1
|
Li K, Xia T, Jiang Y, Wang N, Lai L, Xu S, Yue X, Xin H. A review on ethnopharmacology, phytochemistry, pharmacology and potential uses of Portulaca oleracea L. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117211. [PMID: 37739100 DOI: 10.1016/j.jep.2023.117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Portulaca oleracea L. (PO), popularly known as purslane, has been documented in ethnopharmacology in various countries and regions. Traditional application records indicated that PO might be used extensively to treat the common cold, dysentery, urinary tract infections, coughing, eye infections, skin problems, gynecological diseases, and pediatric illnesses. AIM OF THE REVIEW This paper includes a systematic review of the traditional usage, phytochemicals, pharmacological activity, and potential uses of PO to provide an overview of the research for further exploitation of PO resources. MATERIALS AND METHODS This article uses "Portulaca oleracea L." and "purslane" as the keywords and collects relevant information on PO from different databases, including PubMed, Web of Science, Springer, Science Direct, ACS, Wiley, CNKI, Baidu Scholar, Google Scholar, and ancient meteria medica. RESULTS PO is a member of the Portulacaceae family and is grown worldwide. Traditional Chinese medicine believes that purslane has the effect of improving eyesight, eliminating evil qi, quenching thirst, purgation, diuresis, hemostasis, regulating qi, promoting hair growth, detoxifying, and avoiding epidemic qi. Recent phytochemical investigations have shown that PO is a rich source of flavonoids, homoisoflavonoids, alkaloids, organic acids, esters, lignans, terpenoids, catecholamines, sterols, and cerebrosides. The purslane extracts or compounds have exhibited numerous biological activities such as anti-inflammatory, immunomodulatory, antimicrobial, antiviral, antioxidant, anticancer, renoprotective, hepatoprotective, gastroprotective, metabolic, muscle relaxant, anti-asthmatic and anti-osteoporosis properties. The significant omega-3 fatty acids, vital amino acids, minerals, and vitamins found in purslane also provide nutritional benefits. Purslane as a food/feed additive in the food industry and animal husbandry has caused concern. Its global wide distribution and tolerance to abiotic stress characteristics make it in the future sustainable development of agriculture a certain position. CONCLUSIONS Based on traditional usage, phytochemicals, and pharmacological activity, PO is a potential medicinal and edible plant with diverse pharmacological effects. Due to purslane's various advantages, it may have vast application potential in the food and pharmaceutical industries and animal husbandry.
Collapse
Affiliation(s)
- Kun Li
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China; Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Tianshuang Xia
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yiping Jiang
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Liyong Lai
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Shengyan Xu
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xiaoqiang Yue
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Hailiang Xin
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China.
| |
Collapse
|
2
|
Su W, Li Y, Chang AK, Sheng T, Pei Y, Li J, Li H, Liu K, Xu L, Liu W, Ai J, Zhang Z, Wang Y, Jiang Z, Liang X. Identification of Novel Alkaloids from Portulaca oleracea L. and Characterization of Their Pharmacokinetics and GLP-1 Secretion-Promoting Activity in STC-1 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19804-19816. [PMID: 38038649 DOI: 10.1021/acs.jafc.3c05191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Six new alkaloids (compounds 1-6) were isolated from Portulaca oleracea L. The compounds were triple pair (1 and 2, 3 and 4, and 5 and 6) enantiomers, with 1, 3, and 5 in the R-configuration and 2, 4, and 6 in the S-configuration, and all could bind to SUR1 according to molecular docking analysis. Treatment of STC-1 cells with each compound led to an influx of intracellular Ca2+, eventually leading to the secretion of glucagon-like peptide-1 (GLP-1), with compound 3 giving the highest secretion, resulting in 24.3 ± 7.03% more GLP-1 than nateglinide-treated cells, suggesting that these alkaloids may be able to reduce blood glucose based on their ability to stimulate the release of GLP-1. Furthermore, compound 3 also exhibited slightly faster absorption than nateglinide, as shown by pharmacokinetic analysis conducted in rats. Therefore, the results showed that some purslane alkaloids (such as compound 3) had good pharmacological activity in vivo and may have preventive and therapeutic effects on diabetes.
Collapse
Affiliation(s)
- Weiping Su
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang, Liaoning Province 110036, P.R. China
| | - Yanan Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang, Liaoning Province 110036, P.R. China
| | - Alan Kueichieh Chang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang Province 325035, P.R. China
| | - Tongling Sheng
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang, Liaoning Province 110036, P.R. China
| | - Ying Pei
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang, Liaoning Province 110036, P.R. China
| | - Jianxin Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang, Liaoning Province 110036, P.R. China
| | - Haoran Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang, Liaoning Province 110036, P.R. China
| | - Kai Liu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang, Liaoning Province 110036, P.R. China
| | - Liuping Xu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang, Liaoning Province 110036, P.R. China
| | - Wenbao Liu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang, Liaoning Province 110036, P.R. China
| | - Jiao Ai
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang, Liaoning Province 110036, P.R. China
| | - Zhicheng Zhang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang, Liaoning Province 110036, P.R. China
| | - Yimeng Wang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang, Liaoning Province 110036, P.R. China
| | - Zhen Jiang
- Department of Analytical Chemistry, College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, P.R. China
| | - Xiao Liang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang, Liaoning Province 110036, P.R. China
| |
Collapse
|
3
|
Öztüzün A, Çeker T, Yılmaz Ç, Aslan M. Inflammatory signal transduction pathways induced by prilocaine toxicity in cultured ARPE-19 cells. J Biochem Mol Toxicol 2023; 37:e23491. [PMID: 37561044 DOI: 10.1002/jbt.23491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
Prilocaine (PRL) is a common local anesthetic. Despite the successful use of regional anesthesia for intraocular surgery, there are associated side effects that may affect the retina in case of accidental intravitreal injection. This study examined the signal transduction pathways activated by PRL toxicity and determined the protective role of nitric oxide synthase-2 (NOS2) inhibition in cultured human-derived retinal pigment epithelial cells (ARPE-19). Toxicity analysis was performed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay to detect the toxic dose of PRL and protective effectiveness of asperglaucide (ASP), an NOS2 inhibitor. Nuclear factor kappa B p65 (NF-κB p65), phosphorylated NF-κB p65, phospho-protein kinase B (AKT), NOS2, nitrotyrosine, and cleaved caspase-3 protein levels were evaluated by immunofluorescence staining and/or western blot analysis. Interleukin-6 (IL-6) and nitrated protein levels were quantified using an immunoassay, whereas caspase-3 activity and nitrite/nitrate levels were measured using a fluorometric method. A significant increase in NF-κB p65, and phosphorylated NF-κB p65 and AKT levels due to PRL toxicity was observed. Similarly, IL-6, NOS2, nitrite/nitrate, and nitrotyrosine levels were significantly higher in PRL-treated cells than in control cells. Application of ASP to PRL-treated cells reduced NF-κB p65, and phosphorylated NF-κB p65 and AKT to basal levels. IL-6, NOS2, nitrite/nitrate, and nitrotyrosine levels also considerably decreased following ASP treatment in cells experiencing PRL-induced toxicity. Moreover, the caspase-3-dependent apoptotic pathway was not activated. Our results indicate that ASP could ameliorate PRL-induced activation of NF-κB p65 that led to inflammation in cultured ARPE-19 cells.
Collapse
Affiliation(s)
- Aleyna Öztüzün
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Tuğçe Çeker
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Çağatay Yılmaz
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Mutay Aslan
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
4
|
Aslan M, Basralı F, Ülker P, Barut Z, Yılmaz Ç, Çeker T, Özen N, Öztüzün A, Elpek Ö. Effects of aurantiamide on a rat model of renovascular arterial hypertension. Pflugers Arch 2023; 475:1177-1192. [PMID: 37582694 PMCID: PMC10499692 DOI: 10.1007/s00424-023-02850-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
Asperglaucide (ASP) is an aurantiamide, an effective constituent of purslane (Portulaca oleracea L.), a safe to eat greenery. Effects of ASP on endothelial function, endothelial nitric oxide synthase (eNOS) expression, vascular fluidity, renal and vascular reactive oxygen, and nitrogen species (ROS/RNS) production was examined in the two-kidney one-clip (2 K-1C) rat model of renovascular arterial hypertension. ASP toxicity, dose dependent eNOS gene expression and protein levels were also analyzed in human umbilical vein endothelial cells (HUVEC). The 2 K-1C model of hypertension was created via surgery and mean blood pressure (MBP) was measured by tail-cuff method during four weeks of ASP treatment. Erythrocyte deformability was monitored by rotational ektacytometry, while vascular constrictor and dilator responses were determined in organ baths. eNOS gene expression and protein levels were assessed in thoracic aorta and HUVEC. MBP was significantly decreased in hypertensive rats treated with ASP. Endothelium dependent vascular dilator and constrictor responses were also considerably improved following ASP treatment. There was a notable increase in red blood cell deformability in hypertensive rats treated with ASP as compared to hypertensive rats alone. A significant increase was observed in eNOS gene expression and protein levels in both normotensive and hypertensive rats treated with ASP. Treatment of HUVEC with 3 µM ASP notably increased eNOS mRNA and protein levels. In conclusion, ASP lowered blood pressure, improved endothelium-mediated relaxation, decreased renovascular ROS/RNS production in hypertensive rats. ASP also increased eNOS protein expression in aorta and HUVEC at nontoxic doses. ASP may have future potential as an anti-hypertensive agent.
Collapse
Affiliation(s)
- Mutay Aslan
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, 07070 Turkey
| | - Filiz Basralı
- Department of Physiology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Pınar Ülker
- Department of Physiology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Zerrin Barut
- Faculty of Dentistry, Antalya Bilim University, Antalya, Turkey
| | - Çağatay Yılmaz
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, 07070 Turkey
| | - Tuğçe Çeker
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, 07070 Turkey
| | - Nur Özen
- Department of Physiology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Aleyna Öztüzün
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, 07070 Turkey
| | - Özlem Elpek
- Department of Pathology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
5
|
Darwish SF, Elbadry AMM, Elbokhomy AS, Salama GA, Salama RM. The dual face of microglia (M1/M2) as a potential target in the protective effect of nutraceuticals against neurodegenerative diseases. FRONTIERS IN AGING 2023; 4:1231706. [PMID: 37744008 PMCID: PMC10513083 DOI: 10.3389/fragi.2023.1231706] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
The pathophysiology of different neurodegenerative illnesses is significantly influenced by the polarization regulation of microglia and macrophages. Traditional classifications of macrophage phenotypes include the pro-inflammatory M1 and the anti-inflammatory M2 phenotypes. Numerous studies demonstrated dynamic non-coding RNA modifications, which are catalyzed by microglia-induced neuroinflammation. Different nutraceuticals focus on the polarization of M1/M2 phenotypes of microglia and macrophages, offering a potent defense against neurodegeneration. Caeminaxin A, curcumin, aromatic-turmerone, myricetin, aurantiamide, 3,6'-disinapoylsucrose, and resveratrol reduced M1 microglial inflammatory markers while increased M2 indicators in Alzheimer's disease. Amyloid beta-induced microglial M1 activation was suppressed by andrographolide, sulforaphane, triptolide, xanthoceraside, piperlongumine, and novel plant extracts which also prevented microglia-mediated necroptosis and apoptosis. Asarone, galangin, baicalein, and a-mangostin reduced oxidative stress and pro-inflammatory cytokines, such as interleukin (IL)-1, IL-6, and tumor necrosis factor-alpha in M1-activated microglia in Parkinson's disease. Additionally, myrcene, icariin, and tenuigenin prevented the nod-like receptor family pyrin domain-containing 3 inflammasome and microglial neurotoxicity, while a-cyperone, citronellol, nobiletin, and taurine prevented NADPH oxidase 2 and nuclear factor kappa B activation. Furthermore, other nutraceuticals like plantamajoside, swertiamarin, urolithin A, kurarinone, Daphne genkwa flower, and Boswellia serrata extracts showed promising neuroprotection in treating Parkinson's disease. In Huntington's disease, elderberry, curcumin, iresine celosia, Schisandra chinensis, gintonin, and pomiferin showed promising results against microglial activation and improved patient symptoms. Meanwhile, linolenic acid, resveratrol, Huperzia serrata, icariin, and baicalein protected against activated macrophages and microglia in experimental autoimmune encephalomyelitis and multiple sclerosis. Additionally, emodin, esters of gallic and rosmarinic acids, Agathisflavone, and sinomenine offered promising multiple sclerosis treatments. This review highlights the therapeutic potential of using nutraceuticals to treat neurodegenerative diseases involving microglial-related pathways.
Collapse
Affiliation(s)
- Samar F. Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Abdullah M. M. Elbadry
- Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Egypt
| | | | - Ghidaa A. Salama
- Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Rania M. Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| |
Collapse
|
6
|
Effects of α-casein on the excretion of blueberry anthocyanins via urine and feces: Analysis of their bioavailability. Food Chem 2023; 413:135565. [PMID: 36773360 DOI: 10.1016/j.foodchem.2023.135565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Anthocyanins are bioactive compounds found in blueberries. However, their poor bioavailability restricts their functional activities in vivo, which is a challenging issue in the application of blueberry anthocyanins. Our current study utilized α-casein as a carrier and analyzed its influence on the excretion of blueberry anthocyanins in urine and feces in a rat model to reflect the enhanced bioavailability of blueberry anthocyanins by α-casein in vivo. The results showed that α-casein suppressed the excretive content of blueberry anthocyanins (malvidin-3-O-galacoside (M3G), cyanidin-3-O-glucoside (C3G), and delphinidin-3-O-glucoside (D3G)), increased the content of metabolites in urine (syringic acid, ferulic acid, 4-hydroxybenzoic acid, and vanillic acid), and reduced metabolite content in feces (syringic acid, ferulic acid, and gallic acid), indicating that α-casein was effective in controlling the excretion of blueberry anthocyanins and their metabolites. In summary, these results provided sufficient evidence for the positive effects of α-casein on the bioavailability of blueberry anthocyanins.
Collapse
|
7
|
Wang Q, Wang R, Zheng C, Zhang L, Meng H, Zhang Y, Ma L, Chen B, Wang J. Anticonvulsant Activity of Bombyx batryticatus and Analysis of Bioactive Extracts Based on UHPLC-Q-TOF MS/MS and Molecular Networking. Molecules 2022; 27:molecules27238315. [PMID: 36500408 PMCID: PMC9740854 DOI: 10.3390/molecules27238315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Bombyx batryticatus (BB) is an anticonvulsant animal medicine in traditional Chinese medicine (TCM) and acts on the central nervous system. This research aimed to study the anticonvulsant effects of different polarity fractions of extracts from BB and to explore the components conferring anticonvulsant activity. Materials and methods: Crude extracts of BB at 20 g/kg were divided into different polarity fractions (petroleum ether, chloroform, ethyl acetate, water) and were administered to groups of mice before injecting pentylenetetrazol (PTZ) to induce convulsions. The animals were placed in chambers, and their behaviors were recorded for 30 min following the injection. Latency time, percent of protection, convulsion, convulsion rate, and convulsion score were determined for these mice. The compounds present in the different fractions were analyzed, and those from the fraction that conferred anticonvulsant activity were identified by high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF MS) and molecular networking (MN). The chloroform extract fractions (B-C) clearly increased the seizure latency time and protection percentage and decreased the convulsion percentage compared to the control group. The anticonvulsant effect of other extract fractions was not significant. Our study shows that the chloroform extract fractions (B-C) of BB have a significant anticonvulsant effect. We also identified 17 compounds including lumichrome, pheophorbide A, and episyringaresinol 4'-O-beta-d-glucopyranose that were found for the first time. The results of this study may lay the groundwork for studying compounds derived from Bombyx batryticatus and their anticonvulsant effect.
Collapse
Affiliation(s)
- Qinglei Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Rong Wang
- NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
| | - Cheng Zheng
- NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
| | - Linlin Zhang
- NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
| | - Hong Meng
- Department of Pharmacological Toxicology, Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
| | - Yi Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Linke Ma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
- Correspondence: (L.M.); (B.C.); (J.W.)
| | - Bilian Chen
- NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
- Correspondence: (L.M.); (B.C.); (J.W.)
| | - Juanjuan Wang
- NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
- Correspondence: (L.M.); (B.C.); (J.W.)
| |
Collapse
|
8
|
Qu B, Liu Y, Shen A, Guo Z, Yu L, Liu D, Huang F, Peng T, Liang X. Combining multidimensional chromatography-mass spectrometry and feature-based molecular networking methods for the systematic characterization of compounds in the supercritical fluid extract of Tripterygium wilfordii Hook F. Analyst 2022; 148:61-73. [PMID: 36441185 DOI: 10.1039/d2an01471h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tripterygium wilfordii Hook F from the family Celastraceae is a traditional Chinese medicine (TCM) whose principal chemical constituents are terpenoids, including sesquiterpene alkaloids and diterpenoids, which have unique and diverse structures and remarkable biological activities. In order to advance pharmacological research and guide the preparation of monomer compounds derived from T. wilfordii, a systematic approach to efficiently discover new compounds or their derivatives is needed. Herein, compound separation and identification were performed by offline reversed-phase × supercritical fluid chromatography coupled mass spectrometry (RP × SFC-Q-TOF-MS/MS) and Global Natural Product Social (GNPS) molecular networking. The 2D chromatography system exhibited a high degree of orthogonality and significant peak capacity, and SFC has an advantage during the separation of sesquiterpene alkaloid isomers. Feature-based molecular networking offers the great advantage of quickly detecting and clustering unknown compounds, which greatly assists in intuitively judging the type of compound, and this networking technique has the potential to dramatically accelerate the identification and characterization of compounds from natural sources. A total of 324 compounds were identified and quantitated, including 284 alkaloids, 22 diterpenoids and 18 triterpenoids, which means that there are numerous potential new compounds with novel structures to be further explored. Overall, feature-based molecular networking provides an effective method for discovering and characterizing novel compounds and guides the separation and preparation of targeted natural products.
Collapse
Affiliation(s)
- Boquan Qu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfang Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Aijin Shen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Zhimou Guo
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Long Yu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Dian Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Feifei Huang
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Ting Peng
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| |
Collapse
|
9
|
Aurantiamide Acetate Ameliorates Lung Inflammation in Lipopolysaccharide-Induced Acute Lung Injury in Mice. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3510423. [PMID: 36046440 PMCID: PMC9424011 DOI: 10.1155/2022/3510423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022]
Abstract
Purpose Aurantiamide acetate (AA) is a dipeptide derivative with complex pharmacological activities and remarkable effects on preventing and treating various diseases. In the current study, we aimed to investigate whether AA can exert protective effects in a mouse model of ALI induced by LPS. Materials and Methods In this model, mice were given intranasal LPS for 3 days prior to receiving AA (2.5, 5, and 10 mg/kg) via oral gavage. An assessment of histopathological changes was performed by hematoxylin and eosin (HE). Proinflammatory cytokines were detected in bronchoalveolar lavage fluids (BALFs) by enzyme-linked immunosorbent assays (ELISAs). The effects of AA on protein expression of NF-κB and PI3K/AKT signaling pathways were determined by Western blot. In addition, lung wet/dry (W/D) weight ratio, myeloperoxidase (MPO) activity, cell counts, and protein content were also measured. Results According to results, AA pretreatment significantly reduced lung pathological changes, W/D ratio, MPO activity, and protein content. Additionally, AA resulted in a significant reduction in the number of total cells, neutrophils, and proinflammatory cytokines in the BALF after LPS stimulation. The subsequent study revealed that pretreatment with AA dose dependently suppressed LPS-induced activation of NF-κB as well as PI3K/AKT phosphorylation. Conclusion The results indicated that the AA had a protective effect on LPS-induced ALI in mice and could be a potential drug for ALI.
Collapse
|
10
|
Matos P, Batista MT, Figueirinha A. A review of the ethnomedicinal uses, chemistry, and pharmacological properties of the genus Acanthus (Acanthaceae). JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115271. [PMID: 35430290 DOI: 10.1016/j.jep.2022.115271] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Acanthus genus belongs to the Acanthaceae family, and its species are distributed in all continents, mainly in tropical and subtropical regions. Several traditional applications are referred to, but few scientific studies validate them. Despite this, studies in animal models corroborate some of its uses in folk medicine, such as anticancer, antidiabetic, anti-inflammatory, and antinociceptive, which encourages the research on plants of this genus. AIM OF THE REVIEW To our knowledge, this document is the first comprehensive review study that provides information on the geographic distribution, botanical characteristics, ethnomedicinal uses, phytochemicals, and pharmacological activities of some Acanthus species to understand the correlation between traditional uses, phytochemical, and pharmacological activities, providing perspectives for future studies. RESULTS In traditional medicine, Acanthus species are mainly used for diseases of respiratory, nervous and reproductive system, gastrointestinal and urinary tract, and skin illness. The most used species are A. montanus, A. ilicifolius, and A. ebracteatus. Chemical compounds (125) from different chemical classes were isolated and identified in seven species, mainly from A. ilicifolius, about 80, followed by A. ebracteatus and A. montanus, appearing with a slightly lower number with fewer phytochemical profile studies. Isolated phytoconstituents have been mainly alkaloids, phenylpropanoid glycosides, and phenylethanoids. In addition, aliphatic glycosides, flavonoids, lignan glycosides, megastigmane derivatives, triterpenoids, steroids, fatty acids, alcohols, hydroxybenzoic acids, simple phenols were also cited. Scientific studies from Acanthus species extracts and their phytoconstituents support their ethnomedical uses. Antimicrobial activity that is the most studied, followed by the antioxidant, anti-inflammatory, and anticancer properties, underlie many Acanthus species activities. A. dioscoridis, A. ebracteatus, A. hirsutus, A. ilicifolius, A. mollis, A. montanus, and A. polystachyus have studies on these activities, A. ilicifolius being the one with the most publications. Most studies were essentially performed in vitro. However, the anticancer, antidiabetic, anti-inflammatory and antinociceptive properties have been studied in vivo. CONCLUSION Acanthus species have remarkable phytoconstituents with different biological activities, such as antioxidant, antimicrobial, anti-inflammatory, antinociceptive, hepatoprotective, and leishmanicidal, supporting traditional uses of some species. However, many others remain unexplored. Future studies should focus on these species, especially pharmacological properties, toxicity, and action mechanisms. This review provides a comprehensive report on Acanthus genus plants, evidencing their therapeutic potential and prospects for discovering new safe and effective drugs from Acanthus species.
Collapse
Affiliation(s)
- Patrícia Matos
- University of Coimbra, Faculty of Pharmacy of University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, R. D. Manuel II, Apartado, 55142, Oporto, Portugal
| | - Maria Teresa Batista
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; University of Coimbra, CIEPQPF, FFUC, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Artur Figueirinha
- University of Coimbra, Faculty of Pharmacy of University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, R. D. Manuel II, Apartado, 55142, Oporto, Portugal.
| |
Collapse
|
11
|
Liu K, Tan JN, Wei Y, Li C, Dou Y, Zhang Z. Application of choline chloride-based deep eutectic solvents for the extraction of dopamine from purslane (Portulaca oleracea L.). RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
12
|
Saparpakorn P, Chimprasit A, Jantarat T, Hannongbua S. Insight investigation of rilpivirine and compounds from mushrooms as feline immunodeficiency virus reverse transcriptase inhibitors using molecular dynamics simulations and quantum chemical calculations. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2021.2025236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Patchreenart Saparpakorn
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| | - Aunlika Chimprasit
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| | - Theerawat Jantarat
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
13
|
Tong Y, Ma Y, Kong Y, Deng H, Wan M, Tan C, Wang M, Li L, Meng X. Pharmacokinetic and excretion study of Aronia melanocarpa anthocyanins bound to amylopectin nanoparticles and their main metabolites using high-performance liquid chromatography-tandem mass spectrometry. Food Funct 2021; 12:10917-10925. [PMID: 34647952 DOI: 10.1039/d1fo02423j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Anthocyanins of Aronia melanocarpa are known for their therapeutic properties; however, they are unstable and easily degrade in the environment and in vivo. Herein, we investigated the stability and bioavailability of four anthocyanins bound to amylopectin nanoparticles (APNPs) through a pharmacokinetic and excretion study using high-performance liquid chromatography-tandem mass spectrometry. An EC-C18 column with methanol and 0.1% formic acid as the mobile phase was used during the analysis. After APNP treatment, anthocyanins and metabolites exhibited a marked increase, whereas their maximum oral bioavailability reached 440% and 593%, respectively. The delayed elimination half time demonstrated that APNPs had a sustained-release effect on anthocyanins. Pharmacokinetic results revealed that APNPs effectively protect anthocyanins in vivo. Excretion studies in urine and feces had shown a decrease in excretion of anthocyanins and most of the metabolites after APNP treatment. The results of excretion study further proved the protective effect of APNPs on anthocyanins in vivo.
Collapse
Affiliation(s)
- Yuqi Tong
- College of Food Science and Engineering, Shenyang Agricultural University, No. 120 Dongling St, Shenhe District, Shenyang 110866, China.
| | - Yan Ma
- Center of Experiment Teaching, Shenyang Normal University, Shenyang 110034, China.
| | - Yanwen Kong
- College of Food Science and Engineering, Shenyang Agricultural University, No. 120 Dongling St, Shenhe District, Shenyang 110866, China.
| | - Haotian Deng
- College of Food Science and Engineering, Shenyang Agricultural University, No. 120 Dongling St, Shenhe District, Shenyang 110866, China.
| | - Meizhi Wan
- College of Food Science and Engineering, Shenyang Agricultural University, No. 120 Dongling St, Shenhe District, Shenyang 110866, China.
| | - Chang Tan
- College of Food Science and Engineering, Shenyang Agricultural University, No. 120 Dongling St, Shenhe District, Shenyang 110866, China.
| | - Mingyue Wang
- College of Food Science and Engineering, Shenyang Agricultural University, No. 120 Dongling St, Shenhe District, Shenyang 110866, China.
| | - Li Li
- College of Food Science and Engineering, Shenyang Agricultural University, No. 120 Dongling St, Shenhe District, Shenyang 110866, China.
| | - Xianjun Meng
- College of Food Science and Engineering, Shenyang Agricultural University, No. 120 Dongling St, Shenhe District, Shenyang 110866, China.
| |
Collapse
|
14
|
Lang Y, Tian J, Meng X, Si X, Tan H, Wang Y, Shu C, Chen Y, Zang Z, Zhang Y, Wang J, Li B. Effects of α-Casein on the Absorption of Blueberry Anthocyanins and Metabolites in Rat Plasma Based on Pharmacokinetic Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6200-6213. [PMID: 34044544 DOI: 10.1021/acs.jafc.1c00082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Blueberry anthocyanins are well known for their beneficial biological activities. However, the poor bioavailability of anthocyanins limits their functional capacity in vivo. Our current study aimed to detect the effects of α-casein on the absorption of blueberry anthocyanins and their metabolites in rats. Blueberry anthocyanins with and without α-casein were intragastrically administered to two groups of rats and their blood samples were collected within 24 h. Results illustrated that rapid absorption of anthocyanins was observed in the rat plasma, but their concentration was relatively low. With the complexation of α-casein, the maximum concentration (Cmax) of bioavailable anthocyanins and metabolites could increase by 1.5-10.1 times (P < 0.05 or P < 0.01). The promotional effect on the plasma absorption of malvidin-3-O-galactoside and vanillic acid was outstanding with the Cmax increasing from 0.032 to 0.323 and from 0.360 to 1.902 μg/mL, respectively (P < 0.01). Besides, the molecular docking models presented that anthocyanins could enter the structural cavity and interact with amino acid residues of α-casein, which was in accordance with the improved bioavailability of anthocyanins. Therefore, α-casein could assist more blueberry anthocyanins and their metabolites to enter blood circulation.
Collapse
Affiliation(s)
- Yuxi Lang
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Xianjun Meng
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Xu Si
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Hui Tan
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Yuehua Wang
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Chi Shu
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zhihuan Zang
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Ye Zhang
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Jiaxin Wang
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Bin Li
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| |
Collapse
|
15
|
Hu Y, Li J, Chang AK, Li Y, Tao X, Liu W, Wang Z, Su W, Li Z, Liang X. Screening and tissue distribution of protein tyrosine phosphatase 1B inhibitors in mice following oral administration of Garcinia mangostana L. ethanolic extract. Food Chem 2021; 357:129759. [PMID: 33878587 DOI: 10.1016/j.foodchem.2021.129759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022]
Abstract
Garcinia mangostana L. (mangosteen) is a tropical fruit that is rich in xanthones and is thought to have an anti-diabetic effect. In this study, we screened for the xanthones in mangosteen that could inhibit the activity of protein tyrosine phosphatase 1B (PTP1B), an enzyme that is targeted by diabetic drugs. Mice were orally administered mangosteen extract and blood samples were screened for the presence of PTP1B-interacting xanthones. Six such compounds (1-6) were identified by UF-HPLC-QTOF-MS and their inhibition against PTP1B was confirmed by activity assay. Among them, garcinone E (5) was found to be the most effective PTP1B inhibitor (IC50 = 0.43 μM). Tissue distribution analysis showed that the six compounds were distributed in eleven tissues, including the liver, muscle, fat, stomach, large intestine, small intestine, brain, kidney, heart, lung, and spleen. The results demonstrated that mangosteen might be a promising source of natural compounds with high PTP1B-inhibitory activity.
Collapse
Affiliation(s)
- Yu Hu
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Jianxin Li
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China; College of Chemistry, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Alan K Chang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang Province, PR China
| | - Yanan Li
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Xia Tao
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Wenbao Liu
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Zhina Wang
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Weiping Su
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Zehao Li
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Xiao Liang
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China; Academy of Forensic Science, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China.
| |
Collapse
|
16
|
Liang X, Hu Y, Li J, Chang AK, Tao X, Li Y, Liu W, Pi K, Yuan J, Jiang Z. Identification and Pharmacokinetics of Quinone Reductase 2 Inhibitors after Oral Administration of Garcinia mangostana L. Extract in Rat by LC-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11975-11986. [PMID: 33054205 DOI: 10.1021/acs.jafc.0c04439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Garcinia mangostana L. (mangosteen) is a famous tropical fruit that contains a large number of xanthones. Regular consumption of mangosteen may confer health benefits and prevent some diseases, such as malaria. Quinone reductase 2 (QR-2) is a cytosolic enzyme found in human red blood cells, and it is becoming a target for chemoprevention because it is involved in the mechanisms of several diseases, including malaria. To understand whether the xanthones present in mangosteen might inhibit the activity of QR-2, blood samples were collected from rat following the oral administration of mangosteen extract and then incubated with QR-2 followed by UF-HPLC-QTOF/MS analysis to rapidly screen for and identify the QR-2-inhibiting xanthones. A total of 16 xanthones were identified, and six of these (α-mangostin, γ-mangostin, 8-deoxyartanin, 1,3,7-trihydroxy-2,8-di(3-methylbut-2-enyl)xanthone, garcinone E, and 9-hydroxycalabaxanthone) were subjected to QR-2 inhibition assay. γ-Mangostin exhibited the strongest inhibition, achieving an IC50 value of 3.82 ± 0.51 μM. Its interaction with QR-2 was found to involve hydrogen bond and arene-arene interaction as revealed by molecular docking. The present study could provide new insight into the potential application of mangosteen as functional food ingredients for inhibiting the activity of QR-2. However, the extent of daily intake of mangosteen required and the exact contribution of mangosteen to the prevention and treatment of malaria remain subjects of further study.
Collapse
Affiliation(s)
- Xiao Liang
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning, People's Republic of China
- Academy of Forensic Science, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning, People's Republic of China
| | - Yu Hu
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning, People's Republic of China
| | - Jianxin Li
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning, People's Republic of China
| | - Alan K Chang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang, People's Republic of China
| | - Xia Tao
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning, People's Republic of China
| | - Yanan Li
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning, People's Republic of China
| | - Wenbao Liu
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning, People's Republic of China
| | - Kexin Pi
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning, People's Republic of China
| | - Jie Yuan
- Department of Analytical Chemistry, College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, People's Republic of China
| | - Zhen Jiang
- Department of Analytical Chemistry, College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, People's Republic of China
| |
Collapse
|
17
|
Liang C, Yin J, Ma Y, Zhang X, Gao J, Zhang L. A Reliable LC-MS/MS Method for the Quantification of Two Pairs of Isomeric Flavonoids from Commelina Communis Linn in Rat Plasma: Validation and Pharmacokinetic Applications. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666190523114918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Commelina communis Linn (Commelinae Herba) is a traditional Chinese medicine
that can be used both as food and as medicine. It has been used to treat a variety of disorders, including
a cold, high fever, sore throat, edema and oliguria for many years. Two pairs of isomeric flavonoid
glycosides are the main active components in Commelina communis Linn, and they have a high
content.
Objective:
The objective of this study was to determine the pharmacodynamic and pharmacological
effects of Commelina communis Linn.
Method:
A sensitive, efficient, and rapid LC-MS/MS method was developed to simultaneously identify
two pairs of isomeric flavonoid glycosides in rats. Chromatographic separation was carried out on a
Wonda Cract ODS-2 C18 column (150 mm x 4.6 mm, 5 μm) using a mobile phase composed of 0.1%
formic acid (aqueous solution) and methanol at a flow rate of 0.8 mL/min. The detection of the four
analytes and the internal standard (IS) sulfamethoxazole was performed with multiple reaction monitoring
(MRM) in negative electrospray ionization mode. All the analytes were eluted within 20 min.
Results:
This method was successfully applied for simultaneous identification of the concentrations of
the four compounds in the plasma after the oral administration of 10 mL/kg Commelina communis Linn
extract to rats. The pharmacokinetic study indicated that analytes reached their Cmax in approximately 15
min and could be detected until 12 h.
Conclusion:
The method complies with the State Food and Drug Administration guidelines for selectivity,
sensitivity, accuracy, precision, matrix effect, extraction recovery and stability. This is the first report
on the pharmacokinetics of Commelina communis Linn. The information gained from this research
may be valuable for the preclinical and clinical applications of Commelina communis Linn.
Collapse
Affiliation(s)
- Caijuan Liang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei province, 050017, China
| | - Jintuo Yin
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei province, 050017, China
| | - Yinling Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei province, 050017, China
| | - Xia Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei province, 050017, China
| | - Jin Gao
- Hebei General Hospital, Shijiazhuang, Hebei province, 050051, China
| | - Lantong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei province, 050017, China
| |
Collapse
|
18
|
Xu H, Ying Z, Wang L, Zhang W, Ying X, Yang G. Pharmacokinetics of Benzoic Acid, 4-[[(2-Hydroxyethyl)Amino]Carbonyl]- Methyl Ester from Portulaca Oleracea L. in Rats after Intravenous and Oral Administrations Using UHPLC-ESI-Q-TOF/MS. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666190320154857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective:
The aim of this study is to investigate the pharmacokinetics of benzoic acid, 4-
[[(2-hydroxyethyl)amino]carbonyl], methyl ester in rats after intravenous and oral administrations at
doses of 3 mL/kg.
Methods:
A rapid, high selective ultra-high performance liquid chromatographic electrospray quadrupole-
time of flight mass spectrometry (UHPLC-ESI-Q-TOF/MS) method was applied to investigate the
pharmacokinetics of benzoic acid, 4-[[(2-hydroxyethyl)amino]carbonyl]-, methyl ester with p-coumaric
acid as internal standard (IS) in rats after intravenously and orally dosed.
Results:
The pharmacokinetic data of benzoic acid, 4-[[(2-hydroxyethyl)amino]carbonyl]-, methyl ester
was analyzed in the two-compartment open model. The main pharmacokinetic parameters were, respectively,
36.474 μg·h/mL, 12.59 μg·h/mL (AUC0→∞), and T1/2α was 0.14 h, 0.359 h; T1/2β was 3.046 h,
5.646 h after intravenous and oral administrations.
Conclusion:
Benzoic acid, 4-[[(2-hydroxyethyl)amino] carbonyl]-, methyl ester was rapidly distributed
in rat’s plasma with the absolute bioavailability of 34.5%.
Collapse
Affiliation(s)
- Haoran Xu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Zheming Ying
- School of The First Clinic, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Lina Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Wenjie Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xixiang Ying
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Guanlin Yang
- School of The First Clinic, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| |
Collapse
|
19
|
Wang Z, Yang R, Li P, Yang Z, Ling R, Shen T, Peng W, Yang Q, Yan J. A homoisoflavonoid and a fatty acid in common purslane (Portulaca oleracea L.) synergistically inhibit growth of Spodoptera litura larvae. PEST MANAGEMENT SCIENCE 2020; 76:1513-1522. [PMID: 31677235 DOI: 10.1002/ps.5668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/14/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Portulaca oleracea L., common purslane, is an insecticidal plant that has been documented as a 'Chinese indigenous pesticide', and it is seldom visited by insects in the field. However, identification of anti-insect compounds and mechanisms of action are still unclear. RESULTS Interplanting purslane with Chinese cabbage demonstrated that purslane may contain secondary compounds that S. litura avoids eating. Four compounds were isolated from P. oleracea by directed anti-insect activity, and their chemical structures were identified by NMR spectra as (9Z,11E,15Z)-13-hydroxyoctadeca-9,11,15-trienoic acid (1), portulacanone A (2), portulacanone D (3), and a new natural product 2,4'-dihydroxy-3',5'-dimethoxychalcone (4). A combination of compound 1 and 2 possessed stronger activity than other combinations (compounds 1 + 3; 1 + 4; 2 + 3; 2 + 4; 3 + 4). Both active compounds were detected in all samples from 23 regions in China, and concentrations in samples collected from 17 regions were generally above 500 μg/kg. Concentrations of compounds 1 and 2 fluctuated greatly from April to November, and reached maximum concentrations of 45 951.44 μg/kg for compound 1 and 3739.09 μg/kg for compound 2 in November. The combination of these compounds (1 + 2) caused mid-gut structural deformation and tissue decay as determined by mid-gut histopathology of S. litura. CONCLUSION In general, these active compounds coexisting contributed to partly protect purslane from insects. This research also provides new insights into the use of purslane as important ingredient of botanical pesticide alternatives to traditional chemical pesticides. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture; Guangdong Engineering Research Centre for Modern Eco-Agriculture; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Renyue Yang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture; Guangdong Engineering Research Centre for Modern Eco-Agriculture; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Ping Li
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture; Guangdong Engineering Research Centre for Modern Eco-Agriculture; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Zhongyan Yang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture; Guangdong Engineering Research Centre for Modern Eco-Agriculture; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Ruimei Ling
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture; Guangdong Engineering Research Centre for Modern Eco-Agriculture; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Tunkai Shen
- Guangdong Provincial Research Center on Good Agricultural Practice & Comprehensive Agricultural Development Engineering Technology of Cantonese Medicinal Materials/Comprehensive Experimental Station of Guangzhou, Chinese Material Medica, China Agriculture Research System (CARS-21-16)/Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials/School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Weiyao Peng
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture; Guangdong Engineering Research Centre for Modern Eco-Agriculture; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Quan Yang
- Guangdong Provincial Research Center on Good Agricultural Practice & Comprehensive Agricultural Development Engineering Technology of Cantonese Medicinal Materials/Comprehensive Experimental Station of Guangzhou, Chinese Material Medica, China Agriculture Research System (CARS-21-16)/Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials/School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jian Yan
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture; Guangdong Engineering Research Centre for Modern Eco-Agriculture; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| |
Collapse
|
20
|
Bing You Y, Hai Xue K, Shi Hui Y, Yan L, Qi W, Wei G, Yuan L, Yan Ping S. Identification and Quantification of Alkaloid Compounds from Different Parts and Production Areas of Datura metel L. HETEROCYCLES 2020. [DOI: 10.3987/com-20-14228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
A "Green" Homogenate Extraction Coupled with UHPLC-MS for the Rapid Determination of Diterpenoids in Croton Crassifolius. Molecules 2019; 24:molecules24040694. [PMID: 30769949 PMCID: PMC6413027 DOI: 10.3390/molecules24040694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 02/01/2023] Open
Abstract
Clerodane diterpenoids are the main bioactive constituents of Croton crassifolius and are proved to have multiple biological activities. However, quality control (QC) research on the constituents are rare. Thus, the major research purpose of the current study was to establish an efficient homogenate extraction (HGE) process combined with a sensitive and specific ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC–MS) technique together for the rapid extraction and determination of clerodane diterpenoids in C. crassifolius. All calibration curves showed good linearity (r > 0.9943) within the test ranges and the intra- and inter-day precisions and repeatability were all within required limits. This modified HGE–UHPLC–MS method only took 5 min to extract nine clerodane diterpenoids in C. crassifolius and another 12 min to quantify these components. The results indicated that the quantitative analysis based on UHPLC–MS was a feasible method for QC of clerodane diterpenoids in C. crassifolius, and the findings outlined in the current study also inferred the potential of the method in the QC of clerodane diterpenoids in other complex species of plants.
Collapse
|
22
|
Wang P, Jiang S, Zhao Y, Sun S, Wen X, Guo X, Jiang Z. A UPLC-MS/MS Method for Simultaneous Determination of Six Bioactive Compounds in Rat Plasma, and its Application to Pharmacokinetic Studies of Naoshuantong Granule in Rats. CURR PHARM ANAL 2019. [DOI: 10.2174/1573412914666180409143452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
It is urgently needed to clarify the pharmacokinetic mechanism for the multibioactive
constituents in Traditional Chinese Medicines for its clinical applications. A rapid, sensitive
and reliable ultra-performance liquid chromatography-tandem mass spectrometry method was developed
and validated for the simultaneous determination of Danshensu, Ferulic acid, Astragaloside IV,
Naringin, Neohesperidin and Puerarin after oral administration of Naoshuantong Granule using Carbamazepine
as internal standard (IS).
Methods:
The plasma samples were pretreated by liquid-liquid extraction method using ethyl acetate
after acidification, and separated on a Waters ACQUITY UPLC® BEH C18 column (50×2.1 mm, i.d.,
1.7 µm) by gradient elution with a mobile phase composing of water (containing 0.1% formic acid) and
acetonitrile at a flow rate of 0.2 mL/min. Multiple reaction monitoring (MRM) mode with both positive
and negative ion mode was operated using an electrospray ionization (ESI) to detect the six compounds.
Result:
All calibration curves showed good linearity (r>0.99) over a wide concentration range. The
intra- and inter-day precision (RSD%) was below 8.4% and the accuracy (RE%) ranged from 91.1% to
107.5%. The extraction recoveries of the six analytes and IS in the plasma were more than 77.9% and
no severe matrix effect was observed.
Conclusion:
The fully validated method was successfully applied to the pharmacokinetics of Naoshuantong
Granule.
Collapse
Affiliation(s)
- Ping Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Shenmeng Jiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Yu Zhao
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Shuo Sun
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Xiaoli Wen
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Xingjie Guo
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Zhen Jiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| |
Collapse
|
23
|
A pharmacokinetic study on oleracone C after oral and intravenous administration. Fitoterapia 2018; 131:44-49. [DOI: 10.1016/j.fitote.2018.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 11/17/2022]
|
24
|
Fan L, Tong Q, Dong W, Yang G, Hou X, Xiong W, Shi C, Fang J, Wang W. Tissue Distribution, Excretion, and Metabolic Profile of Dihydromyricetin, a Flavonoid from Vine Tea (Ampelopsis grossedentata) after Oral Administration in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4597-4604. [PMID: 28534405 DOI: 10.1021/acs.jafc.7b01155] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Dihydromyricetin (DMY), a flavanonol compound found as the most abundant and bioactive constituent in vine tea (Ampelopsis grossedentata), possesses numerous biological activities. In the present study, an HPLC-MS/MS method for the determination of DMY in tissues, urine, and feces was developed and applied to the tissue distribution and excretion study after oral administration in rats, and the metabolic profile of DMY was further investigated using UPLC-QTOF-MS. The results indicated that DMY could be distributed rapidly in various tissues and highly in the gastrointestinal tract. The elimination of DMY occurred rapidly as well, and most unconverted forms were excreted in feces. A total of eight metabolites were identified in urine and feces, while metabolites were barely found in plasma. The predicted metabolic pathways including reduction, dehydroxylation, methylation, glucuronidation, and sulfation were proposed. The present findings may provide the theoretical basis for evaluating the biological activities of DMY and will be helpful for its future development and application.
Collapse
Affiliation(s)
- Li Fan
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030, China
| | - Qing Tong
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030, China
| | - Weiwei Dong
- Wuhan Institute for Drug and Medical Device Control , Wuhan 430075, China
| | - Guangjie Yang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030, China
| | - Xiaolong Hou
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030, China
| | - Wei Xiong
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030, China
| | - Chunyang Shi
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030, China
| | - Jianguo Fang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030, China
| | - Wenqing Wang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030, China
| |
Collapse
|
25
|
Iranshahy M, Javadi B, Iranshahi M, Jahanbakhsh SP, Mahyari S, Hassani FV, Karimi G. A review of traditional uses, phytochemistry and pharmacology of Portulaca oleracea L. JOURNAL OF ETHNOPHARMACOLOGY 2017; 205:158-172. [PMID: 28495602 DOI: 10.1016/j.jep.2017.05.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/18/2017] [Accepted: 05/04/2017] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Portulaca oleracea L. is a widespread medicinal plant that is used not only as an edible plant, but also as a traditional medicine for alleviating a wide spectrum of diseases. It is a well-known plant in the European Traditional Medicine. PA is mentioned by Dioscorides (40-90 CE), with the name of "andrachne". AIM OF THE REVIEW In this study, we provide detailed information on botany, traditional uses, phytochemistry, pharmacological uses, pharmacokinetics and safety of P. oleracea. MATERIALS AND METHODS An extensive search on electronic databases including PubMed, Web of Science, Google Scholar, ScienceDirect, Scopus, conference papers, local herbal encyclopedias, articles, books (in English, French, Arabic, Persian, etc.) and also a number of unpublished handwritten manuscripts was done to find articles have been published between 1956 and 2015 on pharmacology and phytochemistry of P. oleracea. RESULTS P. oleracea has been addressed in De Materia Medica as an astringent, and a remedy for headaches, inflammation of the eyes and other organs, burning of the stomach, erysipela, disorders of the bladder, numbness of the teeth, excessive sexual desire, burning fevers, worms, dysentery, hemorrhoids, eruptions of blood, and bites. Phytochemical investigations revealed that this plant a wide range of secondary metabolites including alkaloids, terpenoids, flavonoids and organic acids. The most important pharmacological activities are renoprotective activities and effects on metabolism. P. oleracea could successfully decrease blood glucose and lipid profile of patients with metabolic syndrome. The safety of P. oleracea has been reported in many clinical trials. CONCLUSION Modern pharmacological studies have now proven many traditional uses of P. oleracea, including anti-hyperglycemic and anti-hyperlipidemic, renoprotective and hepatoprotective effects. In addition, in many clinical trials P. oleracea showed no adverse effects and constipation was reported as the most frequent adverse effect.
Collapse
Affiliation(s)
- Milad Iranshahy
- Biotechnology Research Center and School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behjat Javadi
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center and School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Pardis Jahanbakhsh
- Pharmaceutical Research Center, Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Mahyari
- Pharmaceutical Research Center, Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Vahdati Hassani
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|