1
|
Stoccoro A, Lari M, Migliore L, Coppedè F. Associations between Circulating Biomarkers of One-Carbon Metabolism and Mitochondrial D-Loop Region Methylation Levels. EPIGENOMES 2024; 8:38. [PMID: 39449362 PMCID: PMC11503383 DOI: 10.3390/epigenomes8040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES One-carbon metabolism is a critical pathway for epigenetic mechanisms. Circulating biomarkers of one-carbon metabolism have been associated with changes in nuclear DNA methylation levels in individuals affected by age-related diseases. More and more studies are showing that even mitochondrial DNA (mtDNA) could be methylated. In particular, methylation of the mitochondrial displacement (D-loop) region modulates the gene expression and replication of mtDNA and, when altered, can contribute to the development of human illnesses. However, no study until now has demonstrated an association between circulating biomarkers of one-carbon metabolism and D-loop methylation levels. METHODS In the study presented herein, we searched for associations between circulating one-carbon metabolism biomarkers, including folate, homocysteine, and vitamin B12, and the methylation levels of the D-loop region in DNA obtained from the peripheral blood of 94 elderly voluntary subjects. RESULTS We observed a positive correlation between D-loop methylation and vitamin B12 (r = 0.21; p = 0.03), while no significant correlation was observed with folate (r = 0.02; p = 0.80) or homocysteine levels (r = 0.02; p = 0.82). Moreover, D-loop methylation was increased in individuals with high vitamin B12 levels compared to those with normal vitamin B12 levels (p = 0.04). CONCLUSIONS This is the first study suggesting an association between vitamin B12 circulating levels and mtDNA methylation in human subjects. Given the potential implications of altered one-carbon metabolism and mitochondrial epigenetics in human diseases, a deeper understanding of their interaction could inspire novel interventions with beneficial effects for human health.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Department of Translational Research and of New Surgical & Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (A.S.); (M.L.); (L.M.)
| | - Martina Lari
- Department of Translational Research and of New Surgical & Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (A.S.); (M.L.); (L.M.)
| | - Lucia Migliore
- Department of Translational Research and of New Surgical & Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (A.S.); (M.L.); (L.M.)
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical & Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (A.S.); (M.L.); (L.M.)
- Interdepartmental Research Center of Biology and Pathology of Aging, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
2
|
Ma S, Liu J, Zhao Y, Wang Y, Zhao R. In ovo betaine injection improves breast muscle growth in newly hatched goslings through FXR/IGF-2 pathway. Poult Sci 2024; 103:104075. [PMID: 39094501 PMCID: PMC11345595 DOI: 10.1016/j.psj.2024.104075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
Betaine has been shown to enhance growth performance and increase breast muscle yield in ducks and broilers through various mechanisms, including the modification of DNA methylation. However, the impact of in ovo betaine injection on muscle growth in newly hatched goslings remains unclear. In this study, fifty eggs were injected with saline or betaine at 7.5 mg/egg prior to incubation, and the subsequent effects on breast muscle growth in the newly hatched goslings were investigated. Betaine significantly increased (P < 0.05) the hatch weight, breast muscle weight, and breast muscle index, accompanied by an augmentation in muscle bundle cross-sectional area. Concurrently, betaine significantly upregulated (P < 0.05) the expression levels of myogenic regulatory factors, including myogenin (MyoG) and paired box 7 (Pax7) both mRNA and protein, while downregulating (P < 0.05) the mRNA and protein levels of myostatin (MSTN). Histological analysis revealed a higher abundance of proliferating cell nuclear antigen (PCNA) and Pax7 immune-positive cells in the breast muscle of the betaine group, consistent with elevated PCNA and Pax7 mRNA and protein levels. Additionally, significantly increased (P < 0.05) contents of insulin-like growth factor 1 (IGF-1) and insulin-like growth factor 2 (IGF-2) were observed in the breast muscle of the betaine group, so was mRNA expression of IGF-1, IGF-2, and insulin-like growth factor 1 receptor (IGF-1R). Betaine also significantly in8creased (P < 0.05) global DNA methylation of the breast muscle, accompanied by enhanced mRNA and protein levels of methionine cycle and DNA methylation-related enzymes, Interestingly, the promoter regions of IGF-1, IGF-2, and IGF-1R genes were significantly hypomethylated (P < 0.05). Moreover, in ovo betaine injection significantly upregulated (P < 0.05) the protein level of farnesoid X receptor (FXR) in breast muscle and FXR binding to the promoter of IGF-2 gene. These findings suggest that in ovo betaine injection promotes breast muscle growth during embryonic development in goslings through the FXR-mediated IGF-2 pathway, ultimately improving hatch weight and breast muscle weight.
Collapse
Affiliation(s)
- Shuai Ma
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jie Liu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yulan Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yan Wang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China; National Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| |
Collapse
|
3
|
Smith BI, Vásquez-Hidalgo MA, Li X, Vonnahme KA, Grazul-Bilska AT, Swanson KC, Moore TE, Reed SA, Govoni KE. The Effects of Maternal Nutrient Restriction during Mid to Late Gestation with Realimentation on Fetal Metabolic Profiles in the Liver, Skeletal Muscle, and Blood in Sheep. Metabolites 2024; 14:465. [PMID: 39330472 PMCID: PMC11434268 DOI: 10.3390/metabo14090465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/28/2024] Open
Abstract
Poor maternal nutrition during gestation negatively affects offspring growth and metabolism. To evaluate the impact of maternal nutrient restriction and realimentation on metabolism in the fetal liver, skeletal muscle, and circulation, on day 50 of gestation, ewes (n = 48) pregnant with singletons were fed 100% (CON) or 60% (RES) of requirements until day 90 of gestation, when a subset of ewes (n = 7/treatment) were euthanized, and fetal samples were collected. The remaining ewes were maintained on a current diet (CON-CON, n = 6; RES-RES, n = 7) or switched to an alternative diet (CON-RES, RES-CON; n = 7/treatment). On day 130 of gestation, the remaining ewes were euthanized, and fetal samples were collected. Fetal liver, longissimus dorsi (LD), and blood metabolites were analyzed using LC-MS/MS, and pathway enrichment analysis was conducted using MetaboAnalyst. Then, 600, 518, and 524 metabolites were identified in the liver, LD, and blood, respectively, including 345 metabolites that were present in all three. Nutrient restriction was associated with changes in amino acid, carbohydrate, lipid, and transulfuration/methionine metabolic pathways, some of which were alleviated by realimentation. Fetal age also affected metabolite abundance. The differential abundance of metabolites involved in amino acid, methionine, betaine, and bile acid metabolism could impact fetal epigenetic regulation, protein synthesis, lipid metabolism, and signaling associated with glucose and lipid metabolism.
Collapse
Affiliation(s)
- Brandon I. Smith
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA (S.A.R.)
| | - Manuel A. Vásquez-Hidalgo
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (M.A.V.-H.); (A.T.G.-B.); (K.C.S.)
| | - Xiaomeng Li
- Department of Statistics, University of Connecticut, Storrs, CT 06269, USA (T.E.M.)
| | - Kimberly A. Vonnahme
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (M.A.V.-H.); (A.T.G.-B.); (K.C.S.)
| | - Anna T. Grazul-Bilska
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (M.A.V.-H.); (A.T.G.-B.); (K.C.S.)
| | - Kendall C. Swanson
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (M.A.V.-H.); (A.T.G.-B.); (K.C.S.)
| | - Timothy E. Moore
- Department of Statistics, University of Connecticut, Storrs, CT 06269, USA (T.E.M.)
| | - Sarah A. Reed
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA (S.A.R.)
| | - Kristen E. Govoni
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA (S.A.R.)
| |
Collapse
|
4
|
Ma S, Wang Y, Chen L, Wang W, Zhuang X, Liu Y, Zhao R. Parental betaine supplementation promotes gosling growth with epigenetic modulation of IGF gene family in the liver. J Anim Sci 2024; 102:skae065. [PMID: 38483185 PMCID: PMC10980284 DOI: 10.1093/jas/skae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
Betaine is widely used as a feed additive in the chicken industry to promote laying performance and growth performance, yet it is unknown whether betaine can be used in geese to improve the laying performance of goose breeders and the growth traits of offspring goslings. In this study, laying goose breeders at 39 wk of age were fed basal (Control, CON) or betaine-supplemented diets at low (2.5 g/kg, LBT) or high (5 g/kg, HBT) levels for 7 wk, and the breeder eggs laid in the last week were collected for incubation. Offspring goslings were examined at 35 and 63 d of age. The laying rate tended to be increased (P = 0.065), and the feed efficiency of the breeders was improved by betaine supplementation, while the average daily gain of the offspring goslings was significantly increased (P < 0.05). Concentrations of insulin-like growth factor 2 (IGF-2) in serum and liver were significantly increased in the HBT group (P < 0.05), with age-dependent alterations of serum T3 levels. Concurrently, hepatic mRNA expression of the IGF gene family was significantly increased in goslings derived from betaine-treated breeders (P < 0.05). A higher ratio of proliferating cell nuclear antigen (PCNA)-immunopositive nuclei was found in the liver sections of the HBT group, which was confirmed by significantly upregulated hepatic expression of PCNA mRNA and protein (P < 0.05). Moreover, hepatic expression of thyroxine deiodinase type 1 (Dio1) and thyroid hormone receptor β (TRβ) was also significantly upregulated in goslings of the HBT group (P < 0.05). These changes were associated with significantly higher levels of global DNA 5-mC methylation, together with increased expression of methyl transfer genes (P < 0.05), including betaine-homocysteine methyltransferase (BHMT), glycine N-methyltransferase (GNMT), and DNA (cytosine-5-)-methyltransferase 1 (DNMT1). The promoter regions of IGF-2 genes, as well as the predicted TRβ binding site on the IGF-2 gene, were significantly hypomethylated (P < 0.05). These results indicate that gosling growth can be improved by dietary betaine supplementation in goose breeders via epigenetic modulation of the IGF gene family, especially IGF-2, in the liver.
Collapse
Affiliation(s)
- Shuai Ma
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yan Wang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liang Chen
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenzheng Wang
- Jiangsu Lihua Animal Husbandry Co., Ltd., Changzhou, Jiangsu 213168, China
| | - Xinjuan Zhuang
- Jiangsu Lihua Animal Husbandry Co., Ltd., Changzhou, Jiangsu 213168, China
| | - Yuelong Liu
- Jiangsu Lihua Animal Husbandry Co., Ltd., Changzhou, Jiangsu 213168, China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
- National Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, PR China
| |
Collapse
|
5
|
The Impacts of Combined Blood Flow Restriction Training and Betaine Supplementation on One-Leg Press Muscular Endurance, Exercise-Associated Lactate Concentrations, Serum Metabolic Biomarkers, and Hypoxia-Inducible Factor-1α Gene Expression. Nutrients 2022; 14:nu14235040. [PMID: 36501070 PMCID: PMC9739923 DOI: 10.3390/nu14235040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The purpose of this investigation was to compare the impacts of a potential blood flow restriction (BFR)-betaine synergy on one-leg press performance, lactate concentrations, and exercise-associated biomarkers. Eighteen recreationally trained males (25 ± 5 y) were randomized to supplement 6 g/day of either betaine anhydrous (BET) or cellulose placebo (PLA) for 14 days. Subsequently, subjects performed four standardized sets of one-leg press and two additional sets to muscular failure on both legs (BFR [LL-BFR; 20% 1RM at 80% arterial occlusion pressure] and high-load [HL; 70% 1RM]). Toe-tip lactate concentrations were sampled before (PRE), as well as immediately (POST0), 30 min (POST30M), and 3 h (POST3H) post-exercise. Serum homocysteine (HCY), growth hormone (GH) and insulin-like growth factor-1 concentrations were additionally assessed at PRE and POST30M. Analysis failed to detect any significant between-supplement differences for total repetitions completed. Baseline lactate changes (∆) were significantly elevated from POST0 to POST30 and from POST30 to POST3H (p < 0.05), whereby HL additionally demonstrated significantly higher ∆Lactate versus LL-BFR (p < 0.001) at POST3H. Although serum ∆GH was not significantly impacted by supplement or condition, serum ∆IGF-1 was significantly (p = 0.042) higher in BET versus PLA and serum ∆HCY was greater in HL relative to LL-BFR (p = 0.044). Although these data fail to support a BFR-betaine synergy, they otherwise support betaine’s anabolic potential.
Collapse
|
6
|
Xu L, Li Y, Wei Z, Bai R, Gao G, Sun W, Jiang X, Wang J, Li X, Pi Y. Chenodeoxycholic Acid (CDCA) Promoted Intestinal Epithelial Cell Proliferation by Regulating Cell Cycle Progression and Mitochondrial Biogenesis in IPEC-J2 Cells. Antioxidants (Basel) 2022; 11:antiox11112285. [PMID: 36421471 PMCID: PMC9687205 DOI: 10.3390/antiox11112285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Chenodeoxycholic acid (CDCA), a primary bile acid (BA), has been demonstrated to play an important role as a signaling molecule in various physiological functions. However, the role of CDCA in regulating intestinal epithelial cell (IEC) function remains largely unknown. Herein, porcine intestinal epithelial cells (IPEC-J2) were used as an in vitro model to investigate the effects of CDCA on IEC proliferation and explore the underlying mechanisms. IPEC-J2 cells were treated with CDCA, and flow cytometry and transcriptome analysis were adopted to investigate the effects and potential molecular mechanisms of CDCA on the proliferation of IECs. Our results indicated that adding 50 μmol/L of CDCA in the media significantly increased the proliferation of IPEC-J2 cells. In addition, CDCA treatment also hindered cell apoptosis, increased the proportion of G0/G1 phase cells in the cell cycle progression, reduced intracellular ROS, and MDA levels, and increased mitochondrial membrane potential, antioxidation enzyme activity (T-AOC and CAT), and intracellular ATP level (p < 0.05). RNA-seq results showed that CDCA significantly upregulated the expression of genes related to cell cycle progression (Cyclin-dependent kinase 1 (CDK1), cyclin G2 (CCNG2), cell-cycle progression gene 1 (CCPG1), Bcl-2 interacting protein 5 (BNIP5), etc.) and downregulated the expression of genes related to mitochondrial biogenesis (ND1, ND2, COX3, ATP6, etc.). Further KEGG pathway enrichment analysis showed that CDCA significantly enriched the signaling pathways of DNA replication, cell cycle, and p53. Collectively, this study demonstrated that CDCA could promote IPEC-J2 proliferation by regulating cell cycle progression and mitochondrial function. These findings provide a new strategy for promoting the intestinal health of pigs by regulating intestinal BA metabolism.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zixi Wei
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rong Bai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Business Economics, Wageningen University, 6700 EW Wageningen, The Netherlands
| | - Ge Gao
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenjuan Sun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (X.L.); (Y.P.); Tel.: +86-010-82108134 (X.L.)
| | - Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (X.L.); (Y.P.); Tel.: +86-010-82108134 (X.L.)
| |
Collapse
|
7
|
Yang Z, Xu C, Ma S, Zhao RQ, Yang HM, Wang ZY. Effects of betaine supplementation on reproductive performance of breeding geese. Br Poult Sci 2022; 64:283-288. [PMID: 36164766 DOI: 10.1080/00071668.2022.2128988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. An experiment feeding three concentrations of betaine was conducted using breeding geese to analyse the reproductive performance, serum biochemical indexes, egg quality and intestinal immunity.2. A total of 450 female and 90 male Jiangnan White breeding geese were divided into three treatments, with five pen replicates each containing 30 female geese and 6 male geese.3. The results showed that there was no significant effect on the reproductive performance, serum biochemical indexes or jejunal villi goblet cells of geese with different levels of betaine in the diet (P>0.05). Compared with the control group, the addition of 2.5 g/kg betaine to the diet showed a tendency to increase egg mass (P>0.05) the betaine content in the yolk (P<0.05). Feeding betaine significantly increased the height of jejunal villi and egg yolk total cholesterol content in female geese (P<0.05).4. In conclusion, adding betaine to the goose diet was effective in its ability to improve intestinal structures and increase egg production. Adding 2.5 g/kg betaine to feed significantly increased the content of TCHOL and betaine in goose eggs.
Collapse
Affiliation(s)
- Z Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - C Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - S Ma
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - R Q Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - H M Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Z Y Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| |
Collapse
|
8
|
Li Y, He G, Chen D, Yu B, Yu J, Zheng P, Huang Z, Luo Y, Luo J, Mao X, Yan H, He J. Supplementing daidzein in diets improves the reproductive performance, endocrine hormones and antioxidant capacity of multiparous sows. ACTA ACUST UNITED AC 2021; 7:1052-1060. [PMID: 34738035 PMCID: PMC8546373 DOI: 10.1016/j.aninu.2021.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 08/30/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022]
Abstract
Certain hormones play important roles in modulating mammalian reproductive behaviour. Daidzein is a well-known isoflavonic phytoestrogen that possesses oestrogenic activity. This study was conducted to probe the effects of daidzein supplementation in gestation diets on the reproductive performance in sows. A total of 120 multiparous sows (Landrace × Yorkshire) were randomly assigned to 2 groups (n = 60) and fed either a base diet (control) or one containing 200 mg/kg daidzein during gestation. We discovered that daidzein supplementation significantly increased the total number of piglets born per litter and number of piglets born alive per litter (P < 0.05), decreased the farrowing time (P < 0.05) and increased the serum oestrogen and progesterone concentrations (P < 0.05) at 35 d of gestation. Moreover, serum immunoglobulin G (IgG) concentration and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were higher in the daidzein-treated group than in the control group at 35 d of gestation (P < 0.05). Daidzein increased the serum SOD activity and total anti-oxidative capacity (T-AOC) at 85 d of gestation (P < 0.05). Interestingly, daidzein elevated the expression levels of the sodium-coupled neutral amino acid transporter 1 (SLC38A1) and insulin-like growth factor 1 (IGF-1) genes in the placenta (P < 0.05). These results suggest that daidzein ingestion could improve sow reproductive performance by changing serum hormones, elevating anti-oxidative capacity and up-regulating critical functional genes in the placenta.
Collapse
Affiliation(s)
- Yan Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | | | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| |
Collapse
|
9
|
Fu R, Wang Q, Kong C, Liu K, Si H, Sui S. Mechanism of action and the uses betaine in pig production. J Anim Physiol Anim Nutr (Berl) 2021; 106:528-536. [PMID: 34486782 DOI: 10.1111/jpn.13633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/27/2021] [Accepted: 08/25/2021] [Indexed: 01/03/2023]
Abstract
Betaine, the trimethyl derivative of glycine, is a good methyl group donor, and an important component in pig production. However, betaine has not been extensively studied in this field. Therefore, in this study, we reviewed the effects of betaine in pig production performance, meat quality and reproductive performance, as well as its mechanisms, to provide a theoretical basis for the optimal use and development of this compound.
Collapse
Affiliation(s)
- Rong Fu
- College of Public Health, Dali University, Dali, China
| | - Qin Wang
- College of Public Health, Dali University, Dali, China
| | - Caihua Kong
- College of Agrononmy and Biological Sciences, Dali University, Dali, China
| | - Kena Liu
- College of Public Health, Dali University, Dali, China
| | - Huaxin Si
- College of Public Health, Dali University, Dali, China
| | - Shiyan Sui
- Health Research Center, School of Public Health, Dali University, Dali, China
| |
Collapse
|
10
|
Mitochondrial DNA Methylation and Human Diseases. Int J Mol Sci 2021; 22:ijms22094594. [PMID: 33925624 PMCID: PMC8123858 DOI: 10.3390/ijms22094594] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic modifications of the nuclear genome, including DNA methylation, histone modifications and non-coding RNA post-transcriptional regulation, are increasingly being involved in the pathogenesis of several human diseases. Recent evidence suggests that also epigenetic modifications of the mitochondrial genome could contribute to the etiology of human diseases. In particular, altered methylation and hydroxymethylation levels of mitochondrial DNA (mtDNA) have been found in animal models and in human tissues from patients affected by cancer, obesity, diabetes and cardiovascular and neurodegenerative diseases. Moreover, environmental factors, as well as nuclear DNA genetic variants, have been found to impair mtDNA methylation patterns. Some authors failed to find DNA methylation marks in the mitochondrial genome, suggesting that it is unlikely that this epigenetic modification plays any role in the control of the mitochondrial function. On the other hand, several other studies successfully identified the presence of mtDNA methylation, particularly in the mitochondrial displacement loop (D-loop) region, relating it to changes in both mtDNA gene transcription and mitochondrial replication. Overall, investigations performed until now suggest that methylation and hydroxymethylation marks are present in the mtDNA genome, albeit at lower levels compared to those detectable in nuclear DNA, potentially contributing to the mitochondria impairment underlying several human diseases.
Collapse
|
11
|
Pérez-Muñoz AA, de Lourdes Muñoz M, García-Hernández N, Santander-Lucio H. A New Approach to Identify the Methylation Sites in the Control Region of Mitochondrial DNA. Curr Mol Med 2021; 21:151-164. [PMID: 32484108 DOI: 10.2174/1566524020666200528154005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 11/22/2022]
Abstract
Mitochondrial DNA (mtDNA) methylation has the potential to be used as a biomarker of human development or disease. However, mtDNA methylation procedures are costly and time-consuming. Therefore, we developed a new approach based on an RT-PCR assay for the base site identification of methylated cytosine in the control region of mtDNA through a simple, fast, specific, and low-cost strategy. Total DNA was purified, and methylation was determined by RT-PCR bisulfite sequencing. This procedure included the DNA purification, bisulfite treatment and RT-PCR amplification of the control region divided into three subregions with specific primers. Sequences obtained with and without the bisulfite treatment were compared to identify the methylated cytosine dinucleotides. Furthermore, the efficiency of C to U conversion of cytosines was assessed by including a negative control. Interestingly, mtDNA methylation was observed mainly within non-Cphosphate- G (non-CpG) dinucleotides and mostly in the regions containing regulatory elements, such as OH or CSBI, CSBII, and CSBIII. This new approach will promote the generation of new information regarding mtDNA methylation patterns in samples from patients with different pathologies or that are exposed to a toxic environment in diverse human populations.
Collapse
Affiliation(s)
- Ashael Alfredo Pérez-Muñoz
- Department of Genetics and Molecular Biology, Research and Advanced Studies Center of National Polytechnic Institute (CINVESTAV of IPN), Mexico City, Mexico
| | - María de Lourdes Muñoz
- Department of Genetics and Molecular Biology, Research and Advanced Studies Center of National Polytechnic Institute (CINVESTAV of IPN), Mexico City, Mexico
| | - Normand García-Hernández
- Unidad de Investigacion Medica en Genetica Humana, Unidad Medica de Alta Especialidad Hospital de Pediatria "Dr. Silvestre Frenk Freund", Centro Medico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Heriberto Santander-Lucio
- Department of Genetics and Molecular Biology, Research and Advanced Studies Center of National Polytechnic Institute (CINVESTAV of IPN), Mexico City, Mexico
| |
Collapse
|
12
|
Leroux É, Brosseau C, Angers B, Angers A, Breton S. [Mitochondrial DNA methylation: Controversies, issues and perspectives]. Med Sci (Paris) 2021; 37:258-264. [PMID: 33739273 DOI: 10.1051/medsci/2021011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
DNA methylation is an epigenetic mechanism that has been largely probed regarding eukaryotic nuclear genome and bacteria, and its role is especially crucial in the regulation of gene expression. In mammals, it is almost exclusively acting on a cytosine preceding a guanine (CpG), whereas it presents itself mainly in a non-CpG context in bacteria's DNA. Conversely to nuclear and bacterial genomes, the existence of methylation in the mitochondrial genome is still widely debated. This controversy has been attributed to structural differences between the nuclear and mitochondrial genomes, and to the techniques used to study methylation of cytosines, which were rather optimized for the study of nuclear DNA. However, novel studies suggest that cytosine methylation is truly existing in mitochondria, and that it is mostly found in a non-CpG context, just like in their evolutionary relative, the bacteria.
Collapse
Affiliation(s)
- Émélie Leroux
- Département de sciences biologiques, Université de Montréal, Campus MIL, Faculté des Arts et des Sciences, CP 6128, Succursale Centre-Ville, Montréal QC, H3C 3J7, Canada
| | - Cindy Brosseau
- Département de sciences biologiques, Université de Montréal, Campus MIL, Faculté des Arts et des Sciences, CP 6128, Succursale Centre-Ville, Montréal QC, H3C 3J7, Canada
| | - Bernard Angers
- Département de sciences biologiques, Université de Montréal, Campus MIL, Faculté des Arts et des Sciences, CP 6128, Succursale Centre-Ville, Montréal QC, H3C 3J7, Canada
| | - Annie Angers
- Département de sciences biologiques, Université de Montréal, Campus MIL, Faculté des Arts et des Sciences, CP 6128, Succursale Centre-Ville, Montréal QC, H3C 3J7, Canada
| | - Sophie Breton
- Département de sciences biologiques, Université de Montréal, Campus MIL, Faculté des Arts et des Sciences, CP 6128, Succursale Centre-Ville, Montréal QC, H3C 3J7, Canada
| |
Collapse
|
13
|
Hu Y, Feng Y, Ding Z, Lv L, Sui Y, Sun Q, Abobaker H, Cai D, Zhao R. Maternal betaine supplementation decreases hepatic cholesterol deposition in chicken offspring with epigenetic modulation of SREBP2 and CYP7A1 genes. Poult Sci 2020; 99:3111-3120. [PMID: 32475448 PMCID: PMC7597551 DOI: 10.1016/j.psj.2019.12.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 12/06/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022] Open
Abstract
Maternal betaine was reported to regulate offspring hepatic cholesterol metabolism in mammals. However, it is unclear whether and how feeding betaine to laying hens affects hepatic cholesterol metabolism in offspring chickens. Rugao yellow-feathered laying hens (n = 120) were fed basal or 0.5% betaine-supplemented diet for 28 D before the eggs were collected for incubation. Maternal betaine significantly decreased the hepatic cholesterol content (P < 0.05) in offspring chickens. Accordingly, the cholesterol biosynthetic enzymes, sterol regulator element-binding protein 2 (SREBP2) and 3-hydroxy-3-methylglutaryl coenzyme A reductase, were decreased, while cholesterol-7alpha-hydroxylase (CYP7A1), which converts cholesterol to bile acids, was increased at both mRNA and protein levels in betaine-treated offspring chickens. Hepatic mRNA and protein expression of low-density lipoprotein receptor was significantly (P < 0.05) increased, while the mRNA abundance of cholesterol acyltransferase 1 (ACAT1) that mediates cholesterol esterification was significantly (P < 0.05) decreased in the betaine group. Meanwhile, hepatic protein contents of DNA methyltransferases 1 and betaine homocysteine methyltransferase were increased (P < 0.05), which was associated with modifications of CpG methylation on affected cholesterol metabolic genes. Furthermore, the level of CpG methylation on gene promoters was increased (P < 0.05) for sterol regulator element-binding protein 2 and abundance of cholesterol acyltransferase 1 yet decreased (P < 0.05) for cholesterol-7alpha-hydroxylase. These results indicate that maternal betaine supplementation significantly decreases hepatic cholesterol deposition through epigenetic regulation of cholesterol metabolic genes in offspring juvenile chickens.
Collapse
Affiliation(s)
- Yun Hu
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China; College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Yue Feng
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Zequn Ding
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Lilei Lv
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yi Sui
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Qinwei Sun
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Halima Abobaker
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| |
Collapse
|
14
|
Yang Y, Jiang W, Yang S, Qi F, Zhao R. Transgenerational Inheritance of Betaine-Induced Epigenetic Alterations in Estrogen-Responsive IGF-2/IGFBP2 Genes in Rat Hippocampus. Mol Nutr Food Res 2020; 64:e1900823. [PMID: 32022472 DOI: 10.1002/mnfr.201900823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/17/2020] [Indexed: 01/18/2023]
Abstract
SCOPE Betaine serves as a methyl donor for DNA methylation. Here, the effects of betaine on hippocampal expression of neurogenesis genes and their DNA methylation status across three generations are investigated. METHODS AND RESULTS Pregnant rats (F0) are fed control and betaine-supplemented diets throughout gestation and lactation. Female F1 and F2 offspring at weaning, together with the F0 dams, are used in the study. Hippocampal expression of aromatase, estrogen receptor α, and estrogen-related receptor β is downregulated in F1, together with the estrogen-responsive insulin-like growth factor 2/insulin-like growth factor binding protein 2 (IGF-2/IGFBP2) genes. However, all these genes are upregulated in F2, which follows the same pattern of F0. In agreement with changes in mRNA expression, the imprinting control region (ICR) of IGF-2 gene is hypomethylated in F1 but hypermethylated in F2 and F0. In contrast, the promoter DNA methylation status of all the affected genes is hypermethylated in F1 but hypomethylated in F2 and F0. Methyl transfer enzymes, such as betaine homocysteine methyltransferase and DNA methyltransferase 1, follow the same pattern of transgenerational inheritance. CONCLUSION These results indicate that betaine exerts a transgenerational effect on hippocampal expression of estrogen-responsive genes in rat offspring, which is associated with corresponding alterations in DNA methylation on ICR of IGF-2 gene and the promoter of affected genes.
Collapse
Affiliation(s)
- Yang Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Wenduo Jiang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Shu Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Fulei Qi
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|
15
|
Fu C, Zhang Y, Shi T, Wei X, Liu X. Soybean oil alleviates maternal conjugated linoleic acid dietary-induced hatchability decrease and embryo hepatic lipolysis in broiler breeders. Livest Sci 2020. [DOI: 10.1016/j.livsci.2019.103913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Zhang Y, Yu Y, Ou C, Ma J, Wang Q, Du S, Xu Z, Li R, Guo F. Alleviation of infectious-bursal-disease-virus-induced bursal injury by betaine is associated with DNA methylation in IL-6 and interferon regulatory factor 7 promoter. Poult Sci 2019; 98:4457-4464. [PMID: 31162616 DOI: 10.3382/ps/pez280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 05/07/2019] [Indexed: 12/19/2022] Open
Abstract
Infectious bursal disease virus (IBDV) often infects young chickens and causes severe immunosuppression and inflammatory injury. Betaine is an antiviral and anti-inflammatory ingredient that may exert functions through epigenetic regulation. However, the effects of betaine on an IBDV-induced bursal injury and their underlying mechanisms have not been investigated. In this study, betaine was supplemented to the drinking water of newly hatched commercial broilers for 3 wk. Afterward, the chickens were infected with the IBDV. After 5 D of infection, the bursal lesions were examined. The mRNA expression levels of IBDV VP2 gene, pro-inflammatory cytokines, and interferons were detected. Furthermore, the 5-methylcytosine level of the CpG island in the promoter region of IL-6 and interferon regulatory factor 7 (IRF7) were determined. The IBDV induced the depletion of lymphocytes and inflammation in the bursal follicles. IBDV infection considerably elevated the mRNA levels of VP2, IL-6, types I (IFNα and IFNβ) and II (IFNγ) interferons, and IRF7. The CpG island methylation in the promoter regions of IL-6 and IRF7 were substantially decreased after IBDV infection. Betaine administration attenuated the IBDV-induced bursal lesions. Meanwhile, the IBDV-induced mRNA expression levels of IL-6, IFNβ, and IRF7 were suppressed by betaine consumption. Furthermore, the hypomethylation effects of IBDV infection to the promoter regions of IL-6 and IRF7 genes were eliminated and relieved by betaine administration. Our results indicated that the IBDV-induced expression levels of IL-6 and IRF7 genes are associated with the suppression of methylation in the promoter region. Betaine administration through drinking water may alleviate the IBDV-induced bursal injury via epigenetic regulation.
Collapse
Affiliation(s)
- Yanhong Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Yan Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Changbo Ou
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Jinyou Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Qiuxia Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Shouyang Du
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Zhiyong Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Renfeng Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Feng Guo
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China.,Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| |
Collapse
|
17
|
Sharma N, Pasala MS, Prakash A. Mitochondrial DNA: Epigenetics and environment. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:668-682. [PMID: 31335990 PMCID: PMC6941438 DOI: 10.1002/em.22319] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 05/22/2023]
Abstract
Maintenance of the mitochondrial genome is essential for proper cellular function. For this purpose, mitochondrial DNA (mtDNA) needs to be faithfully replicated, transcribed, translated, and repaired in the face of constant onslaught from endogenous and environmental agents. Although only 13 polypeptides are encoded within mtDNA, the mitochondrial proteome comprises over 1500 proteins that are encoded by nuclear genes and translocated to the mitochondria for the purpose of maintaining mitochondrial function. Regulation of mtDNA and mitochondrial proteins by epigenetic changes and post-translational modifications facilitate crosstalk between the nucleus and the mitochondria and ultimately lead to the maintenance of cellular health and homeostasis. DNA methyl transferases have been identified in the mitochondria implicating that methylation occurs within this organelle; however, the extent to which mtDNA is methylated has been debated for many years. Mechanisms of demethylation within this organelle have also been postulated, but the exact mechanisms and their outcomes is still an active area of research. Mitochondrial dysfunction in the form of altered gene expression and ATP production, resulting from epigenetic changes, can lead to various conditions including aging-related neurodegenerative disorders, altered metabolism, changes in circadian rhythm, and cancer. Here, we provide an overview of the epigenetic regulation of mtDNA via methylation, long and short noncoding RNAs, and post-translational modifications of nucleoid proteins (as mitochondria lack histones). We also highlight the influence of xenobiotics such as airborne environmental pollutants, contamination from heavy metals, and therapeutic drugs on mtDNA methylation. Environ. Mol. Mutagen., 60:668-682, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
|
18
|
Zhao N, Yang S, Feng Y, Sun B, Zhao R. Enhanced hepatic cholesterol accumulation induced by maternal betaine exposure is associated with hypermethylation of CYP7A1 gene promoter. Endocrine 2019; 64:544-551. [PMID: 30924082 DOI: 10.1007/s12020-019-01906-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/15/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Betaine contains three methyl groups and plays a critical role in regulating glucose and lipid metabolism via epigenetic modifications. However, it is unclear whether prenatal betaine intake could affect cholesterol metabolism of progeny through DNA methylation. METHODS Hence, pregnant rats were randomly divided into control and betaine groups fed standard diet or 1% betaine supplementation diet, respectively, throughout gestation and lactation. RESULTS Maternal betaine exposure significantly (P < 0.05) increased serum and hepatic cholesterol contents but not triglyceride levels in offspring rats. Accordantly, maternal intake of betaine markedly downregulated (P < 0.05) hepatic cholesterol 7 alpha-hydroxylase (CYP7A1) expression at both the mRNA and protein level, while the protein content of low-density lipoprotein receptor (LDLR) was upregulated in the liver of betaine-exposed rats. In addition, prenatal betaine supplementation extremely increased (P < 0.05) hepatic betaine-homocysteine methyltransferase (BHMT) expression at the mRNA and protein level but not affected the expression of other key enzymes involved in methionine metabolism. Furthermore, hepatic hypermethylation of CYP7A1 gene promoter was observed in progeny rats derived from betaine-supplemented dams. CONCLUSIONS Our results provide evidence that maternal betaine supplementation significantly enhances hepatic cholesterol contents accompanied with alterations of cholesterol metabolic genes and hypermethylation in offspring rats at weaning.
Collapse
Affiliation(s)
- Nannan Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, 210095, Nanjing, P. R. China
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, 210095, Nanjing, P. R. China
| | - Shu Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, 210095, Nanjing, P. R. China
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, 210095, Nanjing, P. R. China
| | - Yue Feng
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, 210095, Nanjing, P. R. China
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, 210095, Nanjing, P. R. China
| | - Bo Sun
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, 210095, Nanjing, P. R. China
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, 210095, Nanjing, P. R. China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, 210095, Nanjing, P. R. China.
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, 210095, Nanjing, P. R. China.
| |
Collapse
|
19
|
Luo Z, Xu X, Sho T, Zhang J, Xu W, Yao J, Xu J. ROS-induced autophagy regulates porcine trophectoderm cell apoptosis, proliferation, and differentiation. Am J Physiol Cell Physiol 2018; 316:C198-C209. [PMID: 30485137 DOI: 10.1152/ajpcell.00256.2018] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Significant embryo loss remains a serious problem in pig production. Reactive oxygen species (ROS) play a critical role in embryonic implantation and placentation. However, the potential mechanism of ROS on porcine trophectoderm (pTr) cell fate during the peri-implantation period has not been investigated. This study aimed to elucidate the effects of ROS on pTr cell phenotypes and the regulatory role in cell attachment and differentiation. Herein, results showed that exogenous H2O2 inhibited pTr cell viability, arrested the cell cycle at S and G2/M phases, and increased cell apoptosis and autophagy protein light chain 3B and Beclin-1, whereas these effects were reversed by different concentrations of N-acetyl-l-cysteine (NAC) posttreatment. In addition, NAC abolished H2O2-induced autophagic flux, inhibited intracellular and mitochondrial ROS, and restored expression of genes important for mitochondrial DNA and biogenesis, cell attachment, and differentiation. NAC reversed H2O2-activated MAPK and Akt/mammalian target of rapamycin pathways in dose-dependent manners. Furthermore, analyses with pharmacological and RNA interference approaches suggested that autophagy regulated cell apoptosis and gene expression of caudal-related homeobox 2 and IL-1β. Collectively, these results provide new insights into the role of the ROS-induced autophagy in pTr cell apoptosis, attachment, and differentiation, indicating a promising target for decreasing porcine conceptus loss during the peri-implantation period.
Collapse
Affiliation(s)
- Zhen Luo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology , Shanghai , China
| | - Xue Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology , Shanghai , China
| | - Takami Sho
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology , Shanghai , China
| | - Jing Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology , Shanghai , China
| | - Weina Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology , Shanghai , China
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University , Morgantown, West Virginia
| | - Jianxiong Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology , Shanghai , China
| |
Collapse
|
20
|
Rizzo A, Sciorsci RL. Role of homocysteine metabolism in animal reproduction: A review. Res Vet Sci 2018; 122:29-35. [PMID: 30448392 DOI: 10.1016/j.rvsc.2018.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 01/15/2023]
Abstract
Homocysteine (Hcy) is a thiol-containing essential amino acid, important for the growth of cells and tissues. Several hypotheses exist regarding Hcy toxicity in humans; Hcy is involved in protein structural modifications, oxidative stress, and neurotoxicity induction and is therefore associated with several pathological conditions in humans. In veterinary science, knowledge regarding Hcy has increased recently due to several studies; however, many aspects remain undiscovered. Many details remain unknown regarding the effect of Hcy levels on pregnancy and the optimal management of pathological conditions associated with Hcy levels during pregnancy in various species. In this review, we aimed to compile various studies on Hcy metabolism to elucidate its current status in the veterinary field, particularly for ovine, bovine, equine, porcine, canine, and feline species.
Collapse
Affiliation(s)
- A Rizzo
- Department of Veterinary Medicine, Section of Obstetric Clinic, University of Bari Aldo Moro, S.P. per Casamassima km 3, 70010 Valenzano, BA, Italy
| | - R L Sciorsci
- Department of Veterinary Medicine, Section of Obstetric Clinic, University of Bari Aldo Moro, S.P. per Casamassima km 3, 70010 Valenzano, BA, Italy.
| |
Collapse
|
21
|
Luo Z, Luo W, Li S, Zhao S, Sho T, Xu X, Zhang J, Xu W, Xu J. Reactive oxygen species mediated placental oxidative stress, mitochondrial content, and cell cycle progression through mitogen-activated protein kinases in intrauterine growth restricted pigs. Reprod Biol 2018; 18:422-431. [PMID: 30301612 DOI: 10.1016/j.repbio.2018.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/09/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022]
Abstract
Intrauterine growth restriction (IUGR) remains a significant obstacle in pig production; however, information regarding the relationship between reactive oxygen species (ROS)-induced placental dysfunction and IUGR is still unknown. This study aimed to explore the placental redox status, mitochondrial content, cellular progression, and mitogen-activated protein kinase (MAPK) pathways in IUGR. Placental tissues were collected from normal intrauterine gestation (NIUG) and IUGR fetuses at delivery. Compared with the NIUG, placental ROS production, lipid peroxidation, and DNA damage were increased in IUGR. Placental mitochondrial DNA (mtDNA) content and mtDNA-encoded gene expression decreased in IUGR. Moreover, p21 phosphorylation increased, cyclin E expression decreased in IUGR cases, which showed senescence characteristics. Analysis of signaling pathways showed that the ERK1/2 phosphorylation increased whereas the p38 and JNK phosphorylation decreased in IUGR. In cultured porcine trophectoderm (pTr) cells, exogenous H2O2 increased intracellular ROS production, decreased cell viability in a dose-dependent manner. Cell cycle distribution was found to arrest in S and G2/M phases. Our findings suggested that IUGR was associated with greater placental ROS and oxidative injury, which might be a factor that resulted in lower mitochondrial content, microvilli loss and senescence, and activation of MAPK pathways.
Collapse
Affiliation(s)
- Zhen Luo
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenli Luo
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaohua Li
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sen Zhao
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Takami Sho
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue Xu
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Zhang
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weina Xu
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianxiong Xu
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
22
|
Jin C, Zhuo Y, Wang J, Zhao Y, Xuan Y, Mou D, Liu H, Zhou P, Fang Z, Che L, Xu S, Feng B, Li J, Jiang X, Lin Y, Wu D. Methyl donors dietary supplementation to gestating sows diet improves the growth rate of offspring and is associating with changes in expression and DNA methylation of insulin-like growth factor-1 gene. J Anim Physiol Anim Nutr (Berl) 2018; 102:1340-1350. [PMID: 29959805 DOI: 10.1111/jpn.12933] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/27/2018] [Accepted: 05/06/2018] [Indexed: 01/08/2023]
Abstract
The study aimed to investigate the effects of maternal dietary methyl donors on the performance of sows and their offspring, and the associated hepatic insulin-like growth factor-1 (IGF-1) expression of the offspring. A total of 24 multiparous sows were randomly fed the control (CON) or the CON diet supplemented with methyl donors (MD) at 3 g/kg betaine, 15 mg/kg folic acid, 400 mg/kg choline and 150 μg/kg VB12 , from mating until delivery. After farrowing, sows were fed a common lactation diet through a 28-days lactation period and six litters per treatment were selected to be fed until at approximately 110 kg BW. Maternal MD supplementation resulted in greater birthweight (p < 0.05) and increased the piglet weights (p < 0.01) and litter weights (p < 0.05) at the age of day 28, compared with that in CON group. The offspring pigs in the MD group had greater ADG (p < 0.05) and tended to lower F:G ratio (p = 0.07) compared with that of CON group from day 28 to 180 of age. The offspring pigs from MD group had greater serum IGF-1 concentrations and expressions of hepatic IGF-1 gene and muscular IGF-1 receptor (IGF-1r) protein at birth (p < 0.05), and greater hepatic IGF-1 protein (p = 0.03) and muscular IGF-1r gene expressions (p < 0.05) at slaughter, than that from the CON group. Moreover, the methylation at the promoter of IGF-1 gene in the liver of newborn piglets and finishing pigs was greater in the MD group than that of the CON group (p < 0.05). In conclusion, maternal MD supplementation throughout gestation could enhance the birthweight and postnatal growth rate of offspring, associated with an increased expression of the IGF-1 gene and IGF-1r, as well as the altered DNA methylation of IGF-1 gene promotor.
Collapse
Affiliation(s)
- Chao Jin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jun Wang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Zhao
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuedong Xuan
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Daolin Mou
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Hong Liu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Pan Zhou
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuemei Jiang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
23
|
Mechta M, Ingerslev LR, Barrès R. Methodology for Accurate Detection of Mitochondrial DNA Methylation. J Vis Exp 2018:57772. [PMID: 29863674 PMCID: PMC6101301 DOI: 10.3791/57772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Quantification of DNA methylation can be achieved using bisulfite sequencing, which takes advantage of the property of sodium bisulfite to convert unmethylated cytosine into uracil, in a single-stranded DNA context. Bisulfite sequencing can be targeted (using PCR) or performed on the whole genome and provides absolute quantification of cytosine methylation at the single base-resolution. Given the distinct nature of nuclear- and mitochondrial DNA, notably in the secondary structure, adaptions of bisulfite sequencing methods for investigating cytosine methylation in mtDNA should be made. Secondary and tertiary structure of mtDNA can indeed lead to bisulfite sequencing artifacts leading to false-positives due to incomplete denaturation poor access of bisulfite to single-stranded DNA. Here, we describe a protocol using an enzymatic digestion of DNA with BamHI coupled with bioinformatic analysis pipeline to allow accurate quantification of cytosine methylation levels in mtDNA. In addition, we provide guidelines for designing the bisulfite sequencing primers specific to mtDNA, in order to avoid targeting undesirable NUclear MiTochondrial segments (NUMTs) inserted into the nuclear genome.
Collapse
Affiliation(s)
- Mie Mechta
- The Novo Nordisk Foundation for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen
| | - Lars Roed Ingerslev
- The Novo Nordisk Foundation for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen
| | - Romain Barrès
- The Novo Nordisk Foundation for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen;
| |
Collapse
|
24
|
Yang S, Zhao N, Yang Y, Hu Y, Dong H, Zhao R. Mitotically Stable Modification of DNA Methylation in IGF2/H19 Imprinting Control Region Is Associated with Activated Hepatic IGF2 Expression in Offspring Rats from Betaine-Supplemented Dams. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2704-2713. [PMID: 29376352 DOI: 10.1021/acs.jafc.7b05418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The growth-promoting action of betaine involves activation of GH/IGF-1 signaling, yet it remains unclear whether insulin-like growth factor 2 (IGF2), an imprinting gene, is affected by maternal dietary betaine supplementation. In this study, F1 offspring rats derived from dams fed basal or betaine-supplemented diet were examined at D21 and D63. Maternal betaine significantly upregulated the hepatic expression of IGF2 mRNA and protein in offspring rats at both D21 and D63, which was accompanied by enhanced hepatic IGF2 immunoreactivity and elevated serum IGF-2 level. Higher protein expression of betaine-homocysteine methyltransferase and DNA methyltransferase 1 was detected in the betaine group at D21, but not D63. However, hypermethylation of the imprinting control region of the IGF2/H19 locus at D21 was maintained at D63. These results indicate that maternal betaine modifies DNA methylation of IGF2/H19 imprinting control region in a mitotically stable fasion, which was associated with the activation hepatic IGF2 expression in offspring rats.
Collapse
Affiliation(s)
- Shu Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Nannan Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Yang Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Yun Hu
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Haibo Dong
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| |
Collapse
|
25
|
Fan H, Lv Z, Gan L, Guo Y. Transcriptomics-Related Mechanisms of Supplementing Laying Broiler Breeder Hens with Dietary Daidzein to Improve the Immune Function and Growth Performance of Offspring. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2049-2060. [PMID: 29420022 DOI: 10.1021/acs.jafc.7b06069] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Daidzein (DA) is an isoflavone that is primarily extracted from soy plants. This study evaluated the effects of supplementing laying broiler breeder hens with dietary DA on the immune function and growth performance of their offspring and the underlying mechanism. A total of 720 breeders were divided into three treatment groups that were fed either a control diet (CON), a DA-low-supplemented diet (DLS, CON+20 mg/kg DA), or a DA-high-supplemented diet (DHS, CON+100 mg/kg DA) for 8 weeks, and eggs were collected for hatching during the final week. The broiler offspring received a basal diet for 42 days, and blood, livers, and immune organs were collected at 21 and 42 days of age. DLS treatment promoted embryonic development and increased growth hormone levels, body weight, feed intake, and carcass traits on days 21 and 42 of broilers. Additionally, the IgA and IgG concentrations, antibody titers, and antioxidant capacity of broilers were increased at 21 days of age, and B lymphocyte differentiation was increased at 42 days. Besides, DLS treatment upregulated the expression of genes related to embryonic and muscle development in offspring and regulated mitogen-activated protein kinase (MAPK), transforming growth factor beta (TGF-β), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and Toll-like receptor signaling. DHS treatment decreased the percentage of abdominal fat in the broilers at 42 days, but it did not significantly affect embryonic development, growth performance, or IgA and IgG concentrations. In summary, providing dietary DA supplementation at 20 mg/kg to broiler breeders can improve their immune function and growth performance.
Collapse
Affiliation(s)
- Hao Fan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Liping Gan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| |
Collapse
|
26
|
Betaine promotes lipid accumulation in adipogenic-differentiated skeletal muscle cells through ERK/PPARγ signalling pathway. Mol Cell Biochem 2018; 447:137-149. [PMID: 29383561 DOI: 10.1007/s11010-018-3299-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/24/2018] [Indexed: 10/18/2022]
Abstract
Betaine, a neutral zwitterionic compound, could regulate intramuscular fat (IMF) deposition and meat quality. However, the efficacy is controversial. Moreover, the regulatory mechanism of betaine on lipid metabolism in skeletal muscle cells remains unclear. Therefore, in this study, we examined the effects and regulatory mechanism of betaine on lipid accumulation in adipogenic-differentiated C2C12 cells. We found that adipogenic-induced C2C12 cells treated with 10 mM betaine for 24 and 48 h had more lipid accumulation than the control group. Real-time PCR and Western blot results revealed that betaine treatment did not alter the expression of lipolysis and lipid oxidation-related genes, but dramatically increased the expression of peroxisome proliferator-activated receptor γ (PPARγ) and its target genes such as fatty acid binding protein 4 (aP2), fatty acid synthase (FAS) and lipoprteinlipase (LPL). Furthermore, betaine combined with PPARγ inhibitor GW9662 treatment showed that betaine elevated C2C12 lipid accumulation through upregulation of PPARγ. Mechanistically, we found that betaine promoted PPARγ expression and lipid accumulation through inhibition of extracellular regulated protein kinases1/2 (ERK1/2) signalling pathway. These results demonstrate that betaine acts through ERK1/2-PPARγ signalling pathway to regulate lipid metabolism in adipogenic-differentiated skeletal muscle cells, which could provide some useful information for controlling muscle lipid accumulation by manipulating ERK1/2 and PPARγ signalling pathway.
Collapse
|
27
|
Mechta M, Ingerslev LR, Fabre O, Picard M, Barrès R. Evidence Suggesting Absence of Mitochondrial DNA Methylation. Front Genet 2017; 8:166. [PMID: 29163634 PMCID: PMC5671948 DOI: 10.3389/fgene.2017.00166] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/16/2017] [Indexed: 11/28/2022] Open
Abstract
Methylation of nuclear genes encoding mitochondrial proteins participates in the regulation of mitochondria function. The existence of cytosine methylation in the mitochondrial genome is debated. To investigate whether mitochondrial DNA (mtDNA) is methylated, we used both targeted- and whole mitochondrial genome bisulfite sequencing in cell lines and muscle tissue from mouse and human origin. While unconverted cytosines were detected in some portion of the mitochondrial genome, their abundance was inversely associated to the sequencing depth, indicating that sequencing analysis can bias the estimation of mtDNA methylation levels. In intact mtDNA, few cytosines remained 100% unconverted. However, removal of supercoiled structures of mtDNA with the restriction enzyme BamHI prior to bisulfite sequencing decreased cytosine unconversion rate to <1.5% at all the investigated regions: D-loop, tRNA-F+12S, 16S, ND5 and CYTB, suggesting that mtDNA supercoiled structure blocks the access to bisulfite conversion. Here, we identified an artifact of mtDNA bisulfite sequencing that can lead to an overestimation of mtDNA methylation levels. Our study supports that cytosine methylation is virtually absent in mtDNA.
Collapse
Affiliation(s)
- Mie Mechta
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars R Ingerslev
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Odile Fabre
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Picard
- Department of Psychiatry and Neurology, Division of Behavioral Medicine, Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY, United States
| | - Romain Barrès
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Zhao N, Yang S, Hu Y, Dong H, Zhao R. Maternal betaine supplementation in rats induces intergenerational changes in hepatic IGF-1 expression and DNA methylation. Mol Nutr Food Res 2017; 61. [PMID: 28239993 DOI: 10.1002/mnfr.201600940] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/18/2017] [Accepted: 02/22/2017] [Indexed: 12/31/2022]
Abstract
SCOPE Betaine is widely used in animal nutrition to promote growth. Here, we aimed to investigate whether maternal betaine supplementation during pregnancy can exert multigenerational effects on growth across two generations and the possible epigenetic modifications associated to such effects. METHODS AND RESULTS In this study, 3-month-old female Sprague-Dawley rats were fed diet supplemented with 1% betaine throughout the pregnancy and lactation. Betaine-supplemented dams produced bigger litter but smaller F1 pups at birth and weaning. However, F2 pubs had higher weaning weight. In accordance with the growth performance, serum insulin-like growth factor 1 (IGF-1) levels were significantly lower in F1 yet higher in F2 pups, so was hepatic IGF-1 mRNA expression. Concurrently, dietary betaine supplementation to F0 dams increased hepatic expression of betaine homocysteine methyltransferase, at both mRNA and protein levels, in F1, but not F2 pups. Moreover, hepatic IGF-1 gene promoter 1 was detected to be significantly hypermethylated in F1 pups, whereas both promoters 1 and 2, together with almost all exons, were found to be hypomethylated in F2 offspring. CONCLUSION Maternal betaine supplementation during pregnancy and lactation exerts distinct effects on growth of F1 and F2 rat offspring, probably through differential modification of IGF-1 gene methylation and expression in liver.
Collapse
Affiliation(s)
- Nannan Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, P. R. China
| | - Shu Yang
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yun Hu
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, P. R. China
| | - Haibo Dong
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, P. R. China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, P. R. China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing, P. R. China
| |
Collapse
|
29
|
Monteiro A, Bernard J, Guo JR, Weng XS, Emanuele S, Davis R, Dahl G, Tao S. Effects of feeding betaine-containing liquid supplement to transition dairy cows. J Dairy Sci 2017; 100:1063-1071. [DOI: 10.3168/jds.2016-11452] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/13/2016] [Indexed: 11/19/2022]
|
30
|
Hu Y, Sun Q, Liu J, Jia Y, Cai D, Idriss AA, Omer NA, Zhao R. In ovo injection of betaine alleviates corticosterone-induced fatty liver in chickens through epigenetic modifications. Sci Rep 2017; 7:40251. [PMID: 28059170 PMCID: PMC5216338 DOI: 10.1038/srep40251] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/05/2016] [Indexed: 12/29/2022] Open
Abstract
Betaine alleviates high-fat diet-induced fatty liver and prenatal betaine programs offspring hepatic lipid metabolism. Excessive corticosterone (CORT) exposure causes fatty liver in chickens, yet it remains unknown whether and how prenatal betaine modulates the susceptibility of CORT-induced fatty liver later in life. In this study, fertilized eggs were injected with saline or betaine before incubation, and the hatchlings were raised at 8 weeks of age followed by 7 days of subcutaneous CORT injection. CORT-induced fatty liver was less severe in betaine-treated chickens, with significantly reduced oil-red staining and hepatic triglyceride content (P < 0.05). The protective effect of prenatal betaine was associated with significantly up-regulated expression of PPARα and CPT1α, as well as mitochondrial DNA (mtDNA)-encoded genes (P < 0.05). Moreover, betaine rescued CORT-induced alterations in methionine cycle genes, which coincided with modifications of CpG methylation on CPT1α gene promoter and mtDNA D-loop regions. Furthermore, the elevation of hepatic GR protein content after CORT treatment was significantly reduced (P < 0.05), while the reduction of GR binding to the control region of affected genes was significantly increased (P < 0.05), in betaine-treated chickens. These results indicate that in ovo betaine injection protects the juvenile chickens from CORT-induced fatty liver.
Collapse
Affiliation(s)
- Yun Hu
- Key Laboratory of Animal Physiology &Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Qinwei Sun
- Key Laboratory of Animal Physiology &Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jie Liu
- Key Laboratory of Animal Physiology &Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yimin Jia
- Key Laboratory of Animal Physiology &Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Demin Cai
- Key Laboratory of Animal Physiology &Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Abdulrahman A Idriss
- Key Laboratory of Animal Physiology &Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Nagmeldin A Omer
- Key Laboratory of Animal Physiology &Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology &Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China.,Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, P. R. China
| |
Collapse
|
31
|
Zhang M, Wu X, Lai F, Zhang X, Wu H, Min T. Betaine Inhibits Hepatitis B Virus with an Advantage of Decreasing Resistance to Lamivudine and Interferon α. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:4068-4077. [PMID: 27144395 DOI: 10.1021/acs.jafc.6b01180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Betaine (BET) is a native compound known for its ability to protect the liver from toxicants. However, few studies have examined the effects of BET on the most common cause of liver disease, hepatitis B virus (HBV). In this study, the anti-HBV activity of BET was assessed in vitro and in vivo using enzyme-linked immunosorbent assay, quantitative polymerase chain reaction, and Southern blotting. The resistance of HBV to lamivudine and interferon α is challenging in the clinical treatment of HBV. The effect of BET on resistance was also investigated. The results showed that the secretion of HBsAg (HBV surface antigen), HbeAg (HBV e antigen), and HBV DNA in HepG2.2.15 cells was significantly decreased by BET via suppression of GRP78 expression. In duck HBV (DHBV)-infected ducklings, 1.0 or 2.0 g/kg BET significantly reduced serum DHBV DNA, and DHBV DNA did not rebound after the 5 day withdrawal period. BET suppressed HBV DNA rebound produced by the resistance of HBV to lamivudine and decreased the resistance mutation (rtM204V/I) of HBV DNA. Supplementation of BET may improve the anti-HBV effect of interferon α by increasing the expression of antiviral dsRNA-dependent protein kinase induced by the JAK-STAT (JAK = Janus kinase; STAT = signal transducer and activator of transcription) signaling pathway. These results may provide useful information for the clinical application of BET and solution of HBV drug resistance in anti-HBV therapy.
Collapse
Affiliation(s)
| | - Xiaoying Wu
- School of Bioscience and Bioengineering, South China University of Technology , Guangzhou, Guangdong 510006, China
| | | | | | | | | |
Collapse
|