1
|
Li S, Xiao Q, Sun J, Li Z, Zhang M, Tian Y, Zhang Z, Dong H, Jiao Y, Xu F, Zhang P. A new chemical derivatization reagent sulfonyl piperazinyl for the quantification of fatty acids using LC-MS/MS. Talanta 2024; 277:126378. [PMID: 38870757 DOI: 10.1016/j.talanta.2024.126378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/04/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
In our previous study, a chemical derivatization reagent named 5-(dimethylamino) naphthalene-1-sulfonyl piperazine (Dns-PP) was developed to enhance the chromatographic retention and the mass spectrometric response of free fatty acids (FFAs) in reversed-phase liquid chromatography coupled with electrospray ionization-mass spectrometry (RPLC-ESI-MS). However, Dns-PP exhibited strong preferences for long-chain FFAs, with limited improvement for short- or medium-chain FFAs. In this study, a new series of labeling reagents targeting FFAs were designed, synthesized, and evaluated. Among these reagents, Tmt-PP (N2, N2, N4, N4-tetramethyl-6-(4-(piperazin-1-ylsulfonyl) phenyl)-1,3,5-triazine-2,4-diamine) exhibited the best MS response and was selected for further evaluations. We compared Tmt-PP with Dns-PP and four commonly used carboxyl labeling reagents from existing studies, demonstrating the advantages of Tmt-PP. Further comparisons between Tmt-PP and Dns-PP in measuring FFAs from biological samples revealed that Tmt-PP labeling enhanced the MS response for about 80 % (30/38) of the measured FFAs, particularly for short- and medium-chain FFAs. Moreover, Tmt-PP labeling significantly improved the chromatographic retention of short-chain FFAs. To ensure accurate quantification, we developed a stable isotope-labeled Tmt-PP (i.e., d12-Tmt-PP) to react with chemical standards and serve as one-to-one internal standards (IS). The method was validated for accuracy, precision, sensitivity, linearity, stability, extraction efficiency, as well as matrix effect. Overall, this study introduced a new chemical derivatization reagent Tmt-PP (d12-Tmt-PP), providing a sensitive and accurate option for quantifying FFAs in biological samples.
Collapse
Affiliation(s)
- Siqi Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Qinwen Xiao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Jiarui Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Zhaoqian Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Mengting Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yu Jiao
- Department of Organic Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, PR China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Pei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
2
|
De Flaviis R, Santarelli V, Sacchetti G, Mastrocola D. An insight into the impact of climate factors associated with altitude on wheat volatiles' fingerprints at harvest using multivariate statistical analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6664-6679. [PMID: 37272187 DOI: 10.1002/jsfa.12762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/03/2023] [Accepted: 06/05/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Climate changes associated with global warming are increasingly affecting the quality of cultivated crops. Cultivation at different altitudes and similar latitudes may offer an extraordinarily useful opportunity to obtain a diversificated dataset of climate variables and to further investigate their effect on crop quality. This study evaluated the effect of climate indices - temperature, rainfall precipitation and solar radiation data - on commercial parameters and the volatile organic compound (VOC) profile of wheat at harvest. RESULTS Three common and durum wheat varieties, including two heritage wheats, were sown in experimental fields sited at three altitudes for 3 years consecutively, and they were analyzed for their yield, grading parameters, and VOC profiles. The datasets were processed by partial least squares regression (PLS-R) and the results indicate that summer days (SU25) and diurnal temperature range (ΔT) are the climate indices mainly responsible for the VOC profile changes in both common and durum wheat. Accumulated growth degree days (GDD), consecutive dry days (CDD), and accumulated solar radiation (ASR) induced species-specific responses. Terpenes represented the chemical class of VOCs most affected by stresses, followed by ketones and alcohols, which were affected by CDD, GDD, and ASR. CONCLUSION This study showed a selective response of wheat to abiotic stresses associated with climate variables in terms of VOC synthesis. Its findings may be relevant in several fields, from plant ecology to agronomy and food quality, with implications for local economic strategies. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Riccardo De Flaviis
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Veronica Santarelli
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giampiero Sacchetti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Dino Mastrocola
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
3
|
Zhang J, Urriola PE, Naeve SL, Shurson GC, Chen C. Counteracting Roles of Lipidic Aldehydes and Phenolic Antioxidants on Soy Protein Oxidation Defined by a Chemometric Survey of Solvent and Mechanically Extracted Soybean Meals. Antioxidants (Basel) 2023; 12:1419. [PMID: 37507956 PMCID: PMC10376880 DOI: 10.3390/antiox12071419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Soybean meal (SBM) is a premier source of protein for feeding food-producing animals. However, its nutritional value can be compromised by protein oxidation. In this study, a total of 54 sources of solvent extracted SBM (SSBM) and eight sources of mechanically extracted SBM (MSBM), collected from different commercial producers and geographic locations in the United States during the years 2020 and 2021, were examined by chemometric analysis to determine the extent of protein oxidation and its correlation with soybean oil extraction methods and non-protein components. The results showed substantial differences between SSBM and MSBM in the proximate analysis composition, protein carbonyl content, lipidic aldehydes, and antioxidants, as well as subtle differences between 2020 SSBM and 2021 SSBM samples in protein oxidation and moisture content. Correlation analysis further showed positive correlations between protein carbonyl content and multiple lipid parameters, including the ether extract, p-anisidine value, individual aldehydes, and total aldehydes. Among the antioxidants in SBM, negative correlations with protein carbonyl content were observed for total phenolic content and isoflavone glycoside concentrations, but not for Trolox equivalent antioxidant capacity (TEAC), α-tocopherol, and γ-tocopherol. Overall, soybean oil extraction methods, together with other factors such as enzyme treatment and environmental conditions, can significantly affect the proximate analysis composition, the protein and lipid oxidation status, and the antioxidant profile of SBM. Lipidic aldehydes and phenolic antioxidants play counteracting roles in the oxidation of soy protein. The range of protein carbonyl content measured in this study could serve as a reference to evaluate the protein quality of SBM from various sources used in animal feed.
Collapse
Affiliation(s)
- Junwei Zhang
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Pedro E Urriola
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Seth L Naeve
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Gerald C Shurson
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
4
|
Understanding the early-stage release of volatile organic compounds from rapeseed oil during deep-frying of tubers by targeted and omics-inspired approaches using PTR-MS and gas chromatography. Food Res Int 2022; 160:111716. [DOI: 10.1016/j.foodres.2022.111716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022]
|
5
|
An Evaluation Model for the Quality of Frying Oil Using Key Aldehyde Detected by HS-GC/MS. Foods 2022; 11:foods11162413. [PMID: 36010412 PMCID: PMC9407462 DOI: 10.3390/foods11162413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
To establish a practical model for evaluating the oxidation of frying oil using aldehydes, the aldehydes of 10 commercial oils during frying at 180 °C were identified using headspace-gas chromatography/mass spectrometry, and the changes of common aldehydes and their correlation with carbonyl values (CV) were analyzed. The results showed that the total peak area of aldehydes increased significantly with heating time, which was related to the fatty acid and tocopherol contents of the oils. There were four common aldehydes with different trends during frying, namely, pentanal, hexanal, (E)-hept-2-enal, and nonanal. Moreover, pentanal with a high correlation with CV was selected as the quality evaluating index of frying oil due to its stable accumulation over time. Based on the linear fitting relationships between CV and pentanal, as well as the initial content ratio of linoleic acid to palmitic acid and total tocopherols in oils, a predictive model was established for evaluating the quality of frying oils with high precision and non-reagent by using mass spectrometry. In summary, this work provides theoretical support for using aldehyde as the quality evaluation index of frying oil and provides a new idea for evaluating oil deterioration from the perspective of volatile compounds.
Collapse
|
6
|
Effects of temperature and ferric ion on the formation of glycerol core aldehydes during simulated frying. Food Chem 2022; 385:132596. [PMID: 35299017 DOI: 10.1016/j.foodchem.2022.132596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 11/22/2022]
Abstract
Glycerol core aldehydes (GCAs) are toxins widely formed in oils at high temperature. This study investigated the effects of frying time, temperature, and Fe3+ content on the GCAs formation in high-oleic sunflower oil. The results showed that the GCAs (8-oxo, 9-oxo, 10-oxo-8, 11-oxo-9) concentrations increased with time following the pseudo-first-order kinetics. Frying at 160 °C without Fe3+ and at 180 °C with 0.0005 mol·L-1 Fe3+ yielded the lowest and highest total GCA content. The concentrations of GCAs (8-oxo) and GCAs (9-oxo) or GCAs (10-oxo-8) and GCAs (11-oxo-9) changed similarly with different frying temperature and Fe3+ concentration. The major GCAs was GCAs (9-oxo) (40-70%), which also had the highest formation rate (5.42 × 10-4 mg·g-1·h-1). However, GCA (10-oxo-8) and GCAs (11-oxo-9) with similar proportion (ca. 10-20%) and GCAs (8-oxo) made up the least proportions (<10%).
Collapse
|
7
|
Grootveld M. Evidence-Based Challenges to the Continued Recommendation and Use of Peroxidatively-Susceptible Polyunsaturated Fatty Acid-Rich Culinary Oils for High-Temperature Frying Practises: Experimental Revelations Focused on Toxic Aldehydic Lipid Oxidation Products. Front Nutr 2022; 8:711640. [PMID: 35071288 PMCID: PMC8769064 DOI: 10.3389/fnut.2021.711640] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/06/2021] [Indexed: 01/16/2023] Open
Abstract
In this manuscript, a series of research reports focused on dietary lipid oxidation products (LOPs), their toxicities and adverse health effects are critically reviewed in order to present a challenge to the mindset supporting, or strongly supporting, the notion that polyunsaturated fatty acid-laden frying oils are "safe" to use for high-temperature frying practises. The generation, physiological fates, and toxicities of less commonly known or documented LOPs, such as epoxy-fatty acids, are also considered. Primarily, an introduction to the sequential autocatalytic peroxidative degradation of unsaturated fatty acids (UFAs) occurring during frying episodes is described, as are the potential adverse health effects posed by the dietary consumption of aldehydic and other LOP toxins formed. In continuance, statistics on the dietary consumption of fried foods by humans are reviewed, with a special consideration of French fries. Subsequently, estimates of human dietary aldehyde intake are critically explored, which unfortunately are limited to acrolein and other lower homologues such as acetaldehyde and formaldehyde. However, a full update on estimates of quantities derived from fried food sources is provided here. Further items reviewed include the biochemical reactivities, metabolism and volatilities of aldehydic LOPs (the latter of which is of critical importance regarding the adverse health effects mediated by the inhalation of cooking/frying oil fumes); their toxicological actions, including sections focussed on governmental health authority tolerable daily intakes, delivery methods and routes employed for assessing such effects in animal model systems, along with problems encountered with the Cramer classification of such toxins. The mutagenicities, genotoxicities, and carcinogenic potential of aldehydes are then reviewed in some detail, and following this the physiological concentrations of aldehydes and their likely dietary sources are considered. Finally, conclusions from this study are drawn, with special reference to requirements for (1) the establishment of tolerable daily intake (TDI) values for a much wider range of aldehydic LOPs, and (2) the performance of future nutritional and epidemiological trials to explore associations between their dietary intake and the incidence and severity of non-communicable chronic diseases (NCDs).
Collapse
Affiliation(s)
- Martin Grootveld
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| |
Collapse
|
8
|
Rapid HPLC–MS/MS Detection of Aliphatic Aldehyde Formation in Four Vegetable Oils from Different Frying Processes. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02096-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Liu S, Zhong Y, Shen M, Yan Y, Yu Y, Xie J, Nie S, Xie M. Changes in fatty acids and formation of carbonyl compounds during frying of rice cakes and hairtails. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Xu L, Ji X, Wu G, Karrar E, Yao L, Wang X. Influence of Oil Types and Prolonged Frying Time on the Volatile Compounds and Sensory Properties of French Fries. J Oleo Sci 2021; 70:885-899. [PMID: 34121029 DOI: 10.5650/jos.ess20360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In order to study the flavor of French fries (FFs) prepared in different frying oils, we identified and compared the volatiles of FFs fried in high-oleic sunflower oil (HSO), sunflower oil (SO), linseed oil (LO), and palm oil (PO) during prolonged 24 h frying time. 47 different kinds of volatiles were presented, and aldehydes were the most abundant compounds. The FFs prepared in SO were rich in alkadienals, especially the (E, E)-2,4-decadienal, thus inducing the highest deep-fried odor. The content of alkenals was higher in FFs prepared in HSO, among which (E)-2-nonenal and 2-undecenal provided the undesirable oily flavor. Whereas, FFs prepared in PO were rich in alkanals, and showed an undesirable green aroma because of hexanal. Besides, the aldehydes in FFs fried in LO were the least with more undesirable flavor substances (e.g. (E, E)-2,4-heptadienal). In addition, except for the FFs fried in LO, the aldehydes in other FFs showed an increasing trend. While, the volatiles from the Maillard reaction (e.g. pyrazines) showed no clear pattern. Meanwhile, frying process had optimum frying window (approximately 12 h with total polar compounds content of 14.5%-22.2% in different oils), and the French fries prepared in this period obtained higher flavor score. Therefore, the comparison related to volatiles of FFs provided a basis for the flavor control to a certain extent.
Collapse
Affiliation(s)
- Lirong Xu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University
| | - Xin Ji
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University
| | - Gangcheng Wu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University
| | - Emad Karrar
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University
| | - Ling Yao
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University
| |
Collapse
|
11
|
Peng L, Yuan J, Yao D, Chen C. Fingerprinting triacylglycerols and aldehydes as identity and thermal stability indicators of camellia oil through chemometric comparison with olive oil. Food Sci Nutr 2021; 9:2561-2575. [PMID: 34026072 PMCID: PMC8116833 DOI: 10.1002/fsn3.2209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 11/25/2022] Open
Abstract
Camellia oil is widely recognized as a high-quality culinary oil in East Asia for its organoleptic and health-promoting properties, but its chemical composition and thermal stability have not been comprehensively defined by comparisons with other oils. In this study, the triacylglycerols (TAGs) in camellia, olive, and six other edible oils were profiled by the liquid chromatography-mass spectrometry (LC-MS)-based chemometric analysis. Besides observing the similarity between camellia oil and olive oil, TAG profiling showed that OOO, POO, and OOG (O: oleic acid, P: palmitic acid, and G: gadoleic acid) can jointly serve as the identity markers of camellia oil. Thermal stability of virgin camellia oil (VCO) was further evaluated by extensive comparisons with virgin olive oil (VOO) in common lipid oxidation indicators, aldehyde production, and antioxidant and pro-oxidant contents. The results showed that p-anisidine value (AnV) was the sensitive lipid oxidation indicator, and C9-C11 aldehydes, including nonanal, 2-decenal, 2,4-decadienal, and 2-undecenal, were the most abundant aldehydes in heated VCO and VOO. Under the frying temperature, heated VCO had lower AnV and less aldehydes than heated VOO. Interestedly, the VCO had lower levels of pro-oxidant components, including α-linolenic acid, free fatty acids, and transition metals, as well as lower levels of antioxidants, including α-tocopherol and phenolics, than the VOO. Overall, great similarities and subtle differences in TAG and aldehyde profiles were observed between camellia and olive oils, and the thermal stability of camellia oil might be more dependent on the balance among its unsaturation level, pro-oxidant, and antioxidant components than a single factor.
Collapse
Affiliation(s)
- Ling Peng
- Department of Food Science and NutritionUniversity of MinnesotaSt. PaulMNUSA
- Department of Food ScienceYichun UniversityYichunChina
| | - Jieyao Yuan
- Department of Food Science and NutritionUniversity of MinnesotaSt. PaulMNUSA
| | - Dan Yao
- Department of Food Science and NutritionUniversity of MinnesotaSt. PaulMNUSA
| | - Chi Chen
- Department of Food Science and NutritionUniversity of MinnesotaSt. PaulMNUSA
| |
Collapse
|
12
|
Kerr BJ, Lindblom SC, Zhao J, Faris RJ. Influence of feeding thermally peroxidized lipids on growth performance, lipid digestibility, and oxidative status in nursery pigs. J Anim Sci 2021; 98:6029086. [PMID: 33295982 DOI: 10.1093/jas/skaa392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/08/2020] [Indexed: 01/10/2023] Open
Abstract
Three experiments were conducted to evaluate oil source and peroxidation status (experiment 1) or peroxidized soybean oil (SO; experiments 2 and 3) on growth performance, oxidative stress, and digestibility of dietary ether extract (EE). In experiment 1, palm oil (PO), poultry fat (PF), canola oil (CO), and SO were evaluated, while in experiments 2 and 3, only SO was evaluated. Lipids were either an unheated control (CNT) or thermally processed at 90 °C for 72 hr, being added at 10%, 7.5%, or 3% of the diet in experiments 1, 2, and 3, respectively. In experiment 1, 288 pigs (body weight, BW, 6.1 kg) were fed 1 of 8 factorially arranged treatments with the first factor being lipid source (PO, PF, CO, and SO) and the second factor being peroxidation status (CNT or peroxidized). In experiment 2, 216 pigs (BW 5.8 kg) were fed 1 of 6 treatments consisting of 100%, 90%, 80%, 60%, 20%, and 0% CNT SO blended with 0%, 10%, 20%, 40%, 80%, and 100% peroxidized SO, respectively. In experiment 3, 72 pigs (BW 5.8 kg) were fed either CNT or peroxidized SO. Pigs were fed 21 d with feces collected on day 12 or 14 and pigs bled on day 12 blood collection. In experiment 1, an interaction between oil source and peroxidation status was observed for averaged daily gain (ADG) and average daily feed intake (ADFI; P = 0.10) which was due to no impact of feeding pigs peroxidized PO, PF, or SO on ADG or ADFI compared with feeding pigs CNT PO, PF, or SO, respectively; while pigs fed peroxidized CO resulted in reduced ADG and ADFI compared with pigs fed CNT CO. There was no interaction between oil source and peroxidation status, and no lipid source effect on gain to feed ratio (GF; P ≥ 0.84), but pigs fed the peroxidized lipids had a lower GF compared with pigs fed the CNT lipids (P = 0.09). In experiment 2, feeding pigs diets containing increasing levels of peroxidized SO resulted in reduced ADG (quadratic, P = 0.03), ADFI (linear, P = 0.01), and GF (quadratic, P = 0.01). In experiment 3, feeding peroxidized SO at 3% of the diet reduced ADG (P = 0.11) and ADFI (P = 0.13), with no observed change in GF (P = 0.62). Differences in plasma protein carbonyls, glutathione peroxidase, and vitamin E due to feeding peroxidized lipids were inconsistent across the 3 experiments. Digestibility of dietary EE was reduced in pigs fed peroxidized PO or SO (P = 0.01, experiment 1) and peroxidized SO in experiments 2 and 3 (P ≤ 0.02). In conclusion, the peroxidation status of dietary lipids consistently affects growth performance and EE digestibility but has a variable effect on measures of oxidative stress.
Collapse
Affiliation(s)
- Brian J Kerr
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA
| | | | | | | |
Collapse
|
13
|
Food matrixes play a key role in the distribution of contaminants of lipid origin: A case study of malondialdehyde formation in vegetable oils during deep-frying. Food Chem 2021; 347:129080. [PMID: 33508586 DOI: 10.1016/j.foodchem.2021.129080] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/20/2020] [Accepted: 01/07/2021] [Indexed: 11/20/2022]
Abstract
Vegetable oils are increasingly replacing animal fats in diets, but malondialdehyde (MDA), a peroxidation product of these oils, has been regarded as toxic; this necessitated investigation of MDA formation during consumption. This study investigated MDA formation in four vegetable oils during frying French fries (FF) and fried chicken breast meat (FCBM) at 180 °C for 7 h. Results showed that MDA contents were lower in oils used for frying foods than in control oils, mainly because MDA was incorporated into the foods. MDA content was lower in FF, but higher in FCBM, due to the different food components. Model oil and food system analyses yielded similar results. MDA bound the hydrophobic helical structure in starch-based FF, but was exhibited greater reactivity with nucleophilic groups in protein-based FCBM, resulting in stronger interaction with FCBM than with FF. Our results indicated the existence of distinct mechanisms underlying MDA migration in different food matrixes.
Collapse
|
14
|
Chen D, Mosher W, Wiertzema J, Peng P, Min M, Cheng Y, An J, Ma Y, Fan X, Niemira BA, Baumler DJ, Chen C, Chen P, Ruan Chen R. Effects of intense pulsed light and gamma irradiation on Bacillus cereus spores in mesquite pod flour. Food Chem 2020; 344:128675. [PMID: 33277126 DOI: 10.1016/j.foodchem.2020.128675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 01/16/2023]
Abstract
This study was conducted to evaluate the inactivation of Bacillus cereus spore in mesquite flour with intense pulsed light (IPL) and gamma radiation. The physical, chemical, and toxicity of treated mesquite flour were also investigated. The results showed that up to 3.51 log10CFU/g B. cereus spore inactivation was achieved with 8 kGy of gamma radiation, and up to 1.69 log10CFU/g reductions could be achieved after 28s of catalytic IPL exposure. Although chemometric analysis showed 9-hydroxy-10,12-octadecadienoic acid was slightly increased after a 28s-catalytic IPL treatment, the concentration is within the acceptable range. No significant increase in acetic or propionic acids (typical off-flavor volatile compounds) was observed after either treatment. For cytotoxicity, the Caco-2 cell viability analysis revealed that these two technologies did not induce significant cytotoxicity to the treated mesquite flour. Overall, these two technologies exhibit strong potential for the decontamination of B. cereus in mesquite flour.
Collapse
Affiliation(s)
- Dongjie Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Wes Mosher
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Justin Wiertzema
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Peng Peng
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Min Min
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Yanling Cheng
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Jun An
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Yiwei Ma
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Xuetong Fan
- USDA ARS, Eastern Regional Research Center, Wyndmoor, PA, USA
| | | | - David J Baumler
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Paul Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Roger Ruan Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
15
|
The effect of heating on the formation of 4-hydroxy-2-hexenal and 4-hydroxy-2-nonenal in unsaturated vegetable oils: Evaluation of oxidation indicators. Food Chem 2020; 321:126603. [DOI: 10.1016/j.foodchem.2020.126603] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/16/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
|
16
|
Kerr BJ, Lindblom SC, Overholt MF. Influence of feeding thermally peroxidized soybean oil on growth performance, digestibility, gut integrity, and oxidative stress in nursery pigs. J Anim Sci 2020; 98:5709617. [PMID: 31955199 DOI: 10.1093/jas/skaa016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
The objectives of the current experiments were to evaluate the effect of feeding soybean oil (SO) with different levels of peroxidation on lipid, N, and GE digestibility, gut integrity, oxidative stress, and growth performance in nursery pigs. Treatments consisted diets containing 10% fresh SO (22.5 °C) or thermally processed SO (45 °C for 288 h, 90 °C for 72 h, or 180 °C for 6 h), each with an air infusion of 15 L/min, with postprocessing peroxide values of 7.6, 11.5, 19.1, and 13.4 mEq/kg and p-anisidine values of 1.92, 6.29, 149, and 159, for the 22.5 °C, 45 °C, 90 °C and 180 °C processed SO, respectively. In experiment 1, 64 barrows (7.1 ± 0.9 kg initial BW) were randomly allotted into 2 rooms of 32 pens and individually fed their experimental diets for 21 d, with a fresh fecal sample collected on day 20 for determination of GE and lipid digestibility. In experiment 2, 56 barrows (BW 9.16 ± 1.56 kg) were placed into individual metabolism crates for assessment of GE, lipid, and N digestibility and N retention. Urinary lactulose to mannitol ratio was assessed to evaluate in vivo small intestinal integrity, and urine and plasma were collected to analyze for markers of oxidative stress. Pigs were subsequently euthanized to obtain liver weights and analyze the liver for markers of oxidative stress. In experiment 1, pigs fed the SO thermally processed at 90 °C had reduced ADG (P = 0.01) and ADFI (P = 0.04) compared to pigs fed the other SO treatment groups, with no differences noted among pigs fed the 22.5 °C, 45 °C, and 180 °C SO treatments. No effects of feeding thermally processing SO on dietary GE or lipid digestibility (P > 0.10) were noted in either experiment. In experiment 2, there was no dietary effect of feeding peroxidized SO on the DE:ME ratio, N digestibility, or N retained as a percent of N digested, on the urinary ratio of lactulose to mannitol, on serum, urinary, or liver thiobarbituric acid reactive substances, on plasma protein carbonyls, or on urinary or liver 8-OH-2dG (P > 0.10). In experiment 2, pigs fed the SO thermally processed at 90 °C had the greatest isoprostane concentrations in the serum (P ≤ 0.01) and urine (P ≤ 0.05) compared to pigs fed the unprocessed SO. These results indicate that the change in fatty acid composition and/or the presence of lipid peroxidation products in peroxidized SO may reduce ADG and ADFI in nursery pigs, but appears to have no impact on GE, lipid, or N digestibility, or gut permeability. These data suggest that the presence of lipid peroxidation products may affect certain markers of oxidative stress.
Collapse
Affiliation(s)
- Brian J Kerr
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA
| | | | | |
Collapse
|
17
|
Winkler-Moser JK, Hwang HS, Kerr BJ. Changes in markers of lipid oxidation and thermal treatment in feed-grade fats and oils. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3328-3340. [PMID: 32112406 DOI: 10.1002/jsfa.10364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Oxidized feed lipids have been shown to have detrimental effects on food animal growth and metabolism. The present study aimed to measure classes of lipid oxidation products (LOP) in feed-grade oils at temperatures representing production and storage conditions. RESULTS There were significant oil type × time interactions in the accumulation of primary and secondary LOP. At 22.5 °C, peroxide value (PV), a marker for the primary phase of lipid oxidation, increased most in fish oil (FO), followed by tallow (TL), soybean oil (SO), linseed oil (LO) and modified algae oil (MAO), whereas palm oil (PO) showed no appreciable increase in PV. Secondary LOP, such as p-anisidine value, hexanal, 2,4,-decadienal, polymerized triacylglycerols and total polar compounds, increased only in FO. At 45 °C, FO and SO produced both primary and secondary LOP, whereas MAO, PO and TL had slower rates of PV increase and no secondary LOP. At 90 °C and 180 °C, all oils except for FO accumulated both primary and secondary LOP. CONCLUSIONS Higher polyunsaturated fatty acid:saturated fatty acid oils and higher temperatures produced greater quantities of primary and secondary LOP. However, unrefined TL was more prone to oxidation at 22.5 °C than predicted, whereas LO was more stable than predicted, indicating that pro-oxidant and antioxidant compounds can markedly influence the rate of oxidation. Measuring both primary and secondary LOP will provide better information about the oxidative status of feed oils and provide better information about which classes of LOP are responsible for detrimental health effects in animals. Published 2020. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
| | - Hong-Sik Hwang
- USDA-ARS-National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Brian J Kerr
- USDA-ARS-National Laboratory for Agriculture and the Environment, USDA-ARS, Ames, IA, USA
| |
Collapse
|
18
|
Yuan J, Kerr BJ, Curry SM, Chen C. Identification of C9-C11 unsaturated aldehydes as prediction markers of growth and feed intake for non-ruminant animals fed oxidized soybean oil. J Anim Sci Biotechnol 2020; 11:49. [PMID: 32411370 PMCID: PMC7206673 DOI: 10.1186/s40104-020-00451-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/17/2020] [Indexed: 01/01/2023] Open
Abstract
Background The benefits of using the oxidized oils from rendering and recycling as an economic source of lipids and energy in animal feed always coexist with the concerns that diverse degradation products in these oxidized oils can negatively affect animal health and performance. Therefore, the quality markers that predict growth performance could be useful when feeding oxidized oils to non-ruminants. However, the correlations between growth performance and chemical profiles of oxidized oils have not been well examined. In this study, six thermally oxidized soybean oils (OSOs) with a wide range of quality measures were prepared under different processing temperatures and processing durations, including 45 °C-336 h; 67.5 °C-168 h; 90 °C-84 h; 135 °C-42 h; 180 °C-21 h; and 225 °C-10.5 h. Broilers and nursery pigs were randomly assigned to diets containing either unheated control soybean oil or one of six OSOs. Animal performance was determined by measuring body weight gain, feed intake, and gain to feed ratio. The chemical profiles of OSOs were first evaluated by common indicative tests, including peroxide value, thiobarbituric acid reactive substances, p-anisidine value, free fatty acids, oxidized fatty acids, unsaponifiable matter, insoluble impurities, and moisture, and then analyzed by the liquid chromatography-mass spectrometry-based chemometric analysis. Results Among common quality indicators, p-anisidine value (AnV), which reflects the level of carbonyl compounds, had the greatest inverse correlation with the growth performance of both broilers and pigs, followed by free fatty acids and oxidized fatty acids. Among the 17 aldehydes identified in OSOs, C9-C11 alkenals, especially 2-decenal and 2-undecenal, had stronger inverse correlations (r < − 0.8) with animal performance compared to C5-C8 saturated alkanals, suggesting that chain length and unsaturation level affect the toxicity of aldehydes. Conclusions As the major lipid oxidation products contributing to the AnV, individual C9-C11 unsaturated aldehydes in heavily-oxidized oils could function as effective prediction markers of growth and feed intake in feeding non-ruminants.
Collapse
Affiliation(s)
- Jieyao Yuan
- 1Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108 USA
| | - Brian J Kerr
- 2USDA-ARS National Laboratory for Agriculture and the Environment, 1015 N. University Boulevard, 2165 NSRIC, Ames, IA 50011 USA
| | - Shelby M Curry
- 3Oak Ridge Institute for Science and Education, Oak Ridge, TN USA
| | - Chi Chen
- 1Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108 USA
| |
Collapse
|
19
|
Effects of temperature and heating time on the formation of aldehydes during the frying process of clam assessed by an HPLC-MS/MS method. Food Chem 2020; 308:125650. [DOI: 10.1016/j.foodchem.2019.125650] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/10/2019] [Accepted: 10/04/2019] [Indexed: 01/11/2023]
|
20
|
Wu Q, Zhao Y, Zhang X, Yang X. A faster and simpler UPLC-MS/MS method for the simultaneous determination of trimethylamine N-oxide, trimethylamine and dimethylamine in different types of biological samples. Food Funct 2020; 10:6484-6491. [PMID: 31532423 DOI: 10.1039/c9fo00954j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gut microbiota-dependent metabolites trimethylamine N-oxide (TMAO), trimethylamine (TMA) and dimethylamine (DMA) from dietary methylamines have recently gained much attention due to their high association with chronic kidney disease risk. Hence a simpler and faster performance liquid chromatography-tandem mass spectrometry method was developed and validated. The quantitative analysis was achieved within 6 min by using Agilent 6460C UPLC-MS/MS with 10% methyl alcohol isocratic elution and was more simple, convenient and rapid than that of previously reported methods. Furthermore, method verification results showed that the method correlation coefficient was 0.99978293, 0.99997514 and 0.98784721, and the detection limit was 0.121, 8.063 and 0.797 μg L-1, and the precision of the retention time and peak area of analytes was less than 0.331 and 3.280, respectively. The method was applied to simultaneously determine TMAO, TMA and DMA in the urine and serum from mice treated with normal, high l-carnitine, or high choline diet. Quantitative recoveries of TMAO, TMA and DMA were in the range of 94.2%-101.0%, and the RSD values were lower than 5.17%. The proposed UPLC-MS/MS-based assay should be of value for further evaluating TMAO as a risk marker and for examining the effect of dietary factors on TMAO metabolism.
Collapse
Affiliation(s)
- Qiu Wu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | | | | | | |
Collapse
|
21
|
Conversion of waste cooking oil into biogas: perspectives and limits. Appl Microbiol Biotechnol 2020; 104:2833-2856. [DOI: 10.1007/s00253-020-10431-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/24/2020] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
|
22
|
4-Hydroxy-2-nonenal in food products: A review of the toxicity, occurrence, mitigation strategies and analysis methods. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Xia L, Du Y, Xiao X, Li G. One-step membrane protected micro-solid-phase extraction and derivatization coupling to high-performance liquid chromatography for selective determination of aliphatic aldehydes in cosmetics and food. Talanta 2019; 202:580-590. [DOI: 10.1016/j.talanta.2019.05.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/26/2019] [Accepted: 05/06/2019] [Indexed: 01/19/2023]
|
24
|
Hung YT, Hanson AR, Urriola PE, Johnston LJ, Kerr BJ, Shurson GC. Addition of tert-butylhydroquinone (TBHQ) to maize oil reduces lipid oxidation but does not prevent reductions in serum vitamin E in nursery pigs. J Anim Sci Biotechnol 2019; 10:51. [PMID: 31312446 PMCID: PMC6609342 DOI: 10.1186/s40104-019-0362-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/10/2019] [Indexed: 11/16/2022] Open
Abstract
Background Maize oil is abundantly used in foods and feeds and is highly susceptible to oxidation. Consequently, commercially available antioxidants should be evaluated for effectiveness against lipid oxidation in swine diets. Our study was conducted to evaluate growth performance of nursery pigs fed oxidized maize oil and to determine effects of using antioxidants on oxidative status in a 2 × 2 factorial design. Two hundred eight weaned pigs were blocked by initial BW into 13 blocks, resulting in 4 pigs per pen and 13 pens per treatment. Dietary treatments included 6% unoxidized or oxidized maize oil, and 0 or 60 mg/kg of tert-butylhydroquinone (TBHQ), which was added after lipid oxidation. Data for growth performance were collected from 5 time periods of a two-phase feeding program (Phase 1 = d 0 to 12 and Phase 2 = d 13 to 34). Serum and liver samples were collected from one pig per pen, which had initial BW closest to average BW to determine oxidative status on d 34. Results Oxidized maize oil was heated for 12 h at 185 °C with 12 L/min of air, yielding a peroxide value (PV) of 5.98 mEq O2/kg and TBARS of 0.11 mg MDA eq/g. Addition of TBHQ to diets containing oxidized maize oil decreased PV by 37% and increased the oil stability index by 69%. Final BW, ADG, ADFI, and G:F of pigs were not different among the four dietary treatments. However, pigs fed oxidized maize oil tended (P < 0.08) to increase hepatosomatic index by 5% compared with those fed unoxidized oil, and this was not affected by adding TBHQ. The serum vitamin E concentration of pigs fed oxidized maize oil was less (P < 0.03) than pigs fed unoxidized oil, but this reduction was not reversed by adding TBHQ. Finally, the serum and liver selenium concentration were not different among the treatments. Conclusions The addition of TBHQ did not affect growth performance and vitamin E status in pigs fed moderately oxidized maize oil, but TBHQ reduced lipid oxidation, enhanced the oil stability, and appeared to reduce oxidative stress.
Collapse
Affiliation(s)
- Yuan T Hung
- 1Department of Animal Science, University of Minnesota, 1988 Fitch Ave., St. Paul, MN 55108 USA
| | | | - Pedro E Urriola
- 1Department of Animal Science, University of Minnesota, 1988 Fitch Ave., St. Paul, MN 55108 USA
| | - Lee J Johnston
- 4West Central Research and Outreach Center, University of Minnesota, Morris, MN 56267 USA
| | - Brian J Kerr
- 3USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA 50011 USA
| | - Gerald C Shurson
- 1Department of Animal Science, University of Minnesota, 1988 Fitch Ave., St. Paul, MN 55108 USA
| |
Collapse
|
25
|
Ghorbani Gorji S, Calingacion M, Smyth HE, Fitzgerald M. Comprehensive profiling of lipid oxidation volatile compounds during storage of mayonnaise. Journal of Food Science and Technology 2019; 56:4076-4090. [PMID: 31477979 DOI: 10.1007/s13197-019-03876-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/10/2019] [Accepted: 06/13/2019] [Indexed: 11/26/2022]
Abstract
Lipid oxidation is a primary cause of quality deterioration in mayonnaise that leads to a decrease in the nutritional and sensorial value. The evolution of volatile oxidation compounds in sunflower oil mayonnaise stored at varying temperatures for 92 days and the antioxidative effect of butylated hydroxyanisole were investigated by static headspace extraction and separation by two dimensional gas chromatography/time-of-flight mass spectrometry. Considerable differences in the headspace composition of samples stored at 4, 25 and 38 °C were found due to the different oxidation levels reached. The content of hexanal in mayonnaise at 1-5 days of storage at 38 °C could be used to predict the corresponding compound in mayonnaise at 1-62 days of storage at 25 °C. The 10 most important discriminating volatile compounds during lipid oxidation of mayonnaise (at 38 °C for 92 days) are 3-hexenal, pentanal, 2-heptenal, 2-ethylfuran, hexanal, benzeneacetaldehyde, 2-pentylfuran, 3-methylhexane, 1-pentanol and 2,4-heptadienal. More than half of these compounds have a close relationship with the initial content of linoleic acid that agrees with the fatty acid profile of sunflower oil (~ 70% linoleic acid). These volatiles could be used as additional markers of oxidation in sunflower oil mayonnaise.
Collapse
Affiliation(s)
- Sara Ghorbani Gorji
- 1School of Agriculture and Food Sciences, The University of Queensland, Brisbane, St Lucia, QLD 4072 Australia
| | - Mariafe Calingacion
- 1School of Agriculture and Food Sciences, The University of Queensland, Brisbane, St Lucia, QLD 4072 Australia
| | - Heather E Smyth
- 2Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Coopers Plains, Brisbane, QLD 4108 Australia
| | - Melissa Fitzgerald
- 1School of Agriculture and Food Sciences, The University of Queensland, Brisbane, St Lucia, QLD 4072 Australia
| |
Collapse
|
26
|
Ma L, Liu G, Liu X. Malondialdehyde, 4‐Hydroxy‐2‐Hexenal, and 4‐Hydroxy‐2‐Nonenal in Vegetable Oils: Formation Kinetics and Application as Oxidation Indicators. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201900040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Lukai Ma
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou 510640China
| | - Guoqin Liu
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou 510640China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product SafetySouth China University of TechnologyGuangzhou 510640China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business UniversityBeijing 100048China
- School of Food and Chemical EngineeringBeijing Technology and Business UniversityBeijing 100048China
| |
Collapse
|
27
|
Lindblom S, Gabler N, Bobeck E, Kerr B. Oil source and peroxidation status interactively affect growth performance and oxidative status in broilers from 4 to 25 d of age. Poult Sci 2019; 98:1749-1761. [DOI: 10.3382/ps/pey547] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/08/2018] [Indexed: 11/20/2022] Open
|
28
|
Hidalgo FJ, Zamora R. Characterization of Carbonyl-Phenol Adducts Produced by Food Phenolic Trapping of 4-Hydroxy-2-hexenal and 4-Hydroxy-2-nonenal. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2043-2051. [PMID: 30702290 DOI: 10.1021/acs.jafc.8b07091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
4-Hydroxy-2-alkenals disappear in the presence of food phenolics (i.e., cathechin or quercetin), and the corresponding carbonyl-phenol adducts are produced. In an attempt to identify structure(s) of formed adducts, the reactions between model phenolics (resorcinol, 2-methylresorcinol, orcinol, and 2,5-dimethylresorcinol) and hydroxyalkenals (4-hydroxy-2-hexenal and 4-hydroxy-2-nonenal) were studied and the produced adducts were isolated by column chromatography and unambiguously characterized by one- and two-dimensional nuclear magnetic resonance and mass spectrometry as dihydrobenzofuranols (1), chromane-2,7-diols (2), and 2 H-chromen-7-ols (3). These compounds were mainly produced at slightly basic pH values and moderate temperatures. Their activation energies ( Ea) of formation were ∼25 kJ mol-1 for adducts 1, ∼32 kJ mol-1 for adducts 2, and ∼38 kJ mol-1 for adducts 3. A reaction pathway that explains their formation is proposed. All of these results confirm that, analogously to other lipid-derived carbonyl compounds, phenolics can trap 4-hydroxy-2-alkenals in an efficient way. Obtained results provide the basis for the potential detection of carbonyl-phenol adducts derived from hydroxyalkenals in food products.
Collapse
Affiliation(s)
- Francisco J Hidalgo
- Instituto de la Grasa , Consejo Superior de Investigaciones Científicas , Carretera de Utrera km 1 , Campus Universitario, Edificio 46, 41013 Seville , Spain
| | - Rosario Zamora
- Instituto de la Grasa , Consejo Superior de Investigaciones Científicas , Carretera de Utrera km 1 , Campus Universitario, Edificio 46, 41013 Seville , Spain
| |
Collapse
|
29
|
Ma L, Liu G, Cheng W, Liu X, Liu H, Wang Q. Matrix-mediated distribution of 4-hydroxy-2-hexanal (nonenal) during deep-frying of chicken breast and potato sticks in vegetable oil. Food Funct 2019; 10:7052-7062. [DOI: 10.1039/c9fo01878f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The distribution of HHE/HNE was mediated in different food matrices, namely, starch-based and protein-based foods, during deep-frying of vegetable oils.
Collapse
Affiliation(s)
- Lukai Ma
- College of Light Industry and Food
- Zhongkai University of Agriculture and Engineering
- Guangzhou
- China
| | - Guoqin Liu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Products Safety
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Weiwei Cheng
- College of Food Science
- South China Agricultural University
- Guangzhou 510640
- China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- School of Food and Chemical Engineering
- Beijing Technology and Business University
- Beijing 100048
- China
| | - Huifan Liu
- College of Light Industry and Food
- Zhongkai University of Agriculture and Engineering
- Guangzhou
- China
| | - Qin Wang
- College of Light Industry and Food
- Zhongkai University of Agriculture and Engineering
- Guangzhou
- China
| |
Collapse
|
30
|
Wu Y, Jin P, Gu K, Shi C, Guo Z, Yu ZQ, Zhu WH. Broadening AIEgen application: rapid and portable sensing of foodstuff hazards in deep-frying oil. Chem Commun (Camb) 2019; 55:4087-4090. [DOI: 10.1039/c9cc01172b] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report the first example of an AIEgen probe, QM-TPA, for sensing of triacylglycerol-based polymers in frying oil.
Collapse
Affiliation(s)
- Yue Wu
- School of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- China
| | - Pengwei Jin
- Shanghai Key Laboratory of Functional Materials Chemistry
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
| | - Kaizhi Gu
- Shanghai Key Laboratory of Functional Materials Chemistry
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
| | - Chuanxin Shi
- Shanghai Key Laboratory of Functional Materials Chemistry
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
| | - Zhiqian Guo
- Shanghai Key Laboratory of Functional Materials Chemistry
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
| | - Zhen-Qiang Yu
- School of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- China
| | - Wei-Hong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
| |
Collapse
|
31
|
Ma L, Liu G, Cheng W, Liu X. The distribution of 4‐hydroxy‐hexenal and 4‐hydroxy‐nonenal in different vegetable oils and their formation from fatty acid methyl esters. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lukai Ma
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Guoqin Liu
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Products Safety South China University of Technology Guangzhou 510640 China
| | - Weiwei Cheng
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing 100048 China
- School of Food and Chemical Engineering Beijing Technology and Business University Beijing 100048 China
| |
Collapse
|
32
|
Ma L, Liu G, Liu X. Amounts of malondialdehyde do not accurately represent the real oxidative level of all vegetable oils: a kinetic study of malondialdehyde formation. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13952] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lukai Ma
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Guoqin Liu
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety; South China University of Technology; Guangzhou 510640 China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health; Beijing Technology and Business University; Beijing 100048 China
- School of Food and Chemical Engineering; Beijing Technology and Business University; Beijing 100048 China
| |
Collapse
|
33
|
Coating of Sol–Gel Film on Silver Nanodendrite as a Novel Solid-Phase Microextraction Fiber for Determination of Volatile Aldehydes in Edible Oils. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1189-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Overholt MF, Lowell JE, Kim GD, Boler DD, Kerr BJ, Dilger AC. Influence of feeding thermally peroxidized soybean oil to finishing barrows on processing characteristics and shelf life of commercially manufactured bacon. J Anim Sci 2018; 96:2723-2733. [PMID: 29762693 PMCID: PMC6095380 DOI: 10.1093/jas/sky179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/09/2018] [Indexed: 11/12/2022] Open
Abstract
Objectives were to evaluate effects of feeding soybean oil (SO) with varying levels of peroxidation on fresh belly characteristics, processing yields, and shelf life of commercially manufactured bacon stored under food-service-style conditions. Fifty-six barrows were randomly assigned to 1 of 4 diets containing 10% fresh SO (22.5 °C) or thermally processed SO (45 °C for 288 h, 90 °C for 72 h, or 180 °C for 6 h), each infused with air at a rate of 15 L/min. Individually housed pigs were provided ad libitum access to feed for 81 d. On day 82, pigs were slaughtered, and on day 83, carcasses were fabricated and bellies collected for recording of weight, dimensions, and flop distance. Belly adipose tissue cores were collected for the analysis of iodine value (IV) by near-infrared spectroscopy (NIR-IV). Bacon was manufactured at a commercial processing facility, and sliced bacon was subsequently transferred to food-service-style packaging and subjected to 0-, 30-, 60-, or 90-d storage at -20 °C. Stored bacon was evaluated for thiobarbituric acid reactive substances (TBARS) and trained sensory evaluation of oxidized odor and flavor. Fresh belly and bacon processing traits were analyzed as a 1-way ANOVA with the fixed effect of SO, whereas shelf life traits were analyzed as a 1-way ANOVA repeated in time. There was no effect (P ≥ 0.30) of SO on belly weight, length, width, or thickness, but bellies of pigs fed 90 °C SO had greater (P ≤ 0.04) flop distance (more firm) than all other SO treatments. Belly fat NIR-IV of pigs fed 90 °C SO were 10.22 units less (P < 0.0001) than pigs fed 180 °C SO, which were 2.99 and 3.29 units less than belly adipose tissue of pigs fed 22.5 and 45 °C SO, respectively. There was no effect of SO on brine uptake or cooking yield of commercially manufactured bacon. There was a trend (P = 0.09) for bacon manufactured from bellies of pigs fed 45 and 90 °C SO to have greater slicing yields than those from pigs fed 22.5 and 180 °C SO. There were no SO × storage time interactions (P ≥ 0.27) for any shelf life trait. There was no difference in TBARS, oxidized odor, or oxidized flavor among the 4 SO treatments, although all 3 shelf life metrics increased (P < 0.0001) with storage time. Overall, feeding SO thermally processed at 90 and 180 °C reduced belly adipose tissue IV, but feeding peroxidized SO did not affect processing yields or shelf life characteristics of commercially manufactured bacon.
Collapse
Affiliation(s)
| | | | - Gap-Don Kim
- Department of Animal Sciences, University of Illinois, Urbana, IL
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Dustin Dee Boler
- Department of Animal Sciences, University of Illinois, Urbana, IL
| | - Brian Jay Kerr
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA
| | - Anna C Dilger
- Department of Animal Sciences, University of Illinois, Urbana, IL
| |
Collapse
|
35
|
Overholt MF, Dilger AC, Boler DD, Kerr BJ. Influence of feeding thermally peroxidized soybean oil on growth performance, digestibility, and gut integrity in finishing pigs. J Anim Sci 2018; 96:2789-2803. [PMID: 29846591 PMCID: PMC6095245 DOI: 10.1093/jas/sky091] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/05/2018] [Indexed: 01/10/2023] Open
Abstract
Consumption of peroxidized lipids has been shown to reduce pig performance and energy and lipid digestibility. Objectives of the current study were to evaluate the effect of feeding soybean oil (SO) with different levels of peroxidation on growth performance, lipid, N, and GE digestibility, plasma Trp, and gut integrity in finishing pigs. Fifty-six barrows (46.7 ± 5.1 kg initial BW) were randomly assigned to one of four diets in each of two dietary phases, containing either 10% fresh SO (22.5 °C) or thermally processed SO (45 °C for 288 h, 90 °C for 72 h, or 180 °C for 6 h), each infused with of 15 L/min of air. Peroxide values were 2.0, 17.4, 123.6, and 19.4 mEq/kg; 2,4-decadienal values were 2.07, 1.90, 912.15, and 915.49 mg/kg; and 4-hydroxynonenal concentrations were 0.66, 1.49, 170.48, and 82.80 mg/kg, for the 22.5, 45, 90, and 180 °C processed SO, respectively. Pigs were individually housed and fed ad libitum for 81 d to measure growth performance, including a metabolism period to collect urine and feces for determination of GE, lipid, N digestibility, and N retention. Following the last day of fecal and urine collection when pigs were in the metabolism crates, lactulose and mannitol were fed and subsequently measured in the urine to evaluate gut permeability, while markers of oxidative stress were evaluated in plasma, urine, and liver. There were no differences observed in ADFI (P = 0.91), but average daily gain (ADG) and gain:feed G:F were decreased in pigs fed 90 °C SO diet (P ≤ 0.07) compared to pigs fed the other SO diets. Pigs fed the 90 and 180 °C SO had the lowest (P = 0.05) DE as a % of GE compared to pigs fed the 22.5 °C SO, with pigs fed the 45 °C SO being intermediate. Lipid digestibility was similarly affected (P = 0.01) as energy digestibility, but ME as a % of DE was not affected by dietary treatment (P = 0.16). There were no effects of lipid peroxidation on N digested, N retained, or the urinary lactulose:mannitol ratio (P ≥ 0.25). Pigs fed the SO processed at 90 and 180 °1C had lower concentrations (P < 0.01) of plasma Trp compared to pigs fed the 22.5 and 45 °C SO treatments. Pigs fed 90 °C SO had the greatest (P < 0.01) concentrations of F2-isoprostane in plasma and urine thiobarbituric acid reactive substances compared to the other SO treatments. These results indicate that the change in FA composition and/or the presence of lipid peroxidation products in peroxidized SO may reduce ADG, G:F, and digestibility of GE and ether extract, but has little impact on N digestibility and balance or on gut permeability.
Collapse
Affiliation(s)
| | - Anna C Dilger
- Department of Animal Sciences, University of Illinois, Urbana, IL
| | - Dustin D Boler
- Department of Animal Sciences, University of Illinois, Urbana, IL
| | - Brian J Kerr
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA
| |
Collapse
|
36
|
Wang L, Yao D, Urriola PE, Hanson AR, Saqui-Salces M, Kerr BJ, Shurson GC, Chen C. Identification of activation of tryptophan-NAD + pathway as a prominent metabolic response to thermally oxidized oil through metabolomics-guided biochemical analysis. J Nutr Biochem 2018; 57:255-267. [PMID: 29800812 DOI: 10.1016/j.jnutbio.2018.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 02/08/2023]
Abstract
Consumption of thermally oxidized oil is associated with metabolic disorders, but oxidized oil-elicited changes in the metabolome are not well defined. In this study, C57BL/6 mice were fed the diets containing either control soybean oil or heated soybean oil (HSO) for 4 weeks. HSO-responsive metabolic events were examined through untargeted metabolomics-guided biochemical analysis. HSO directly contributed to the presence of new HSO-derived metabolites in urine and the decrease of polyunsaturated fatty acid-containing phospholipids in serum and the liver. HSO disrupted redox balance by decreasing hepatic glutathione and ascorbic acid. HSO also activated peroxisome proliferator-activated receptors, leading to the decrease of serum triacylglycerols and the changes of cofactors and products in fatty acid oxidation pathways. Most importantly, multiple metabolic changes, including the decrease of tryptophan in serum; the increase of NAD+ in the liver; the increases of kynurenic acid, nicotinamide and nicotinamide N-oxide in urine; and the decreases of the metabolites from pyridine nucleotide degradation in the liver indicated that HSO activated tryptophan-NAD+ metabolic pathway, which was further confirmed by the upregulation of gene expression in this pathway. Because NAD+ and its metabolites are essential cofactors in many HSO-induced metabolic events, the activation of tryptophan-NAD+ pathway should be considered as a central metabolic response to the exposure of HSO.
Collapse
Affiliation(s)
- Lei Wang
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Dan Yao
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Pedro E Urriola
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Andrea R Hanson
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Milena Saqui-Salces
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Brian J Kerr
- USDA-ARS-National Laboratory for Agriculture and the Environment, USDA, Ames, IA 50011, USA
| | - Gerald C Shurson
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
37
|
Lindblom SC, Gabler NK, Kerr BJ. Influence of feeding thermally peroxidized soybean oil on growth performance, digestibility, and gut integrity in growing pigs. J Anim Sci 2018; 96:558-569. [PMID: 29385486 PMCID: PMC6140909 DOI: 10.1093/jas/sky004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/08/2018] [Indexed: 01/12/2023] Open
Abstract
Consumption of highly peroxidized oils has been shown to affect pig performance and oxidative status through the development of compounds which differ according to how oils are thermally processed. The objective of this study was to evaluate the effect of feeding varying degrees of peroxidized soybean oil (SO) on parameters of growth performance; lipid, N, and GE digestibility, gut integrity in growing pigs, and plasma Trp. Fifty-six barrows (25.3 ± 3.3 kg initial BW) were randomly assigned to one of four diets containing either 10% fresh SO (22.5 °C) or thermally processed SO (45 °C for 288 h, 90 °C for 72 h, or 180 °C for 6 h), each with an air infusion of 15 L/min. Peroxide values for the 22.5, 45, 90, and 180 °C processed SO were 2.0, 96, 145, and 4.0 mEq/kg, respectively; 2,4-decadienal values for 22.5, 45, 90, and 180 °C processed SO were 2.11,5.05, 547.62, and 323.57 mg/kg, respectively; and 4-hydroxynonenal concentrations of 0.05, 1.05, 39.46, and 25.71 mg/kg with increasing SO processing temperature. Pigs were individually housed and fed ad libitum for a 49 d period to determine the effects of SO peroxidation status on growth performance, including a metabolism period for assessing GE and N digestibility, and N retention. In vivo urinary lactulose to mannitol ratio was also assessed to evaluate potential changes in small intestinal integrity. Although there were no differences observed in ADFI (P = 0.19), ADG was decreased in pigs fed 90 °C SO diet (P = 0.01), while G:F was increased (P = 0.02) in pigs fed 45 °C SO diet compared to the other SO diets. Pigs fed the 90 °C processed SO had the lowest (P = 0.01) DE as a percentage of GE, whereas ME as a percentage of DE was lowest (P = 0.05) in pigs fed the 180 °C SO and 90 °C SO followed by 45 °C SO and fresh SO. Ether extract (EE) digestibility was lowest (P = 0.01) in pigs fed 90 °C SO followed by pigs fed 180 °C SO, 45 °C SO, and fresh SO. The percent of N retained was greatest (P = 0.01) in pigs fed fresh SO followed by pigs fed 45 °C SO, 180 °C SO, and 90 °C, respectively. There were no differences observed among SO treatments for urinary lactulose to mannitol ratio (P = 0.60). Pigs fed SO processed at 90 °C and 180 °C had lower concentrations (P < 0.01) of serum Trp compared to pigs fed the 22.5 °C and 45 °C SO treatments. The presence of lipid peroxidation products, namely several aldehydes, contained in the 90 °C SO diet reduced ADG, GE and EE digestibility, and N balance, but had no impact on gut permeability.
Collapse
Affiliation(s)
| | | | - Brian J Kerr
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA
| |
Collapse
|
38
|
Ma L, Liu G. Simultaneous Analysis of Malondialdehyde, 4-Hydroxy-2-hexenal, and 4-Hydroxy-2-nonenal in Vegetable Oil by Reversed-Phase High-Performance Liquid Chromatography. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11320-11328. [PMID: 29179555 DOI: 10.1021/acs.jafc.7b04566] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A group of toxic aldehydes such as, malondialdehyde (MDA), 4-hydroxy-2-hexenal (HHE), and 4-hydroxy-2-nonenal (HNE) have been found in various vegetable oils and oil-based foods. Then simultaneous determination of them holds a great need in both the oil chemistry field and food field. In the present study, a simple and efficient analytical method was successfully developed for the simultaneous separation and detection of MDA, HHE, and HNE in vegetable oils by reversed-phase-high-performance liquid chromatography (RP-HPLC) coupled with photodiode array detector (PAD) at dual-channel detection mode. The effect of various experimental factors on the extraction performance, such as coextraction solvent system, butylated hydroxytoluene addition, and trichloroacetic acid addition were systematically investigated. Results showed that the linear ranges were 0.02-10.00 μg/mL for MDA, 0.02-4.00 μg/mL for HHE, and 0.03-4.00 μg/mL for HNE with the satisfactory correlation coefficient of >0.999 for all detected aldehydes. The limit of detection (LOD) and limit of quantification (LOQ) of MDA, HHE, and HNE were ∼0.021and 0.020 μg/mL, ∼0.009 and 0.020 μg/mL, and ∼0.014 and 0.030 μg/mL, respectively. Their recoveries were 99.64-102.18%, 102.34-104.61%, and 98.87-103.04% for rapeseed oil and 96.38-98.05%, 96.19-101.34%, and 96.86-99.04% for French fries, separately. Under the selected conditions, the developed methods was successfully applied to the simultaneous determination of MDA, HHE, and HNE in different tested vegetable oils. The results indicated that this method could be employed for the quality assessment of vegetable oils.
Collapse
Affiliation(s)
- Lukai Ma
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Guoqin Liu
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology , Guangzhou 510640, China
| |
Collapse
|
39
|
Yu KS, Cho H, Hwang KT. Physicochemical properties and oxidative stability of frying oils during repeated frying of potato chips. Food Sci Biotechnol 2017; 27:651-659. [PMID: 30263791 DOI: 10.1007/s10068-017-0292-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 12/05/2017] [Accepted: 12/08/2017] [Indexed: 01/26/2023] Open
Abstract
Physicochemical properties and oxidative stability of refined coconut oil (RCO), refined soybean oil (SBO), pure olive oil (POO), and vegetable shortening (VST) during repeated frying of potato chips were determined. Polyunsaturated fatty acids of all the oils significantly decreased after frying. Tocopherols in SBO, POO and VST, and DPPH radical scavenging activities of POO and VST significantly decreased after frying. L* values of the oils significantly decreased, and a* and b* values significantly increased after 80 times repeated frying. Conjugated dienes and p-anisidine value of SBO after 80 times repeated frying were 21.8 mmol/L and 47.7, respectively, the highest among the oils. Levels of total polar compounds of all the oils after 80 times repeated frying were between 8.1 and 9.5%, not exceeding rejection limit after frying. Compositions and contents of alkanals, 2-alkenals, and 2,4-alkadienals in the oils during frying were largely affected by their fatty acid compositions.
Collapse
Affiliation(s)
- Ki Seon Yu
- Department of Food and Nutrition (Bldg. 222, Rm 508), College of Human Ecology and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Korea
| | - Hyunnho Cho
- Department of Food and Nutrition (Bldg. 222, Rm 508), College of Human Ecology and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Korea
| | - Keum Taek Hwang
- Department of Food and Nutrition (Bldg. 222, Rm 508), College of Human Ecology and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Korea
| |
Collapse
|
40
|
Hung Y, Hanson A, Shurson G, Urriola P. Peroxidized lipids reduce growth performance of poultry and swine: A meta-analysis. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Lindblom SC, Dozier WA, Shurson GC, Kerr BJ. Digestibility of energy and lipids and oxidative stress in nursery pigs fed commercially available lipids. J Anim Sci 2017; 95:239-247. [PMID: 28177390 DOI: 10.2527/jas.2016.0915] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An experiment was conducted to evaluate the impact of lipid source on GE and ether extract (EE) digestibility, oxidative stress, and gut integrity in nursery pigs fed diets containing 10% soybean oil (SO), choice white grease (CWG), palm oil (PO), distillers' corn oil with approximately 5% FFA (DCO-1), or distillers' corn oil with approximately 10% FFA (DCO-2). Fifty-four barrows weaned at 28 d of age were fed a common starter diet for 7 d, group fed their respective experimental diets for an additional 7 d, and then moved to metabolism crates and individually fed their respective diets for another 10 d. Following this period, a 4-d total fecal and urine collection period was used to determine apparent total tract digestibility (ATTD) of GE and EE and to determine the DE and ME content of each lipid source (11.03 ± 0.51 kg final BW). Following the last day of fecal and urine collection, pigs were given an oral dose of lactulose and mannitol and fed their respective experimental diets with urine collected for the following 12 h. A subsequent urine collection occurred for 5 h to determine thiobarbituric acid reactive substances (TBARS) and isoprostane (IsoP) concentrations. Following this urine collection, serum was obtained and analyzed for TBARS and endotoxin concentrations. Soybean oil had the greatest ( < 0.05) DE (9,388 kcal/kg) content compared with DCO-1, DCO-2, CWG, and PO (8,001, 8,052, 8,531, and 8,293 kcal/kg lipid, respectively). Energy digestibility was greatest for SO compared with the other lipid sources ( < 0.05). The ATTD of EE averaged 85.0% and varied slightly (84.4 to 85.6%) among treatments. Differences in ME content among lipids were similar to those reported for DE, with ME values for DCO-1, DCO-2, CWG, PO, and SO being 7,921, 7,955, 8,535, 8,350, and 9,408 kcal/kg lipid, respectively. Metabolizable energy as a percentage of DE did not differ among lipid sources. Pigs fed lipid diets had greater ( < 0.05) serum TBARS compared with pigs fed the control diet, but no differences were observed in urinary TBARS excretion among the lipid treatments. Urinary IsoP excretion differed among treatments ( < 0.01) but was highly variable (34.0 to 104.6 pg). However, no differences were observed among treatments for the urinary lactulose:mannitol ratio and serum endotoxin. These results indicate that DE and ME content of SO are greater than that of other lipid sources evaluated, but feeding these lipids has no effect on gut integrity while producing variable effects on oxidative stress.
Collapse
|