a xylan-rich hydrolysate low in particles and lignin enabling an effective ultrafiltration and xylan separation. Under defined conditions (180 °C, 10 bar, 35 min), a degree of solubilization of 29.6 % for straw and of 63 % for hemicellulose is achieved. The dry mass of the resulting hydrolysate consists of at least 58 % xylose and arabinose. The xylose is mainly (87 %) present in non-monomeric form and appears to have a broad molecular weight distribution. Ultrafiltration with commercial membranes (4 to 50 kDa) is being investigated for the separation of the target fraction; here significant differences in the filtration behavior and rejections from 9 to 81 % for carbohydrates and from 13 to 48 % for phenolic compounds (lignin), respectively, are found.
Collapse
Affiliation(s)
- Stanislav Parsin
- Hamburg University of Technology (TUHH), Institute of Environmental Technology and Energy Economics (IUE), Eissendorfer Strasse 40, 21073 Hamburg, Germany.
| | - Martin Kaltschmitt
- Hamburg University of Technology (TUHH), Institute of Environmental Technology and Energy Economics (IUE), Eissendorfer Strasse 40, 21073 Hamburg, Germany
| |
Collapse
|
3
|
Leschonski KP, Mortensen MS, Hansen LB, Krogh KB, Kabel MA, Laursen MF. Structure-dependent stimulation of gut bacteria by arabinoxylo-oligosaccharides (AXOS): a review. Gut Microbes 2024; 16:2430419. [PMID: 39611305 PMCID: PMC11610566 DOI: 10.1080/19490976.2024.2430419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/05/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
Arabinoxylo-oligosaccharides (AXOS) are non-digestible dietary fibers that potentially confer a health benefit by stimulating beneficial bacteria in the gut. Still, a detailed overview of the diversity of gut bacteria and their specificity to utilize structurally different AXOS has not been provided to date and was aimed for in this study. Moreover, we assessed the genetic information of summarized bacteria, and we extracted genes expected to encode for enzymes that are involved in AXOS hydrolysis (based on the CAZy database). The taxa involved in AXOS fermentation in the gut display a large variety of AXOS-active enzymes in their genome and consequently utilize AXOS to a highly different extent. Clostridia and Bacteroidales are generalists that consume many structurally diverse AXOS, whereas Bifidobacterium are specialists that specifically consume AXOS with a low degree of polymerization. Further complexity is evident from the fact that the exact bacterial species, and in some cases even the bacterial strains (e.g. in Bifidobacterium longum) that are stimulated, highly depend on the specific AXOS molecular structure. Furthermore, certain species in Bifidobacterium and Lactobacillaceae are active as cross-feeders and consume monosaccharides and unbranched short xylo-oligosaccharides released from AXOS. Our review highlights the possibility that (enzymatic) fine-tuning of specific AXOS structures leads to improved precision in targeting growth of specific beneficial bacterial species and strains in the gut.
Collapse
Affiliation(s)
- Kai P. Leschonski
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
- Novonesis A/S, Kongens Lyngby, Denmark
| | - Martin S. Mortensen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | - Mirjam A. Kabel
- Laboratory of Food Chemistry, Wageningen University, Wageningen, The Netherlands
| | - Martin F. Laursen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
4
|
Fernández-Bautista M, Martínez-Gómez S, Rivas S, Alonso JL, Parajó JC. Advances on Cellulose Manufacture in Biphasic Reaction Media. Int J Mol Sci 2023; 24:12404. [PMID: 37569779 PMCID: PMC10418468 DOI: 10.3390/ijms241512404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Cellulose is produced industrially by the kraft and sulfite processes. The evolution of these technologies in biorefineries is driven by the need to obtain greater added value through the efficient use of raw materials and energy. In this field, organosolv technologies (and within them, those using liquid phases made up of water and one partly miscible organic solvent, known as "biphasic fractionation" in reference to the number of liquid phases) represent an alternative that is receiving increasing interest. This study considers basic aspects of the composition of lignocellulosic materials, describes the fundamentals of industrial cellulose pulp production processes, introduces the organosolv methods, and comprehensively reviews published results on organosolv fractionation based on the use of media containing water and an immiscible solvent (1-butanol, 1-pentanol or 2-methyltetrahydrofuran). Special attention is devoted to aspects related to cellulose recovery and fractionation selectivity, measured through the amount and composition of the treated solids.
Collapse
Affiliation(s)
- Marcos Fernández-Bautista
- Faculty of Science, Chemical Engineering Department, University of Vigo (Campus Ourense), Polytechnical Building, As Lagoas, 32004 Ourense, Spain; (M.F.-B.); (S.M.-G.); (S.R.); (J.L.A.)
- CINBIO, University of Vigo (Campus Lagoas-Marcosende), 36310 Vigo, Spain
| | - Sergio Martínez-Gómez
- Faculty of Science, Chemical Engineering Department, University of Vigo (Campus Ourense), Polytechnical Building, As Lagoas, 32004 Ourense, Spain; (M.F.-B.); (S.M.-G.); (S.R.); (J.L.A.)
- CINBIO, University of Vigo (Campus Lagoas-Marcosende), 36310 Vigo, Spain
| | - Sandra Rivas
- Faculty of Science, Chemical Engineering Department, University of Vigo (Campus Ourense), Polytechnical Building, As Lagoas, 32004 Ourense, Spain; (M.F.-B.); (S.M.-G.); (S.R.); (J.L.A.)
- CINBIO, University of Vigo (Campus Lagoas-Marcosende), 36310 Vigo, Spain
| | - José Luis Alonso
- Faculty of Science, Chemical Engineering Department, University of Vigo (Campus Ourense), Polytechnical Building, As Lagoas, 32004 Ourense, Spain; (M.F.-B.); (S.M.-G.); (S.R.); (J.L.A.)
- CINBIO, University of Vigo (Campus Lagoas-Marcosende), 36310 Vigo, Spain
| | - Juan Carlos Parajó
- Faculty of Science, Chemical Engineering Department, University of Vigo (Campus Ourense), Polytechnical Building, As Lagoas, 32004 Ourense, Spain; (M.F.-B.); (S.M.-G.); (S.R.); (J.L.A.)
- CINBIO, University of Vigo (Campus Lagoas-Marcosende), 36310 Vigo, Spain
| |
Collapse
|
5
|
Battistini C, Herkenhoff ME, de Souza Leite M, Vieira ADS, Bedani R, Saad SMI. Brewer's Spent Grain Enhanced the Recovery of Potential Probiotic Strains in Fermented Milk After Exposure to In Vitro-Simulated Gastrointestinal Conditions. Probiotics Antimicrob Proteins 2023; 15:326-337. [PMID: 34491541 DOI: 10.1007/s12602-021-09839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 11/28/2022]
Abstract
Brewer's spent grain (BSG) is a beer industry by-product with interesting functional properties by its high fiber content and bioactive compounds, which may be possibly employed as a prebiotic ingredient. The fermentability of BSG by ten probiotics and two starter cultures was evaluated, and the co-culture of Lacticaseibacillus paracasei subsp. paracasei F-19® (probiotic) and Streptococcus thermophilus TH-4® (starter) was selected to produce a potentially probiotic fermented milk (FM). Four formulations of FM were studied: FM1 (control), FM2 (probiotic - /BSG +), FM3 (probiotic + /BSG -), and FM4 (probiotic + /BSG +). The viability of the microorganisms in the FM was monitored throughout 28 days of storage. The resistance of the microorganisms in the FM to in vitro-simulated gastrointestinal tract (GIT) conditions was also evaluated. Even though the BSG did not influence the fermentation kinetics or increase the populations of both microorganisms in the FM, a significant improvement on the survival of TH-4® against in vitro-simulated GIT stress was observed in the formulations containing BSG alone or in combination with F-19®. All formulations showed potential as probiotic FM, since total probiotic populations were kept above 1010 CFU in a daily portion of 200 mL, and a minimum of 1010 and 108 CFU equivalent of, respectively, TH-4® and F-19® was recovered after the GIT stress. Therefore, TH-4® has potential as a probiotic strain in addition to its starter feature, while BSG may be employed as a possible prebiotic ingredient in a synbiotic approach. Nonetheless, further studies to evaluate possible health benefits are needed.
Collapse
Affiliation(s)
- Carolina Battistini
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (Universidade de São Paulo, USP), São Paulo, Av. Professor Lineu Prestes, SP, 58005508-000, Brazil.
- Food Research Center FoRC, University of São Paulo (USP), Rua Do Lago, 250, Ed. Semi Industrial, Bloco C, São Paulo, SP, 05508-000, Brazil.
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois At Chicago, Chicago, 840 S Wood Street, Room 1044 CSB, IL, 60612, USA.
| | - Marcos Edgar Herkenhoff
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (Universidade de São Paulo, USP), São Paulo, Av. Professor Lineu Prestes, SP, 58005508-000, Brazil
- Food Research Center FoRC, University of São Paulo (USP), Rua Do Lago, 250, Ed. Semi Industrial, Bloco C, São Paulo, SP, 05508-000, Brazil
| | - Marcela de Souza Leite
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (Universidade de São Paulo, USP), São Paulo, Av. Professor Lineu Prestes, SP, 58005508-000, Brazil
- Food Research Center FoRC, University of São Paulo (USP), Rua Do Lago, 250, Ed. Semi Industrial, Bloco C, São Paulo, SP, 05508-000, Brazil
| | - Antonio Diogo Silva Vieira
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (Universidade de São Paulo, USP), São Paulo, Av. Professor Lineu Prestes, SP, 58005508-000, Brazil
- Food Research Center FoRC, University of São Paulo (USP), Rua Do Lago, 250, Ed. Semi Industrial, Bloco C, São Paulo, SP, 05508-000, Brazil
| | - Raquel Bedani
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (Universidade de São Paulo, USP), São Paulo, Av. Professor Lineu Prestes, SP, 58005508-000, Brazil
- Food Research Center FoRC, University of São Paulo (USP), Rua Do Lago, 250, Ed. Semi Industrial, Bloco C, São Paulo, SP, 05508-000, Brazil
| | - Susana Marta Isay Saad
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (Universidade de São Paulo, USP), São Paulo, Av. Professor Lineu Prestes, SP, 58005508-000, Brazil.
- Food Research Center FoRC, University of São Paulo (USP), Rua Do Lago, 250, Ed. Semi Industrial, Bloco C, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
6
|
Bamigbade GB, Subhash AJ, Kamal-Eldin A, Nyström L, Ayyash M. An Updated Review on Prebiotics: Insights on Potentials of Food Seeds Waste as Source of Potential Prebiotics. Molecules 2022; 27:molecules27185947. [PMID: 36144679 PMCID: PMC9505924 DOI: 10.3390/molecules27185947] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 01/19/2023] Open
Abstract
Prebiotics are a group of biological nutrients that are capable of being degraded by microflora in the gastrointestinal tract (GIT), primarily Lactobacilli and Bifidobacteria. When prebiotics are ingested, either as a food additive or as a supplement, the colonic microflora degrade them, producing short-chain fatty acids (SCFA), which are simultaneously released in the colon and absorbed into the blood circulatory system. The two major groups of prebiotics that have been extensively studied in relation to human health are fructo-oligosaccharides (FOS) and galactooligosaccharides (GOS). The candidature of a compound to be regarded as a prebiotic is a function of how much of dietary fiber it contains. The seeds of fruits such as date palms have been reported to contain dietary fiber. An increasing awareness of the consumption of fruits and seeds as part of the daily diet, as well as poor storage systems for seeds, have generated an enormous amount of seed waste, which is traditionally discarded in landfills or incinerated. This cultural practice is hazardous to the environment because seed waste is rich in organic compounds that can produce hazardous gases. Therefore, this review discusses the potential use of seed wastes in prebiotic production, consequently reducing the environmental hazards posed by these wastes.
Collapse
Affiliation(s)
- Gafar Babatunde Bamigbade
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
| | - Athira Jayasree Subhash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
| | - Afaf Kamal-Eldin
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
| | - Laura Nyström
- Department of Health Science and Technology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
- Correspondence:
| |
Collapse
|
7
|
Li X, Peng B, Chi-Keung Cheung P, Wang J, Zheng X, You L. Depolymerized non-digestible sulfated algal polysaccharides produced by hydrothermal treatment with enhanced bacterial fermentation characteristics. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
Bonifácio-Lopes T, Catarino MD, Vilas-Boas AA, Ribeiro TB, Campos DA, Teixeira JA, Pintado M. Impact of Circular Brewer’s Spent Grain Flour after In Vitro Gastrointestinal Digestion on Human Gut Microbiota. Foods 2022; 11:foods11152279. [PMID: 35954046 PMCID: PMC9368080 DOI: 10.3390/foods11152279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022] Open
Abstract
Brewer’s spent grain (BSG) solid residues are constituted by dietary fibre, protein, sugars, and polyphenols, which can have potential effects on human health. In this study, for the first time, the flours obtained from solid residues of solid-liquid extraction (SLE) and ohmic heating extraction (OHE) were applied throughout the gastrointestinal digestion simulation (GID), in order to evaluate their prebiotic potential and in vitro human gut microbiota fermentation. The results showed that the digestion of BSG flours obtained by the different methods lead to an increase throughout the GID of total phenolic compounds (SLE: from 2.27 to 7.20 mg gallic acid/g BSG—60% ethanol:water (v/v); OHE: 2.23 to 8.36 mg gallic acid/g BSG—80% ethanol:water (v/v)) and consequently an increase in antioxidant activity (ABTS—SLE: from 6.26 to 13.07 mg ascorbic acid/g BSG—80% ethanol:water (v/v); OHE: 4.60 to 10.60 mg ascorbic acid/g BSG—80% ethanol:water (v/v)—ORAC—SLE: 3.31 to 14.94 mg Trolox/g BSG—80% ethanol:water (v/v); OHE: from 2.13 to 17.37 mg Trolox/g BSG—60% ethanol:water (v/v)). The main phenolic compounds identified included representative molecules such as vanillic and ferulic acids, vanillin and catechin, among others being identified and quantified in all GID phases. These samples also induced the growth of probiotic bacteria and promoted the positive modulation of beneficial strains (such as Bifidobacterium spp. and Lactobacillus spp.) present in human faeces. Moreover, the fermentation by human faeces microbiota also allowed the production of short chain fatty acids (acetic, propionic, and butyric). Furthermore, previous identified polyphenols were also identified during fecal fermentation. This study demonstrates that BSG flours obtained from the solid residues of SLE and OHE extractions promoted a positive modulation of gut microbiota and related metabolism and antioxidant environment associated to the released phenolic compounds.
Collapse
Affiliation(s)
- Teresa Bonifácio-Lopes
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (T.B.-L.); (A.A.V.-B.); (T.B.R.); (D.A.C.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Marcelo D. Catarino
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Ana A. Vilas-Boas
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (T.B.-L.); (A.A.V.-B.); (T.B.R.); (D.A.C.)
| | - Tânia B. Ribeiro
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (T.B.-L.); (A.A.V.-B.); (T.B.R.); (D.A.C.)
| | - Débora A. Campos
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (T.B.-L.); (A.A.V.-B.); (T.B.R.); (D.A.C.)
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (T.B.-L.); (A.A.V.-B.); (T.B.R.); (D.A.C.)
- Correspondence:
| |
Collapse
|
9
|
Ríos-Ríos KL, Rémond C, Dejonghe W, Van Roy S, Vangeel S, Van Hecke W. Production of tailored xylo-oligosaccharides from beechwood xylan by different enzyme membrane reactors and evaluation of their prebiotic activity. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Recent Advances in the Valorization of Algae Polysaccharides for Food and Nutraceutical Applications: a Review on the Role of Green Processing Technologies. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02812-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Emerging trends of microbial technology for the production of oligosaccharides from biowaste and their potential application as prebiotic. Int J Food Microbiol 2022; 368:109610. [PMID: 35278799 DOI: 10.1016/j.ijfoodmicro.2022.109610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 11/24/2022]
|
12
|
Sabater C, Calvete-Torre I, Villamiel M, Moreno FJ, Margolles A, Ruiz L. Vegetable waste and by-products to feed a healthy gut microbiota: Current evidence, machine learning and computational tools to design novel microbiome-targeted foods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Abdi R, Joye IJ. Prebiotic Potential of Cereal Components. Foods 2021; 10:foods10102338. [PMID: 34681385 PMCID: PMC8535731 DOI: 10.3390/foods10102338] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 02/03/2023] Open
Abstract
One type of functional food that has been receiving much attention is food rich in prebiotics. The old but still valid definition of prebiotics defines them as non-digestible food components that selectively stimulate the growth and/or activity of the beneficial bacteria in the colon and, as a result, improve the host health. Cereals, as one of the main components in the human diet, contain substantial levels of dietary fiber with probable prebiotic potential. In addition, dietary fiber, particularly soluble dietary fiber, has recently emerged as a promising natural highly functional food ingredient in food production. This review focuses on the prebiotic potential of cereal dietary fiber types and covers the achievements and developments regarding its isolation. First, the probiotic and prebiotic concepts will be discussed. Next, different components of dietary fiber and their effect on the host bacteria through in vitro and/or in vivo studies will be reviewed. In a last part, this paper also discusses means of boosting the prebiotic properties of cereal components and innovative strategies for the extraction of cereal dietary fiber. The review focuses on wheat as a leading cereal crop that is widely and intensely used throughout the world in food production.
Collapse
Affiliation(s)
| | - Iris J. Joye
- Correspondence: ; Tel.: +1-519-824-4120 (ext. 52470)
| |
Collapse
|
14
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
15
|
Míguez B, Gullón P, Cotos-Yáñez T, Massot-Cladera M, Pérez-Cano FJ, Vila C, Alonso JL. Manufacture and Prebiotic Potential of Xylooligosaccharides Derived From Eucalyptus nitens Wood. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.670440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mixtures of xylooligosaccharides (XOS) were manufactured from Eucalyptus nitens samples by hydrothermal processing. In order to obtain a product suitable to be used as a prebiotic, the liquors obtained were subjected to a refining sequence consisting of a two-step membrane filtration followed by anion exchange and freeze-drying. The process proposed allowed to obtain a highly refined product mainly made up of a mixture of substituted XOS with a degree of polymerization, DP3–10, which was evaluated for its prebiotic potential by in vitro fermentation assays. Their effects on the microbiota composition and the metabolic activity were assessed along the fermentation time and compared to fructooligosaccharides (FOS, a gold standard prebiotic), using fecal inocula from donors belonging to two age-groups (young and elderly). Significant and similar increases were observed in most of the bacterial groups considered (including Bifidobacterium spp. or several butyrate-producers) in both XOS and FOS in vitro interventions, although XOS resulted in significantly higher increases in total bacteria and lower rises in Clostridium clusters I and II than FOS. Regarding the metabolic activity, higher amounts of total organic acid (TOA; 150 vs. 110 mM) and higher total short-chain fatty acid (SCFA)/TOA ratio (0.88 vs. 0.70 mol/mol) were achieved at 28 h using XOS as a carbon source in comparison with FOS. Moreover, both substrates resulted in different metabolite profiles. Higher percentages of acetate and propionate were achieved when XOS were used as substrates, whereas FOS resulted in slightly higher concentrations of butyrate. No differences were found between both age-groups. Taking together these results, it can be concluded that XOS produced from E. nitens by a biorefinery-based approach led to, at least, similar prebiotic activity as that observed with FOS.
Collapse
|
16
|
Swart LJ, Bedzo OKK, van Rensburg E, Görgens JF. Intensification of Xylo-oligosaccharides Production by Hydrothermal Treatment of Brewer's Spent Grains: The Use of Extremely Low Acid Catalyst for Reduction of Degradation Products Associated with High Solid Loading. Appl Biochem Biotechnol 2021; 193:1979-2003. [PMID: 33534043 DOI: 10.1007/s12010-021-03525-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 01/27/2021] [Indexed: 11/26/2022]
Abstract
Brewers' spent grains (BSG) make up to 85% of a brewery's solid waste, and is either sent to landfill or sold as cheap animal feed supplement. Xylo-oligosaccharides (XOS) obtained from BSG are antioxidants and prebiotics that can be used in food formulations as low-calorie sweeteners and texturisers. The effect of extremely low acid (ELA) catalysis in liquid hot water (LHW) hydrothermal treatment (HTT) was assessed using BSG with dry matter contents of 15% and 25%, achieved by dewatering using a screw press. Batch experiments at low acid loadings of 5, 12.5 and 20 mg/g dry mass and temperatures of 120, 150 and 170 °C significantly affected XOS yield at both levels of dry mass considered. Maximum XOS yields of 76.4% (16.6 g/l) and 65.5% (31.7 g/l) were achieved from raw BSG and screw pressed BSG respectively, both at 170 °C and using 5 mg acid/g dry mass, after 15 min and 5 min, respectively. These XOS yields were obtained with BSG containing up to 63% less water and temperatures more than 20 °C lower than that reported previously. The finding confirms that ELA dosing in LHW HTT allows lowering of the required temperature that can result in a reduction of degradation products, which is especially relevant under high solid conditions. This substantial XOS production intensification through higher solid loadings in HTT not only achieved high product yield, but also provided benefits such as increased product concentrations and decreased process heat requirements.
Collapse
Affiliation(s)
- Lukas J Swart
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Oscar K K Bedzo
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa.
| | - Eugéne van Rensburg
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Johann F Görgens
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| |
Collapse
|
17
|
In Vitro Evaluation of Enriched Brewers' Spent Grains Using Bacillus subtilis WX-17 as Potential Functional Food Ingredients. Appl Biochem Biotechnol 2020; 193:349-362. [PMID: 32968964 DOI: 10.1007/s12010-020-03424-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/11/2020] [Indexed: 01/24/2023]
Abstract
Brewers' spent grains (BSGs) are nutritious food processing by-products generated in the brewing industry. In this study, in vitro digestion-fermentation was employed to examine fermented BSG using Bacillus subtilis WX-17 as functional food ingredients. Insoluble fibers in BSG were converted into soluble fibers after fermentation, giving an increase from 6.13 ± 0.42 to 9.37 ± 0.53 mg/100 g BSG. After in vitro digestion of unfermented and fermented BSG, various nutritional components were found to be higher in fermented BSG. Components such as amino acids and fatty acids gave a concentration of 1.635 ± 0.236 mg/mL and 6.35 ± 0.65 mg/mL, respectively. Additionally, vitamin K2 MK7 was detected in fermented BSG with a concentration of 0.00012 ± 0.000005 mg/mL. Probiotics Bacillus subtilis WX-17 was observed to withstand the in vitro digestion. After in vitro fermentation, various short-chain fatty acids namely acetic acid, propanoic acid, and butyric acid were produced at higher amounts for fermented BSG. The concentrations obtained were 124.11 ± 18.72 mM, 13.18 ± 1.38 mM, and 46.25 ± 7.57 mM respectively. As for gut microbiota profile, differential genera such as Bacteroides and Ruminococcus were detected, showing different effects on the intestinal microbiota. This study demonstrates the potential of using microbial fermentation of underutilized BSG to serve as potential functional food ingredients.
Collapse
|
18
|
Abstract
The development of biorefinery processes to platform chemicals for most lignocellulosic substrates, results in side processes to intermediates such as oligosaccharides. Agrofood wastes are most amenable to produce such intermediates, in particular, cellooligo-saccharides (COS), pectooligosaccharides (POS), xylooligosaccharides (XOS) and other less abundant oligomers containing mannose, arabinose, galactose and several sugar acids. These compounds show a remarkable bioactivity as prebiotics, elicitors in plants, food complements, healthy coadyuvants in certain therapies and more. They are medium to high added-value compounds with an increasing impact in the pharmaceutical, nutraceutical, cosmetic and food industries. This review is focused on the main production processes: autohydrolysis, acid and basic catalysis and enzymatic saccharification. Autohydrolysis of food residues at 160–190 °C leads to oligomer yields in the 0.06–0.3 g/g dry solid range, while acid hydrolysis of pectin (80–120 °C) or cellulose (45–180 °C) yields up to 0.7 g/g dry polymer. Enzymatic hydrolysis at 40–50 °C of pure polysaccharides results in 0.06–0.35 g/g dry solid (DS), with values in the range 0.08–0.2 g/g DS for original food residues.
Collapse
|
19
|
Amorim C, Silvério SC, Cardoso BB, Alves JI, Pereira MA, Rodrigues LR. In vitro assessment of prebiotic properties of xylooligosaccharides produced by Bacillus subtilis 3610. Carbohydr Polym 2020; 229:115460. [DOI: 10.1016/j.carbpol.2019.115460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 10/25/2022]
|
20
|
Pinheiro T, Coelho E, Romaní A, Domingues L. Intensifying ethanol production from brewer’s spent grain waste: Use of whole slurry at high solid loadings. N Biotechnol 2019; 53:1-8. [DOI: 10.1016/j.nbt.2019.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/28/2019] [Accepted: 06/08/2019] [Indexed: 12/29/2022]
|
21
|
Bonifácio-Lopes T, Teixeira JA, Pintado M. Current extraction techniques towards bioactive compounds from brewer’s spent grain – A review. Crit Rev Food Sci Nutr 2019; 60:2730-2741. [DOI: 10.1080/10408398.2019.1655632] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- T. Bonifácio-Lopes
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - José A. Teixeira
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Manuela Pintado
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| |
Collapse
|
22
|
Vine shoots as new source for the manufacture of prebiotic oligosaccharides. Carbohydr Polym 2019; 207:34-43. [DOI: 10.1016/j.carbpol.2018.11.065] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/22/2018] [Accepted: 11/21/2018] [Indexed: 11/22/2022]
|
23
|
Vazquez-Olivo G, Gutiérrez-Grijalva EP, Heredia JB. Prebiotic compounds from agro-industrial by-products. J Food Biochem 2018; 43:e12711. [PMID: 31353613 DOI: 10.1111/jfbc.12711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/20/2018] [Accepted: 10/02/2018] [Indexed: 11/26/2022]
Abstract
Prebiotics are nondigestible food components that have an impact on gut microbiota composition and activity, which in turn results in the improvement of health conditions. Nowadays, the production of prebiotics from agro-industrial by-products is under investigation. In this regard, polysaccharides are usually found in these sources and their potential use as prebiotics has been studied recently since these compounds act as substrates for the human gut microbiota, and they have the potential to modulate its composition through many mechanisms. Additionally, the use of agricultural by-products is advantageous because it is a cheap and abundantly available material. This review focuses on the recent scientific literature regarding the prebiotic properties of polysaccharides from agro-industrial by-products. PRACTICAL APPLICATIONS: Currently, the maintenance of gut homeostasis is a target for the improvement of human health. This review can broaden the perspective on the utilization of agro-industrial by-products that can compete in the market with the commercial ones or act as a source for new food ingredients.
Collapse
Affiliation(s)
- Gabriela Vazquez-Olivo
- CONACyT - Centro de Investigación en Alimentación y Desarrollo A.C., Nutraceuticals and Functional Foods Laboratory, Culiacan, México
| | - Erick P Gutiérrez-Grijalva
- CONACyT - Centro de Investigación en Alimentación y Desarrollo A.C., Nutraceuticals and Functional Foods Laboratory, Culiacan, México
| | - José Basilio Heredia
- CONACyT - Centro de Investigación en Alimentación y Desarrollo A.C., Nutraceuticals and Functional Foods Laboratory, Culiacan, México
| |
Collapse
|
24
|
Míguez B, Gómez B, Parajó JC, Alonso JL. Potential of Fructooligosaccharides and Xylooligosaccharides as Substrates To Counteract the Undesirable Effects of Several Antibiotics on Elder Fecal Microbiota: A First in Vitro Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9426-9437. [PMID: 30113166 DOI: 10.1021/acs.jafc.8b02940] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fructooligosaccharides (FOS) and xylooligosaccharides (XOS) were employed as substrates for in vitro fermentations to assess their capacity to counteract the effects caused by three antibiotics (ABs) at different doses on the elderly gut microbiota and its metabolic activity. The AB type and dose scarcely affected the total bacterial numbers and the microbiota composition after 24 h. However, in the presence of ABs, the relative percentages of Lactobacillus decreased (from 11.4% to 3.2% in the presence of XOS1), as well as the butyrate production, whereas the population of Bacteroides increased significantly in the presence of XOS1 (from 27.5% to 55.7%). FOS were able to counteract these effects by increasing the butyrate production and the number of Lactobacillus, while maintaining the number of Bacteroides almost constant and decreasing the clostridia. XOS2 (mainly DP = 2-4) also showed ability to increase the percentages of Bifidobacterium and the production of both butyrate and acetate.
Collapse
Affiliation(s)
- Beatriz Míguez
- Chemical Engineering Department , Polytechnic Building , University of Vigo (Campus Ourense) , 32004 Ourense , Spain
- CINBIO, University Campus , 36310 Vigo, Pontevedra , Spain
| | - Belén Gómez
- Chemical Engineering Department , Polytechnic Building , University of Vigo (Campus Ourense) , 32004 Ourense , Spain
- CINBIO, University Campus , 36310 Vigo, Pontevedra , Spain
| | - Juan Carlos Parajó
- Chemical Engineering Department , Polytechnic Building , University of Vigo (Campus Ourense) , 32004 Ourense , Spain
- CINBIO, University Campus , 36310 Vigo, Pontevedra , Spain
| | - José L Alonso
- Chemical Engineering Department , Polytechnic Building , University of Vigo (Campus Ourense) , 32004 Ourense , Spain
- CINBIO, University Campus , 36310 Vigo, Pontevedra , Spain
| |
Collapse
|
25
|
Amorim C, Silvério SC, Rodrigues LR. One-step process for producing prebiotic arabino-xylooligosaccharides from brewer's spent grain employing Trichoderma species. Food Chem 2018; 270:86-94. [PMID: 30174095 DOI: 10.1016/j.foodchem.2018.07.080] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/06/2018] [Accepted: 07/11/2018] [Indexed: 12/21/2022]
Abstract
Xylooligosaccharides (XOS) are prebiotic nutraceuticals that can be sourced from lignocellulosic biomass, such as agro-residues. This study reports for the first time an optimization study of XOS production from agro-residues by direct fermentation using two Trichoderma species. A total of 13 residues were evaluated as potential substrates for single-step production. The best results were found for Trichoderma reesei using brewers' spent grain (BSG) as substrate. Under optimal conditions (3 days, pH 7.0, 30 °C and 20 g/L of BSG), a production yield of 38.3 ± 1.8 mg/g (xylose equivalents/g of BSG) was achieved. The obtained oligosaccharides were identified as arabino-xylooligosacharides (AXOS) with degree of polymerization from 2 to 5. One-step fermentation proved to be a promising strategy for AXOS production from BSG, presenting a performance comparable with the use of commercial enzymes. This study provides new insights towards the bioprocess integration, enabling further developments of low-cost bioprocesses for the production of these valuable compounds.
Collapse
Affiliation(s)
- Cláudia Amorim
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Sara C Silvério
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Lígia R Rodrigues
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
26
|
Ikram S, Huang L, Zhang H, Wang J, Yin M. Composition and Nutrient Value Proposition of Brewers Spent Grain. J Food Sci 2017; 82:2232-2242. [PMID: 28833108 DOI: 10.1111/1750-3841.13794] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 05/22/2017] [Accepted: 05/30/2017] [Indexed: 01/30/2023]
Abstract
Brewer's spent grain (BSG), a major brewing industry byproduct, is generated in large quantities annually. This review summarizes research into the composition and preservation of BSG, different extraction techniques for BSG proteins and phenolic acids, and the bioactivities of these phenolic components. Moreover, this article also highlights BSG integration into foodstuff for human consumption and animal feed supplements. BSG is considered a rich source of fiber, protein, and phenolic compounds. The phenolic acids present in BSG are hydroxycinnamic acids (ferulic, p-coumaric, and caffeic acids), which have many biofunctions, such as antioxidant, anticarcinogenic, antiatherogenic, and antiinflammatory activities. Previously, attempts have been made to integrate BSG into human food, such as ready-to-eat snacks, cookies and bread, to increase fiber and protein contents. The addition of BSG to animal feed leads to increased milk yields, higher fat contents in milk, and is a good source of essential amino acids. Therefore, many studies have concluded that integrating the biofunctional compounds in BSG into human food and animal feed has various health benefits.
Collapse
Affiliation(s)
- Sana Ikram
- Innovation Center for Food Nutrition and Human Health, China
| | - LianYan Huang
- Innovation Center for Food Nutrition and Human Health, China
| | - Huijuan Zhang
- Innovation Center for Food Nutrition and Human Health, China
| | - Jing Wang
- Innovation Center for Food Nutrition and Human Health, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business Univ. (BTBU), Beijing, 100048, China
| | - Meng Yin
- Innovation Center for Food Nutrition and Human Health, China
| |
Collapse
|
27
|
Ruiz E, Gullón B, Moura P, Carvalheiro F, Eibes G, Cara C, Castro E. Bifidobacterial growth stimulation by oligosaccharides generated from olive tree pruning biomass. Carbohydr Polym 2017; 169:149-156. [PMID: 28504130 DOI: 10.1016/j.carbpol.2017.04.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/03/2017] [Accepted: 04/08/2017] [Indexed: 01/02/2023]
Abstract
This work aims to evaluate the prebiotic potential of oligosaccharides (OS) obtained from autohydrolysis of olive tree pruning biomass (OTPB). Two selected fractions (F1 and F2) were characterized and used in in vitro fermentations by two Bifidobacterium spp. (B. adolescentis and B. longum) and one fecal inoculum. The fraction F1 presented a lower average degree of polymerization (DP) mainly with OS ranging from 3 to 6 DP, whereas the fraction F2 corresponded to a pool of unsubstituted and acetylated oligomers with DP between 4 and 19. In the fermentation by Bifidobacterium, F1 supported a higher biomass formation, OS consumption and organic acids production than F2. With the fecal inoculum, the accumulation of organic acids, as the sum of acetate, propionate and butyrate, was similar for F1 and F2 (107 and 101mM, respectively). The bifidobacteria counts also increased during the incubation time for both OS fractions.
Collapse
Affiliation(s)
- Encarnación Ruiz
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain.
| | - Beatriz Gullón
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Patrícia Moura
- Unidade de Bioenergia, LNEG - Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar, 22, Lisboa 1649-038, Portugal.
| | - Florbela Carvalheiro
- Unidade de Bioenergia, LNEG - Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar, 22, Lisboa 1649-038, Portugal.
| | - Gemma Eibes
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Cristóbal Cara
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain.
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain.
| |
Collapse
|
28
|
Srivastava PK, Panwar D, Prashanth KVH, Kapoor M. Structural Characterization and in Vitro Fermentation of β-Mannooligosaccharides Produced from Locust Bean Gum by GH-26 endo-β-1,4-Mannanase (ManB-1601). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2827-2838. [PMID: 28225615 DOI: 10.1021/acs.jafc.7b00123] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Size exclusion chromatography of β-mannooligosaccharides (β-MOS) mixtures, obtained from ManB-1601 hydrolysis of locust bean gum, resulted in separation of oligosaccharides with various degrees of polymerization (DP 2, 3, and 5). The oligosaccharides were structurally [ESI-MS, FTIR, XRD, TGA, and NMR (1H and 13C)] and functionally (in vitro fermentation) characterized. DP2 oligosaccharide was composed of two species, (A) mannopyranose β-1,4 mannopyranose and (B) α-1,6-galactosyl-mannopyranose, while DP3 oligosaccharide showed the presence of only one species, i.e. α-d-galactosyl-β-d-mannobiose. ManB-1601 was capable of cleaving near the branch points in the substrate, resulting in oligosaccharides with galactose at the terminal position apart from attacking unsubstituted β-1,4-glycosidic linkages. DP2 and DP3 improved the growth of three out of seven species of Lactobacillus while DP5 resulted in poor growth of all Lactobacillus spp. under in vitro conditions. DP2, DP3, and DP5 were found to inhibit the growth of Escherichia coli, Listeria monocytogenes and Salmonella typhi.
Collapse
Affiliation(s)
| | - Deepesh Panwar
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-CFTRI Campus, Mysuru-570 020, India
| | - K V Harish Prashanth
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-CFTRI Campus, Mysuru-570 020, India
| | - Mukesh Kapoor
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-CFTRI Campus, Mysuru-570 020, India
| |
Collapse
|
29
|
Buruiana CT, Gómez B, Vizireanu C, Garrote G. Manufacture and evaluation of xylooligosaccharides from corn stover as emerging prebiotic candidates for human health. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.11.083] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Varzakas T, Zakynthinos G, Verpoort F. Plant Food Residues as a Source of Nutraceuticals and Functional Foods. Foods 2016; 5:E88. [PMID: 28231183 PMCID: PMC5302437 DOI: 10.3390/foods5040088] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 11/17/2022] Open
Abstract
This chapter describes the use of different plant and vegetable food residues as nutraceuticals and functional foods. Different nutraceuticals are mentioned and explained. Their uses are well addressed along with their disease management and their action as nutraceutical delivery vehicles.
Collapse
Affiliation(s)
- Theodoros Varzakas
- TEI Peloponnese, Department of Food Technology, Kalamata 24100, Greece.
- Department of Bioscience Bioengineering, Global Campus Songdo, Ghent University, 119 Songdomunhwa-Ro, Yeonsu-Gu, Incheon 406-840, Korea.
| | | | - Francis Verpoort
- Department of Bioscience Bioengineering, Global Campus Songdo, Ghent University, 119 Songdomunhwa-Ro, Yeonsu-Gu, Incheon 406-840, Korea.
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
- National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia.
| |
Collapse
|
31
|
Belorkar SA, Gupta AK. Oligosaccharides: a boon from nature's desk. AMB Express 2016; 6:82. [PMID: 27699701 PMCID: PMC5047869 DOI: 10.1186/s13568-016-0253-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/15/2016] [Indexed: 11/10/2022] Open
Abstract
This article reviews the varied sources of oligosaccharides available in nature as silent health promoting, integral ingredients of plants as well as animal products like honey and milk. The article focuses on exotic and unfamiliar oligosaccharides like Galactooligosaccharides, Lactulose derived Galactooligosaccharides, Xylooligosaccharides, Arabinooligosaccharides and algae derived Marine oligosaccharides along with the most acknowledged prebiotic fructooligosaccharides. The oligosaccharides are named as on the grounds of the monomeric units forming oligomers with functional properties. The chemical structures, natural sources, microbial enzyme mediated synthesis and physiological effects are discussed. An elaborate account of the different types of oligosaccharides with special reference to fructooligosaccharides are presented. Finally, the profound health benefits of oligosaccharides are rigourously discussed limelighting its positive physiological sequel.
Collapse
Affiliation(s)
- Seema A. Belorkar
- Department of Microbiology and Bioinformatics, Bilaspur University, 206, Budhiya complex, Sarkanda, Bilaspur, Chhattisgarh 495004 India
| | - A. K. Gupta
- Pt. Ravishankar Shukla University, Raipur, CG 492010 India
| |
Collapse
|
32
|
Lynch KM, Steffen EJ, Arendt EK. Brewers' spent grain: a review with an emphasis on food and health. JOURNAL OF THE INSTITUTE OF BREWING 2016. [DOI: 10.1002/jib.363] [Citation(s) in RCA: 294] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kieran M. Lynch
- School of Food and Nutritional Sciences; University College Cork; College Road Cork Ireland
| | - Eric J. Steffen
- School of Food and Nutritional Sciences; University College Cork; College Road Cork Ireland
| | - Elke K. Arendt
- School of Food and Nutritional Sciences; University College Cork; College Road Cork Ireland
| |
Collapse
|