1
|
Bai W, Wang X, Xu J, Liu Y, Lou Y, Sun X, Zhou A, Li H, Fu G, Dou S, Yu H. Lattice Strain Engineering on Metal-Organic Frameworks by Ligand Doping to Boost the Electrocatalytic Biomass Valorization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403431. [PMID: 38829272 PMCID: PMC11304310 DOI: 10.1002/advs.202403431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/11/2024] [Indexed: 06/05/2024]
Abstract
As an efficient and environmental-friendly strategy, electrocatalytic oxidation can realize biomass lignin valorization by cleaving its aryl ether bonds to produce value-added chemicals. However, the complex and polymerized structure of lignin presents challenges in terms of reactant adsorption on the catalyst surface, which hinders further refinement. Herein, NiCo-based metal-organic frameworks (MOFs) are employed as the electrocatalyst to enhance the adsorption of reactant molecules through π-π interaction. More importantly, lattice strain is introduced into the MOFs via curved ligand doping, which enables tuning of the d-band center of metal active sites to align with the reaction intermediates, leading to stronger adsorption and higher electrocatalytic activity toward bond cleavage within lignin model compounds and native lignin. When 2'-phenoxyacetophenone is utilized as the model compound, high yields of phenol (76.3%) and acetophenone (21.7%) are achieved, and the conversion rate of the reactants reaches 97%. Following pre-oxidation of extracted poplar lignin, >10 kinds of phenolic compounds are received using the as-designed MOFs electrocatalyst, providing ≈12.48% of the monomer, including guaiacol, vanillin, eugenol, etc., and p-hydroxybenzoic acid dominates all the products. This work presents a promising and deliberately designed electrocatalyst for realizing lignin valorization, making significant strides for the sustainability of this biomass resource.
Collapse
Affiliation(s)
- Wenjing Bai
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Xuan Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Jianing Xu
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Yongzhuang Liu
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Yuhan Lou
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Xinyue Sun
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Ao Zhou
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Hao Li
- Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversitySendai980–8577Japan
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Shuo Dou
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Haipeng Yu
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| |
Collapse
|
2
|
Zhou L, Chen G, Chen M, Lu X, Xi Y, Zhi Y. Development of a highly sensitive monoclonal antibody-based indirect competitive enzyme-linked immunosorbent assay for the detection of avilamycin in feed. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:488-498. [PMID: 35061576 DOI: 10.1080/19440049.2021.2017003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
An indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) was developed using a highly sensitive and specific monoclonal antibody against avilamycin. The immunising antigen synthesised through the carbonyldiimidazole (CDI) method was used to prepare antibodies. The established ic-ELISA, after optimisation of conditions, possessed a half maximum inhibitory concentration (IC50) value of 7.44 ng mL-1 and the detection limit of 0.21 ng mL-1 in the standard curve. The spiked experiments indicated that the limits of detection were 1.86 µg kg-1 and 2.31 µg kg-1 in swine feed and chicken feed, respectively. In addition, the average recoveries ranged from 74.7 to 105.4% with the coefficient of variation less than 11%. The good correlation (R2 = 0.9818) between the result of ic-ELISA and HPLC demonstrated the reliability of the developed ic-ELISA, which showed that the ic-ELISA developed here achieves the aim of strengthening the monitoring of avilamycin residues and the inspection of import and export related products.
Collapse
Affiliation(s)
- Lulu Zhou
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang, P. R. China
| | - Guifen Chen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang, P. R. China
| | - Min Chen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang, P. R. China
| | - Xinying Lu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang, P. R. China
| | - Yijie Xi
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang, P. R. China
| | - Yun Zhi
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang, P. R. China
| |
Collapse
|
3
|
Elamine Y, Lyoussi B, Miguel MG, Anjos O, Estevinho L, Alaiz M, Girón-Calle J, Martín J, Vioque J. Physicochemical characteristics and antiproliferative and antioxidant activities of Moroccan Zantaz honey rich in methyl syringate. Food Chem 2020; 339:128098. [PMID: 33152883 DOI: 10.1016/j.foodchem.2020.128098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023]
Abstract
Zantaz honey is a monofloral variety produced from the melliferous plant Bupleurum spinosum (Apiaceae), a shrub that grows mainly in the Atlas Moroccan Mountains. Determination of the polyphenol composition revealed that methyl syringate accounts for more than 50% of total polyphenols, which represents a very useful parameter for the characterization of this monofloral honey. Epicatechin, syringic acid and catechin are also abundant. Caco-2 and THP-1 cells were used for determination of antioxidant and antiproliferative activities in Zantaz honey, respectively. All six commercial samples that were used for these studies exhibited antioxidant activity and inhibited cell proliferation. Interestingly, these activities had a positive correlation mainly with the content in methyl syringate and gallic acid. The recognition of health promoting activities in Zantaz honey should increase its commercial value, which would have a positive economic impact on the poor rural communities of Morocco where it is produced.
Collapse
Affiliation(s)
- Youssef Elamine
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), University of Sidi Mohamed Ben Abdellah, Fez 30 000, Morocco; Instituto de la Grasa (C.S.I.C.), Universidad Pablo de Olavide, Edificio 46, Carretera de Utrera, km 1, 41013-Sevilla, Spain.
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), University of Sidi Mohamed Ben Abdellah, Fez 30 000, Morocco
| | - Maria G Miguel
- Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Faculdade de Ciências e Tecnologia, Edificio 8, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ofélia Anjos
- Instituto Politécnico de Castelo Branco, 6001-909 Castelo Branco, Portugal; Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Centro de Biotecnologia de Plantas da Beira Interior, 6001-909 Castelo Branco, Portugal
| | - Letícia Estevinho
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal
| | - Manuel Alaiz
- Instituto de la Grasa (C.S.I.C.), Universidad Pablo de Olavide, Edificio 46, Carretera de Utrera, km 1, 41013-Sevilla, Spain
| | - Julio Girón-Calle
- Instituto de la Grasa (C.S.I.C.), Universidad Pablo de Olavide, Edificio 46, Carretera de Utrera, km 1, 41013-Sevilla, Spain
| | - Jesús Martín
- Fundación MEDINA, Avda del Conocimiento 34, 18016-Granada, Spain
| | - Javier Vioque
- Instituto de la Grasa (C.S.I.C.), Universidad Pablo de Olavide, Edificio 46, Carretera de Utrera, km 1, 41013-Sevilla, Spain
| |
Collapse
|
4
|
Kato Y, Kawai M, Kawai S, Okano Y, Rokkaku N, Ishisaka A, Murota K, Nakamura T, Nakamura Y, Ikushiro S. Dynamics of the Cellular Metabolism of Leptosperin Found in Manuka Honey. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10853-10862. [PMID: 31496237 DOI: 10.1021/acs.jafc.9b03894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Leptosperin (methyl syringate β-d-gentiobioside) is abundantly found in manuka honey, which is widely used because of its antibacterial and possible anti-inflammatory activities. The aim of this study was to examine the molecular mechanism underlying the metabolism of leptosperin. Five phytochemicals (leptosperin, methyl syringate (MSYR), glucuronate conjugate of MSYR (MSYR-GA), sulfonate conjugate of MSYR (MSYR-S), and syringic acid (SYR)) were separately incubated with HepG2 and Caco-2 cells. After incubation, we found that the concentration of MSYR decreased, whereas the concentrations of SYR, MSYR-GA, and MSYR-S increased. By profiling with inhibitors and carboxylesterases (CES1, 2), we found that the conversion from MSYR to SYR was mediated by CES1. Lipopolysaccharide-stimulated RAW264.7 cells restored MSYR-GA to MSYR possibly by the secreted β-glucuronidase. All of the mice administered with leptosperin, MSYR, or manuka honey showed higher MSYR (13.84 ± 11.51, 14.29 ± 9.19, or 6.66 ± 2.30 nM) and SYR (1.85 ± 0.66, 6.01 ± 1.20, or 8.16 ± 3.10 nM) levels in the plasma compared with that of the vehicle controls (3.33 ± 1.45 (MSYR) and 1.85 ± 0.66 (SYR) nM). The findings of our study indicate that the unique metabolic pathways of these compounds may account for possible functionalities of manuka honey.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kaeko Murota
- Faculty of Life and Environmental Science , Shimane University , Matsue , Shimane 690-8504 , Japan
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life Science , Okayama University , Okayama 700-0082 , Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science , Okayama University , Okayama 700-0082 , Japan
| | - Shinichi Ikushiro
- Department of Biotechnology , Toyama Prefectural University , Imizu , Toyama 939-0398 , Japan
| |
Collapse
|
5
|
Wang R, Gu X, Zhuang Z, Zhong Y, Yang H, Wang S. Screening and Molecular Evolution of a Single Chain Variable Fragment Antibody (scFv) against Citreoviridin Toxin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7640-7648. [PMID: 27622814 DOI: 10.1021/acs.jafc.6b02637] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Citreoviridin (CIT), a small food-borne mycotoxin produced by Penicillium citreonigrum, is generally distributed in various cereal grains and farm crop products around the world and has caused cytotoxicity as an uncompetitive inhibitor of ATP hydrolysis. A high affinity single chain variable fragment (scFv) antibody that can detect the citreoviridin in samples is still not available; therefore, it is very urgent to prepare an antibody for CIT detection and therapy. In this study, an amplified and assembled scFv from hybridoma was used to construct the mutant phage library by error-prone PCR, generating a 2 × 108 capacity mutated phage display library. After six rounds of biopanning, the selected scFv-5A10 displayed higher affinity and specificity to CIT antigen, with an increased affinity of 13.25-fold (Kaff = 5.7 × 109 L/mol) compared to that of the original wild-type scFv. Two critical amino acids (P100 and T151) distributed in H-CDR3 and L-FR regions that were responsible for scFv-5A10 to CIT were found and verified by oligonucleotide-directed mutagenesis, and the resulting three mutants except for the mutant (P100K) lost binding activity significantly against CIT, as predicated. Indirect competitive ELISA (ic-ELISA) indicated that the linear range to detect CIT was 25-562 ng/mL with IC50 at 120 ng/mL. The limit of detection was 14.7 ng/mL, and the recovery average was (90.612 ± 3.889)%. Hence, the expressed and purified anti-CIT MBP-linker-scFv can be used to detect CIT in corn and related samples.
Collapse
Affiliation(s)
- Rongzhi Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Xiaosong Gu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Zhenghong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Yanfang Zhong
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Hang Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| |
Collapse
|