1
|
Mir TUG, Wani AK, Akhtar N, Katoch V, Shukla S, Kadam US, Hong JC. Advancing biological investigations using portable sensors for detection of sensitive samples. Heliyon 2023; 9:e22679. [PMID: 38089995 PMCID: PMC10711145 DOI: 10.1016/j.heliyon.2023.e22679] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/29/2023] [Accepted: 11/16/2023] [Indexed: 01/14/2024] Open
Abstract
Portable biosensors are emerged as powerful diagnostic tools for analyzing intricately complex biological samples. These biosensors offer sensitive detection capabilities by utilizing biomolecules such as proteins, nucleic acids, microbes or microbial products, antibodies, and enzymes. Their speed, accuracy, stability, specificity, and low cost make them indispensable in forensic investigations and criminal cases. Notably, portable biosensors have been developed to rapidly detect toxins, poisons, body fluids, and explosives; they have proven invaluable in forensic examinations of suspected samples, generating efficient results that enable effective and fair trials. One of the key advantages of portable biosensors is their ability to provide sensitive and non-destructive detection of forensic samples without requiring extensive sample preparation, thereby reducing the possibility of false results. This comprehensive review provides an overview of the current advancements in portable biosensors for the detection of sensitive materials, highlighting their significance in advancing investigations and enhancing sensitive sample detection capabilities.
Collapse
Affiliation(s)
- Tahir ul Gani Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- State Forensic Science Laboratory, Srinagar, Jammu and Kashmir, 190001, India
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Vaidehi Katoch
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Saurabh Shukla
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ulhas Sopanrao Kadam
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Jong Chan Hong
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
2
|
Gu Y, Li Y, Wu Q, Wu Z, Sun L, Shang Y, Zhuang Y, Fan X, Yi L, Wang S. Chemical antifouling strategies in sensors for food analysis: A review. Compr Rev Food Sci Food Saf 2023; 22:4074-4106. [PMID: 37421317 DOI: 10.1111/1541-4337.13209] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/26/2023] [Accepted: 06/20/2023] [Indexed: 07/10/2023]
Abstract
Surface biofouling induced by the undesired nonspecific adsorption of foulants (e.g., coexisting proteins and cells) in food matrices is a major issue of sensors for food analysis, hindering their reliability and accuracy of sensing. This issue can be addressed by developing antifouling strategies to prevent or alleviate nonspecific binding. Chemical antifouling strategies involve the use of chemical modifiers (i.e., antifouling materials) to strongly hydrate the surface and reduce surface biofouling. Through appropriate immobilization approaches, antifouling materials can be tethered onto sensors to form antifouling surfaces with well-ordered structures, balanced surface charges, and appropriate surface density and thickness. A rational antifouling surface can reduce the matrix effect, simplify sample pretreatment, and improve analytical performance. This review summarizes recent developments in chemical antifouling strategies in sensing. Surface antifouling mechanisms and common antifouling materials are described, and factors that may influence the antifouling effects of antifouling surfaces and approaches incorporating antifouling materials onto sensing surfaces are highlighted. Moreover, the specific applications of antifouling sensors in food analysis are introduced. Finally, we provide an outlook on future developments in antifouling sensors for food analysis.
Collapse
Affiliation(s)
- Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Yonghui Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Qiyue Wu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Zhongdong Wu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Ying Shang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Xuejing Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Lunzhao Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
3
|
Surface Plasmon Resonance (SPR) biosensor for detection of mycotoxins: A review. J Immunol Methods 2022; 510:113349. [PMID: 36088984 DOI: 10.1016/j.jim.2022.113349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 12/31/2022]
Abstract
Mycotoxin is one of the most important natural pollutants, which poses a global threat to food safety. However, the pollution of mold in food production is inevitable. The detection technology of mycotoxins in food production is an important means to prevent the damage of mycotoxins, so rapid detection and screening to avoid pollution diffusion is essential. The focus of this review is to update the literature on the detection of mycotoxins by surface plasmon resonance (SPR) technology, rather than just traditional chromatographic methods. As a relatively novel and simple analytical method, SPR has been proved to be fast, sensitive and label-free, and has been widely used in real-time qualitative and quantitative analysis of various pollutants. This paper aims to give a broad overview of the sensors for detection and analysis of several common mycotoxins.
Collapse
|
4
|
Karachaliou CE, Koukouvinos G, Zisis G, Kizis D, Krystalli E, Siragakis G, Goustouridis D, Kakabakos S, Petrou P, Livaniou E, Raptis I. Fast and Accurate Determination of Minute Ochratoxin A Levels in Cereal Flours and Wine with the Label-Free White Light Reflectance Spectroscopy Biosensing Platform. BIOSENSORS 2022; 12:877. [PMID: 36291014 PMCID: PMC9599867 DOI: 10.3390/bios12100877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Ochratoxin A (OTA) is one of the most toxic naturally encountered contaminants and is found in a variety of foods and beverages, including cereals and wine. Driven by the strict regulations regarding the maximum allowable OTA concentration in foodstuff and the necessity for on-site determination, the development of fast and sensitive methods for the OTA determination in cereal flours and wine samples, based on white light reflectance spectroscopy, is presented. The method relied on appropriately engineered silicon chips, on top of which an OTA-protein conjugate was immobilized. A polyclonal antibody against OTA was then employed to detect the analyte in the framework of a competitive immunoassay; followed by the subsequent addition of a biotinylated secondary antibody and streptavidin for signal enhancement. A small size instrument performed all assay steps automatically and the bioreactions were monitored in real time as the software converted the spectral shifts into effective biomolecular adlayer thickness increase. The assay developed had a detection limit of 0.03 ng/mL and a working range up to 200 ng/mL. The assay lasted 25 min (less than 1h, including calibrators/antibody pre-incubation) and was accomplished following a simple sample preparation protocol. The method was applied to corn and wheat flour samples and white and red wines with recovery values ranging from 87.2 to 111%. The simplicity of the overall assay protocol and convenient instrumentation demonstrates the potential of the immunosensor developed for OTA detection at the point of need.
Collapse
Affiliation(s)
- Chrysoula-Evangelia Karachaliou
- Immunopeptide Chemistry Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 15310 Agia Paraskevi, Greece
| | - Georgios Koukouvinos
- Immunoassay/Immunosensors Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 15310 Agia Paraskevi, Greece
| | - Grigoris Zisis
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 15310 Agia Paraskevi, Greece or
| | - Dimosthenis Kizis
- Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, 14561 Kifissia, Greece
| | | | - George Siragakis
- Tuv Austria Food Allergens Labs Ltd., Kalopsidas 38, 7060 Livadia, Cyprus
| | | | - Sotirios Kakabakos
- Immunoassay/Immunosensors Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 15310 Agia Paraskevi, Greece
| | - Panagiota Petrou
- Immunoassay/Immunosensors Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 15310 Agia Paraskevi, Greece
| | - Evangelia Livaniou
- Immunopeptide Chemistry Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 15310 Agia Paraskevi, Greece
| | - Ioannis Raptis
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 15310 Agia Paraskevi, Greece or
- ThetaMetrisis S.A., Christou Lada 40, 12132 Athens, Greece
| |
Collapse
|
5
|
Nan M, Xue H, Bi Y. Contamination, Detection and Control of Mycotoxins in Fruits and Vegetables. Toxins (Basel) 2022; 14:309. [PMID: 35622556 PMCID: PMC9143439 DOI: 10.3390/toxins14050309] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 01/09/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by pathogenic fungi that colonize fruits and vegetables either during harvesting or during storage. Mycotoxin contamination in fruits and vegetables has been a major problem worldwide, which poses a serious threat to human and animal health through the food chain. This review systematically describes the major mycotoxigenic fungi and the produced mycotoxins in fruits and vegetables, analyzes recent mycotoxin detection technologies including chromatography coupled with detector (i.e., mass, ultraviolet, fluorescence, etc.) technology, electrochemical biosensors technology and immunological techniques, as well as summarizes the degradation and detoxification technologies of mycotoxins in fruits and vegetables, including physical, chemical and biological methods. The future prospect is also proposed to provide an overview and suggestions for future mycotoxin research directions.
Collapse
Affiliation(s)
- Mina Nan
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
- Basic Experiment Teaching Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
6
|
Li R, Wen Y, Wang F, He P. Recent advances in immunoassays and biosensors for mycotoxins detection in feedstuffs and foods. J Anim Sci Biotechnol 2021; 12:108. [PMID: 34629116 PMCID: PMC8504128 DOI: 10.1186/s40104-021-00629-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/08/2021] [Indexed: 12/22/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungus. Many mycotoxin species are highly toxic and are frequently found in cereals and feedstuffs. So, powerful detection methods are vital and effective ways to prevent feed contamination. Traditional detection methods can no longer meet the needs of massive, real-time, simple, and fast mycotoxin monitoring. Rapid detection methods based on advanced material and sensor technology are the future trend. In this review, we highlight recent progress of mycotoxin rapid detection strategies in feedstuffs and foods, especially for simultaneous multiplex mycotoxin determination. Immunoassays, biosensors, and the prominent roles of nanomaterials are introduced. The principles of different types of recognition and signal transduction are explained, and the merits and pitfalls of these methods are compared. Furthermore, limitations and challenges of existing rapid sensing strategies and perspectives of future research are discussed.
Collapse
Affiliation(s)
- Runxian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yang Wen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Fenglai Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Pingli He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Jafari S, Guercetti J, Geballa-Koukoula A, Tsagkaris AS, Nelis JLD, Marco MP, Salvador JP, Gerssen A, Hajslova J, Elliott C, Campbell K, Migliorelli D, Burr L, Generelli S, Nielen MWF, Sturla SJ. ASSURED Point-of-Need Food Safety Screening: A Critical Assessment of Portable Food Analyzers. Foods 2021; 10:1399. [PMID: 34204284 PMCID: PMC8235511 DOI: 10.3390/foods10061399] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/07/2021] [Accepted: 06/12/2021] [Indexed: 12/19/2022] Open
Abstract
Standard methods for chemical food safety testing in official laboratories rely largely on liquid or gas chromatography coupled with mass spectrometry. Although these methods are considered the gold standard for quantitative confirmatory analysis, they require sampling, transferring the samples to a central laboratory to be tested by highly trained personnel, and the use of expensive equipment. Therefore, there is an increasing demand for portable and handheld devices to provide rapid, efficient, and on-site screening of food contaminants. Recent technological advancements in the field include smartphone-based, microfluidic chip-based, and paper-based devices integrated with electrochemical and optical biosensing platforms. Furthermore, the potential application of portable mass spectrometers in food testing might bring the confirmatory analysis from the laboratory to the field in the future. Although such systems open new promising possibilities for portable food testing, few of these devices are commercially available. To understand why barriers remain, portable food analyzers reported in the literature over the last ten years were reviewed. To this end, the analytical performance of these devices and the extent they match the World Health Organization benchmark for diagnostic tests, i.e., the Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, and Deliverable to end-users (ASSURED) criteria, was evaluated critically. A five-star scoring system was used to assess their potential to be implemented as food safety testing systems. The main findings highlight the need for concentrated efforts towards combining the best features of different technologies, to bridge technological gaps and meet commercialization requirements.
Collapse
Affiliation(s)
- Safiye Jafari
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland;
- CSEM SA, Center Landquart, Bahnhofstrasse 1, 7302 Landquart, Switzerland; (D.M.); (L.B.)
| | - Julian Guercetti
- Nanobiotechnology for Diagnostics (Nb4D), Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (J.G.); (M.-P.M.); (J.-P.S.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Ariadni Geballa-Koukoula
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands; (A.G.-K.); (A.G.); (M.W.N.F.)
| | - Aristeidis S. Tsagkaris
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, Dejvice, 166 28 Prague 6, Czech Republic; (A.S.T.); (J.H.)
| | - Joost L. D. Nelis
- Institute for Global Food Security, School of Biological Sciences, Queen’s University, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (J.L.D.N.); (C.E.); (K.C.)
| | - M.-Pilar Marco
- Nanobiotechnology for Diagnostics (Nb4D), Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (J.G.); (M.-P.M.); (J.-P.S.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - J.-Pablo Salvador
- Nanobiotechnology for Diagnostics (Nb4D), Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (J.G.); (M.-P.M.); (J.-P.S.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Arjen Gerssen
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands; (A.G.-K.); (A.G.); (M.W.N.F.)
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, Dejvice, 166 28 Prague 6, Czech Republic; (A.S.T.); (J.H.)
| | - Chris Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen’s University, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (J.L.D.N.); (C.E.); (K.C.)
| | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen’s University, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (J.L.D.N.); (C.E.); (K.C.)
| | - Davide Migliorelli
- CSEM SA, Center Landquart, Bahnhofstrasse 1, 7302 Landquart, Switzerland; (D.M.); (L.B.)
| | - Loïc Burr
- CSEM SA, Center Landquart, Bahnhofstrasse 1, 7302 Landquart, Switzerland; (D.M.); (L.B.)
| | - Silvia Generelli
- CSEM SA, Center Landquart, Bahnhofstrasse 1, 7302 Landquart, Switzerland; (D.M.); (L.B.)
| | - Michel W. F. Nielen
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands; (A.G.-K.); (A.G.); (M.W.N.F.)
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Shana J. Sturla
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland;
| |
Collapse
|
8
|
D’Agata R, Bellassai N, Jungbluth V, Spoto G. Recent Advances in Antifouling Materials for Surface Plasmon Resonance Biosensing in Clinical Diagnostics and Food Safety. Polymers (Basel) 2021; 13:1929. [PMID: 34200632 PMCID: PMC8229487 DOI: 10.3390/polym13121929] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 01/11/2023] Open
Abstract
Strategies to develop antifouling surface coatings are crucial for surface plasmon resonance (SPR) sensing in many analytical application fields, such as detecting human disease biomarkers for clinical diagnostics and monitoring foodborne pathogens and toxins involved in food quality control. In this review, firstly, we provide a brief discussion with considerations about the importance of adopting appropriate antifouling materials for achieving excellent performances in biosensing for food safety and clinical diagnosis. Secondly, a non-exhaustive landscape of polymeric layers is given in the context of surface modification and the mechanism of fouling resistance. Finally, we present an overview of some selected developments in SPR sensing, emphasizing applications of antifouling materials and progress to overcome the challenges related to the detection of targets in complex matrices relevant for diagnosis and food biosensing.
Collapse
Affiliation(s)
- Roberta D’Agata
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy; (N.B.); (V.J.)
| | - Noemi Bellassai
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy; (N.B.); (V.J.)
| | - Vanessa Jungbluth
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy; (N.B.); (V.J.)
| | - Giuseppe Spoto
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy; (N.B.); (V.J.)
- Consorzio Interuniversitario “Istituto Nazionale Biostrutture e Biosistemi”, c/o Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| |
Collapse
|
9
|
Critical Assessment of Mycotoxins in Beverages and Their Control Measures. Toxins (Basel) 2021; 13:toxins13050323. [PMID: 33946240 PMCID: PMC8145492 DOI: 10.3390/toxins13050323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/01/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites of filamentous fungi that contaminate food products such as fruits, vegetables, cereals, beverages, and other agricultural commodities. Their occurrence in the food chain, especially in beverages, can pose a serious risk to human health, due to their toxicity, even at low concentrations. Mycotoxins, such as aflatoxins (AFs), ochratoxin A (OTA), patulin (PAT), fumonisins (FBs), trichothecenes (TCs), zearalenone (ZEN), and the alternaria toxins including alternariol, altenuene, and alternariol methyl ether have largely been identified in fruits and their derived products, such as beverages and drinks. The presence of mycotoxins in beverages is of high concern in some cases due to their levels being higher than the limits set by regulations. This review aims to summarize the toxicity of the major mycotoxins that occur in beverages, the methods available for their detection and quantification, and the strategies for their control. In addition, some novel techniques for controlling mycotoxins in the postharvest stage are highlighted.
Collapse
|
10
|
|
11
|
Phosphorescent palladium-tetrabenzoporphyrin indicators for immunosensing of small molecules with a novel optical device. Talanta 2020; 224:121927. [PMID: 33379126 DOI: 10.1016/j.talanta.2020.121927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022]
Abstract
Small-molecule detection is important for many applications including clinical diagnostics, drug discovery, environmental screening, and food technology. Current techniques suffer from various limitations including cost, complex sample processing, massive instrumentation, and need for expertise. To overcome these limitations, a new optical immunosensing assay for the detection of small molecules was developed and assessed with the targets estrone (E1) and estradiol (E2). For this purpose, phosphorescent indicators were designed based on the tetrabenzoporphyrin skeleton directly linked to E1 or E2, or attached through a linker, with phosphorescence lifetimes in the range of ~100-~300 μs. The assay is an indicator displacement assay (IDA). The best performances of our optical immunosensor were obtained with the indicators E1-L-Por and E2-L-Por. As they bound to specific polyclonal antibodies, their phosphorescence (τ ~200 μs) was quenched. When an endogenous competitor was added, the indicator was displaced, and the phosphorescence was immediately recovered. These effects were measured with a new optical device, described here, and able to detect picograms of luminescent molecules emitting in the NIR range, simply by measuring phosphorescence decay. This radical switch-off/switch on process demonstrates that E1-L-Por and E2-L-Por are good candidates for in vivo and in vitro immunosensing of E1 and E2. Importantly, the present immunosensing assay can be easily adapted to other small molecules such as other hormones and drugs.
Collapse
|
12
|
Wang B, Park B. Immunoassay Biosensing of Foodborne Pathogens with Surface Plasmon Resonance Imaging: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12927-12939. [PMID: 32816471 DOI: 10.1021/acs.jafc.0c02295] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Surface plasmon resonance imaging (SPRi) has been increasingly used in the label-free detections of various biospecies, such as organic toxins, proteins, and bacteria. In combination with the well-developed microarray immunoassay, SPRi has the advantages of rapid detection in tens of minutes and multiplex detection of different targets with the same biochip. Both prism-based and prism-free configurations of SPRi have been developed for highly integrated portable immunosensors, which have shown great potential on pathogen detection and living cell imaging. This review summarizes the recent advances in immunoassay biosensing with SPRi, with special emphasis on the multiplex detections of foodborne pathogens. Additionally, various spotting techniques, surface modification protocols, and signal amplification methods have been developed to improve the specificity and sensitivity of the SPRi biochip. The challenges in multiplex detections of foodborne pathogens in real-world samples are addressed, and future perspectives of miniaturizing SPRi immunosensors with nanotechnologies are discussed.
Collapse
Affiliation(s)
- Bin Wang
- United States National Poultry Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 950 College Station Road, Athens, Georgia 30605, United States
| | - Bosoon Park
- United States National Poultry Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 950 College Station Road, Athens, Georgia 30605, United States
| |
Collapse
|
13
|
Huang X, Huang X, Xie J, Li X, Huang Z. Rapid simultaneous detection of fumonisin B1 and deoxynivalenol in grain by immunochromatographic test strip. Anal Biochem 2020; 606:113878. [DOI: 10.1016/j.ab.2020.113878] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 11/29/2022]
|
14
|
Ye H, Che J, Huang R, Qi W, He Z, Su R. Zwitterionic Peptide Enhances Protein-Resistant Performance of Hyaluronic Acid-Modified Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1923-1929. [PMID: 32073869 DOI: 10.1021/acs.langmuir.9b03856] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A convenient and efficient approach for the surface modification of antifouling materials is highly desirable in numerous applications like affinity-based biosensors. Herein, we fabricated a hybrid antifouling coating on Au surfaces, with thiolated hyaluronic acid (HA) being chemically adsorbed to Au surfaces by the "graft to" approach, followed by a self-assembly of a smaller zwitterionic peptide named p-EK to obtain HA/p-EK-modified surfaces. The real-time sensorgrams of surface plasmon resonance biosensor manifested the successful modification of HA and p-EK on Au surfaces, indicating that there were some bare Au substrates on the HA-modified surfaces for peptide binding. The obtained HA/p-EK surfaces exhibited high hydrophilicity with a water contact angle of 9°. Quartz crystal microbalance and surface plasmon resonance experiments verified that further grafting the zwitterionic p-EK peptide on HA-modified surfaces could enhance the antifouling performance by one time. The improved protein resistance could be mainly contributed by the modification of the zwitterionic peptide that shields the exposed Au substrates from interacting with protein foulings. This strategy by grafting a smaller zwitterionic peptide might provide a novel way to achieve an enhanced protein-resistant performance of the macromolecular coating obtained by the "graft to" surface modification approach.
Collapse
Affiliation(s)
- Huijun Ye
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Jinjing Che
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian Distict, Beijing 100085, P. R. China
| | - Renliang Huang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
15
|
Altunbas O, Ozdas A, Yilmaz MD. Luminescent detection of Ochratoxin A using terbium chelated mesoporous silica nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121049. [PMID: 31470297 DOI: 10.1016/j.jhazmat.2019.121049] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
This work represents the time-resolved fluorescence detection of Ochratoxin A (OTA), a highly toxic and commonly found toxin in food stuffs, by a terbium (Tb3+) chelated nanoparticle sensor with high sensitivity and remarkable selectivity. The coordination of OTA to Tb3+ center on nanoparticle surface resulted in the significant enhancement of the fluorescence signal in nanomolar concentrations with a detection limit of 20 ppb. In contrast, no enhancements were observed in the presence of other common mycotoxins such as Aflatoxin B1, Zearalenone, Citrinin and Patulin. The results indicate that the Tb3+ chelated nanoparticle sensor has great potential for applications in food analysis and safety.
Collapse
Affiliation(s)
- Osman Altunbas
- Development, Application and Research Center for Strategic Products (SARGEM), Konya Food and Agriculture University, 42080 Konya, Turkey
| | - Ayse Ozdas
- Development, Application and Research Center for Strategic Products (SARGEM), Konya Food and Agriculture University, 42080 Konya, Turkey
| | - M Deniz Yilmaz
- Department of Bioengineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University, 42080 Konya, Turkey; Research and Development Center for Diagnostic Kits (KIT-ARGEM), Konya Food and Agriculture University, 42080 Konya, Turkey.
| |
Collapse
|
16
|
|
17
|
Eskola M, Kos G, Elliott CT, Hajšlová J, Mayar S, Krska R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit Rev Food Sci Nutr 2019; 60:2773-2789. [DOI: 10.1080/10408398.2019.1658570] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Mari Eskola
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - Gregor Kos
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada
| | - Christopher T. Elliott
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, Northern Ireland, UK
| | - Jana Hajšlová
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague 6, Czech Republic
| | - Sultan Mayar
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
18
|
Nolan P, Auer S, Spehar A, Elliott CT, Campbell K. Current trends in rapid tests for mycotoxins. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:800-814. [PMID: 30943116 DOI: 10.1080/19440049.2019.1595171] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
There are an ample number of commercial testing kits available for mycotoxin analysis on the market today, including enzyme-linked immunosorbent assays, membrane-based immunoassays, fluorescence polarisation immunoassays and fluorometric assays. It can be observed from the literature that not only are developments and improvements ongoing for these assays but there are also novel assays being developed using biosensor technology. This review focuses on both the currently available methods and recent innovative methods for mycotoxin testing. Furthermore, it highlights trends that are influencing assay developments such as multiplexing capabilities and rapid on-site analysis, indicating the possible detection methods that will shape the future market.
Collapse
Affiliation(s)
- Philana Nolan
- a Institute for Global Food Security, School of Biological Sciences , Queen's University Belfast , Belfast , UK
| | | | | | - Christopher T Elliott
- a Institute for Global Food Security, School of Biological Sciences , Queen's University Belfast , Belfast , UK
| | - Katrina Campbell
- a Institute for Global Food Security, School of Biological Sciences , Queen's University Belfast , Belfast , UK
| |
Collapse
|
19
|
Wang D, Loo JFC, Chen J, Yam Y, Chen SC, He H, Kong SK, Ho HP. Recent Advances in Surface Plasmon Resonance Imaging Sensors. SENSORS 2019; 19:s19061266. [PMID: 30871157 PMCID: PMC6471112 DOI: 10.3390/s19061266] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 12/12/2022]
Abstract
The surface plasmon resonance (SPR) sensor is an important tool widely used for studying binding kinetics between biomolecular species. The SPR approach offers unique advantages in light of its real-time and label-free sensing capabilities. Until now, nearly all established SPR instrumentation schemes are based on single- or several-channel configurations. With the emergence of drug screening and investigation of biomolecular interactions on a massive scale these days for finding more effective treatments of diseases, there is a growing demand for the development of high-throughput 2-D SPR sensor arrays based on imaging. The so-called SPR imaging (SPRi) approach has been explored intensively in recent years. This review aims to provide an up-to-date and concise summary of recent advances in SPRi. The specific focuses are on practical instrumentation designs and their respective biosensing applications in relation to molecular sensing, healthcare testing, and environmental screening.
Collapse
Affiliation(s)
- Dongping Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jacky Fong Chuen Loo
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jiajie Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Yeung Yam
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Shih-Chi Chen
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Hao He
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Siu Kai Kong
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Ho Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
20
|
Peltomaa R, Glahn-Martínez B, Benito-Peña E, Moreno-Bondi MC. Optical Biosensors for Label-Free Detection of Small Molecules. SENSORS (BASEL, SWITZERLAND) 2018; 18:E4126. [PMID: 30477248 PMCID: PMC6308632 DOI: 10.3390/s18124126] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022]
Abstract
Label-free optical biosensors are an intriguing option for the analyses of many analytes, as they offer several advantages such as high sensitivity, direct and real-time measurement in addition to multiplexing capabilities. However, development of label-free optical biosensors for small molecules can be challenging as most of them are not naturally chromogenic or fluorescent, and in some cases, the sensor response is related to the size of the analyte. To overcome some of the limitations associated with the analysis of biologically, pharmacologically, or environmentally relevant compounds of low molecular weight, recent advances in the field have improved the detection of these analytes using outstanding methodology, instrumentation, recognition elements, or immobilization strategies. In this review, we aim to introduce some of the latest developments in the field of label-free optical biosensors with the focus on applications with novel innovations to overcome the challenges related to small molecule detection. Optical label-free methods with different transduction schemes, including evanescent wave and optical fiber sensors, surface plasmon resonance, surface-enhanced Raman spectroscopy, and interferometry, using various biorecognition elements, such as antibodies, aptamers, enzymes, and bioinspired molecularly imprinted polymers, are reviewed.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Bettina Glahn-Martínez
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Elena Benito-Peña
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - María C Moreno-Bondi
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
21
|
Abstract
This review is mainly centered on beverages obtained from tropical crops, including tea, nut milk, coffee, cocoa, and those prepared from fruits. After considering the epidemiological data found on the matrices above, the focus was given to recent methodological approaches to assess the most relevant mycotoxins. Aspects such as singularities among the mycotoxin and the beverage in which their were found, and the economic effects and repercussions that the mycotoxin-tainted ingredients have on the beverage industry were pointed out. Finally, the burden of their consumption through beverages, including risk and health effects on humans, was addressed as well.
Collapse
|
22
|
Resonant position tracking method for smartphone-based surface plasmon sensor. Anal Chim Acta 2018; 1032:99-106. [DOI: 10.1016/j.aca.2018.05.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/02/2018] [Accepted: 05/10/2018] [Indexed: 11/17/2022]
|
23
|
Pagkali V, Petrou PS, Makarona E, Peters J, Haasnoot W, Jobst G, Moser I, Gajos K, Budkowski A, Economou A, Misiakos K, Raptis I, Kakabakos SE. Simultaneous determination of aflatoxin B 1, fumonisin B 1 and deoxynivalenol in beer samples with a label-free monolithically integrated optoelectronic biosensor. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:445-453. [PMID: 30059886 DOI: 10.1016/j.jhazmat.2018.07.080] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/18/2018] [Accepted: 07/21/2018] [Indexed: 06/08/2023]
Abstract
A label-free optical biosensor for the fast simultaneous determination of three mycotoxins, aflatoxin B1 (AFB1), fumonisin B1 (FB1) and deoxynivalenol (DON), in beer samples is presented. The biosensor is based on an array of ten Mach-Zehnder interferometers (MZIs) monolithically integrated along with their respective broad-band silicon light sources onto a single chip. Multi-analyte determination is accomplished by functionalizing the sensing arms of individual MZIs with mycotoxin-protein conjugates. Assay is performed by pumping over the chip mixtures of calibrators or samples with a mixture of specific monoclonal antibodies, followed by reaction with a secondary anti-mouse IgG antibody. Reactions are monitored in real-time by continuously recording the MZI output spectra, which are then subjected to Discrete Fourier Transform to convert spectrum shifts to phase shifts. The detection limits achieved for AFB1, FB1 and DON were 0.8, 5.6 and 24 ng/ml, respectively, while the assay duration was 12 min. Recovery values ranging from 85 to 115% were determined in beer samples spiked with known concentrations of the three mycotoxins. In addition, beers of different types and origin were analysed with the biosensor developed and the results were compared with those provided by established laboratory methods, further supporting the accuracy of the proposed device.
Collapse
Affiliation(s)
- Varvara Pagkali
- Immunoassays-Immunosensors Lab, INRaSTES, NCSR "Demokritos", Aghia Paraskevi 15310, Greece; Analytical Chemistry Lab, Department of Chemistry, University of Athens, Panepistimiopolis Zografou 15771, Greece
| | - Panagiota S Petrou
- Immunoassays-Immunosensors Lab, INRaSTES, NCSR "Demokritos", Aghia Paraskevi 15310, Greece.
| | - Eleni Makarona
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Aghia Paraskevi 15310, Greece
| | - Jeroen Peters
- RIKILT Wageningen UR, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands
| | - Willem Haasnoot
- RIKILT Wageningen UR, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands
| | | | | | - Katarzyna Gajos
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Andrzej Budkowski
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Anastasios Economou
- Analytical Chemistry Lab, Department of Chemistry, University of Athens, Panepistimiopolis Zografou 15771, Greece
| | - Konstantinos Misiakos
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Aghia Paraskevi 15310, Greece
| | - Ioannis Raptis
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Aghia Paraskevi 15310, Greece
| | - Sotirios E Kakabakos
- Immunoassays-Immunosensors Lab, INRaSTES, NCSR "Demokritos", Aghia Paraskevi 15310, Greece.
| |
Collapse
|
24
|
Gao H, Wen L, Wu Y, Yan X, Li J, Li X, Fu Z, Wu G. Sensitive and Facile Electrochemiluminescent Immunoassay for Detecting Genetically Modified Rapeseed Based on Novel Carbon Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5247-5253. [PMID: 29719152 DOI: 10.1021/acs.jafc.8b01080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A highly sensitive electrochemiluminescent (ECL) immunoassay targeting PAT/ bar protein was facilely developed for genetically modified (GM) rapeseed detection using carbon nanoparticles (CNPs) originally prepared from printer toner. In this work, CNPs linked with antibody for PAT/ bar protein were used to modify a working electrode. After an immunoreaction between the PAT/ bar protein and its antibody, the immunocomplex formed on the electrode receptor region resulted in an inhibition of electron transfer between the electrode surface and the ECL substance, thus led to a decrease of ECL response. Under the optimal conditions, the ECL responses linearly decreased as the increase of the PAT/ bar protein concentration and the GM rapeseed RF3 content in the ranges of 0.10-10 ng/mL and 0.050-1.0%, with the limits of detection of 0.050 ng/mL and 0.020% (S/N = 3). These results open a facile, sensitive, and rapid approach for the safety control of agricultural GM rape.
Collapse
Affiliation(s)
- Hongfei Gao
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture , Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062 , China
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan) , Huazhong Agricultural University , Wuhan 430070 , China
| | - Luke Wen
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture , Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062 , China
| | - Yuhua Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture , Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062 , China
| | - Xiaohong Yan
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture , Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062 , China
| | - Jun Li
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture , Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062 , China
| | - Xiaofei Li
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture , Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062 , China
| | - Zhifeng Fu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry of the Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing 400716 , China
| | - Gang Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture , Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062 , China
| |
Collapse
|
25
|
Liu R, Li W, Cai T, Deng Y, Ding Z, Liu Y, Zhu X, Wang X, Liu J, Liang B, Zheng T, Li J. TiO 2 Nanolayer-Enhanced Fluorescence for Simultaneous Multiplex Mycotoxin Detection by Aptamer Microarrays on a Porous Silicon Surface. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14447-14453. [PMID: 29624041 DOI: 10.1021/acsami.8b01431] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A new aptamer microarray method on the TiO2-porous silicon (PSi) surface was developed to simultaneously screen multiplex mycotoxins. The TiO2 nanolayer on the surface of PSi can enhance the fluorescence intensity 14 times than that of the thermally oxidized PSi. The aptamer fluorescence signal recovery principle was performed on the TiO2-PSi surface by hybridization duplex strand DNA from the mycotoxin aptamer and antiaptamer, respectively, labeled with fluorescence dye and quencher. The aptamer microarray can simultaneously screen for multiplex mycotoxins with a dynamic linear detection range of 0.1-10 ng/mL for ochratoxin A (OTA), 0.01-10 ng/mL for aflatoxins B1 (AFB1), and 0.001-10 ng/mL for fumonisin B1 (FB1) and limits of detection of 15.4, 1.48, and 0.21 pg/mL for OTA, AFB1, and FB1, respectively. The newly developed method shows good specificity and recovery rates. This method can provide a simple, sensitive, and cost-efficient platform for simultaneous screening of multiplex mycotoxins and can be easily expanded to the other aptamer-based protocol.
Collapse
Affiliation(s)
- Rui Liu
- Department of Food Science and Engineering , Nanjing Normal University , Nanjing 210024 , China
| | - Wei Li
- Department of Electronic and Electrical Engineering , The University of Sheffield , Sheffield S3 7HQ , U.K
| | - Tingting Cai
- Department of Food Science and Engineering , Nanjing Normal University , Nanjing 210024 , China
| | - Yang Deng
- Department of Food Science and Engineering , Nanjing Normal University , Nanjing 210024 , China
| | - Zhi Ding
- Department of Food Science and Engineering , Nanjing Normal University , Nanjing 210024 , China
| | - Yan Liu
- Department of Food Science and Engineering , Nanjing Normal University , Nanjing 210024 , China
| | - Xuerui Zhu
- Department of Food Science and Engineering , Nanjing Normal University , Nanjing 210024 , China
| | - Xin Wang
- Department of Food Science and Engineering , Nanjing Normal University , Nanjing 210024 , China
| | - Jie Liu
- Department of Food Science and Engineering , Nanjing Normal University , Nanjing 210024 , China
| | - Baowen Liang
- Department of Food Science and Engineering , Nanjing Normal University , Nanjing 210024 , China
| | - Tiesong Zheng
- Department of Food Science and Engineering , Nanjing Normal University , Nanjing 210024 , China
| | - Jianlin Li
- Department of Food Science and Engineering , Nanjing Normal University , Nanjing 210024 , China
| |
Collapse
|
26
|
Jiang C, Lan L, Yao Y, Zhao F, Ping J. Recent progress in application of nanomaterial-enabled biosensors for ochratoxin A detection. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.02.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Hinman SS, McKeating KS, Cheng Q. Surface Plasmon Resonance: Material and Interface Design for Universal Accessibility. Anal Chem 2018; 90:19-39. [PMID: 29053253 PMCID: PMC6041476 DOI: 10.1021/acs.analchem.7b04251] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Samuel S. Hinman
- Environmental Toxicology, University of California–Riverside, Riverside, California 92521, United States
| | - Kristy S. McKeating
- Department of Chemistry, University of California–Riverside, Riverside, California 92521, United States
| | - Quan Cheng
- Environmental Toxicology, University of California–Riverside, Riverside, California 92521, United States
- Department of Chemistry, University of California–Riverside, Riverside, California 92521, United States
| |
Collapse
|
28
|
Jo EJ, Byun JY, Mun H, Bang D, Son JH, Lee JY, Lee LP, Kim MG. Single-Step LRET Aptasensor for Rapid Mycotoxin Detection. Anal Chem 2017; 90:716-722. [PMID: 29210570 DOI: 10.1021/acs.analchem.7b02368] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Contamination of foods by mycotoxins is a common yet serious problem. Owing to the increase in consumption of fresh produce, consumers have become aware of food safety issues caused by mycotoxins. Therefore, rapid and sensitive mycotoxin detection is in great demand in fields such as food safety and public health. Here we report a single-step luminescence resonance energy transfer (LRET) aptasensor for mycotoxin detection. To accomplish the single-step sensor, our sensor was constructed by linking a quencher-labeled aptamer through a linker to the surface of upconversion nanoparticles (UCNPs). Our LRET aptasensor is composed of Mn2+-doped NaYF4:Yb3+,Er3+ UCNPs as the LRET donor, and black hole quencher 3 (BHQ3) as the acceptor. The maximum quenching efficiency is obtained by modulating the linker length, which controls the distance between the quencher and the UCNPs. Our distinctive design of LRET aptasensor allows detection of mycotoxins selectively in colored food samples within 10 min without multiple bioassay steps. We believe our single-step aptasensor has a significant potential for on-site detection of food contaminants, environmental pollutants, and biological metabolites.
Collapse
Affiliation(s)
| | - Ju-Young Byun
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon 34141, Republic of Korea
| | | | - Doyeon Bang
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, and Biophysics Graduate Program, University of California , Berkeley, California 94720, United States
| | - Jun Ho Son
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, and Biophysics Graduate Program, University of California , Berkeley, California 94720, United States
| | | | - Luke P Lee
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, and Biophysics Graduate Program, University of California , Berkeley, California 94720, United States
| | | |
Collapse
|
29
|
Liu C, Hu F, Yang W, Xu J, Chen Y. A critical review of advances in surface plasmon resonance imaging sensitivity. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Man Y, Liang G, Li A, Pan L. Recent Advances in Mycotoxin Determination for Food Monitoring via Microchip. Toxins (Basel) 2017; 9:E324. [PMID: 29036884 PMCID: PMC5666371 DOI: 10.3390/toxins9100324] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 09/30/2017] [Accepted: 10/09/2017] [Indexed: 11/28/2022] Open
Abstract
Mycotoxins are one of the main factors impacting food safety. Mycotoxin contamination has threatened the health of humans and animals. Conventional methods for the detection of mycotoxins are gas chromatography (GC) or liquid chromatography (LC) coupled with mass spectrometry (MS), or enzyme-linked immunosorbent assay (ELISA). However, all these methods are time-consuming, require large-scale instruments and skilled technicians, and consume large amounts of hazardous regents and solvents. Interestingly, a microchip requires less sample consumption and short analysis time, and can realize the integration, miniaturization, and high-throughput detection of the samples. Hence, the application of a microchip for the detection of mycotoxins can make up for the deficiency of the conventional detection methods. This review focuses on the application of a microchip to detect mycotoxins in foods. The toxicities of mycotoxins and the materials of the microchip are firstly summarized in turn. Then the application of a microchip that integrates various kinds of detection methods (optical, electrochemical, photo-electrochemical, and label-free detection) to detect mycotoxins is reviewed in detail. Finally, challenges and future research directions in the development of a microchip to detect mycotoxins are previewed.
Collapse
Affiliation(s)
- Yan Man
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
- Risk Assessment Lab for Agro-products, Ministry of Agriculture of the People's Republic of China, Beijing 100125, China.
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| | - Gang Liang
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
- Risk Assessment Lab for Agro-products, Ministry of Agriculture of the People's Republic of China, Beijing 100125, China.
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| | - An Li
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
- Risk Assessment Lab for Agro-products, Ministry of Agriculture of the People's Republic of China, Beijing 100125, China.
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| | - Ligang Pan
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
- Risk Assessment Lab for Agro-products, Ministry of Agriculture of the People's Republic of China, Beijing 100125, China.
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| |
Collapse
|
31
|
Ribes À, Santiago‐Felipe S, Bernardos A, Marcos MD, Pardo T, Sancenón F, Martínez‐Máñez R, Aznar E. Two New Fluorogenic Aptasensors Based on Capped Mesoporous Silica Nanoparticles to Detect Ochratoxin A. ChemistryOpen 2017; 6:653-659. [PMID: 29046860 PMCID: PMC5641899 DOI: 10.1002/open.201700106] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Indexed: 01/05/2023] Open
Abstract
Aptamers have been used as recognition elements for several molecules due to their great affinity and selectivity. Additionally, mesoporous nanomaterials have demonstrated great potential in sensing applications. Based on these concepts, we report herein the use of two aptamer-capped mesoporous silica materials for the selective detection of ochratoxin A (OTA). A specific aptamer for OTA was used to block the pores of rhodamine B-loaded mesoporous silica nanoparticles. Two solids were prepared in which the aptamer capped the porous scaffolds by using a covalent or electrostatic approach. Whereas the prepared materials remained capped in water, dye delivery was selectively observed in the presence of OTA. The protocol showed excellent analytical performance in terms of sensitivity (limit of detection: 0.5-0.05 nm), reproducibility, and selectivity. Moreover, the aptasensors were tested for OTA detection in commercial foodstuff matrices, which demonstrated their potential applicability in real samples.
Collapse
Affiliation(s)
- Àngela Ribes
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de ValènciaUniversitat de ValènciaCamino de Vera s/n46022ValenciaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)50018ZaragozaSpain
- Unidad Mixta de Investigación en Nanomedicina y SensoresUniversitat Politècnica de València, Instituto de Investigación Sanitaria La Fe46022ValenciaSpain
| | - Sara Santiago‐Felipe
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de ValènciaUniversitat de ValènciaCamino de Vera s/n46022ValenciaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)50018ZaragozaSpain
- Unidad Mixta de Investigación en Nanomedicina y SensoresUniversitat Politècnica de València, Instituto de Investigación Sanitaria La Fe46022ValenciaSpain
| | - Andrea Bernardos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de ValènciaUniversitat de ValènciaCamino de Vera s/n46022ValenciaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)50018ZaragozaSpain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y NanomedicinaUniversitat Politècnica de València, Centro de Investigación Príncipe Felipe46022ValenciaSpain
| | - M. Dolores Marcos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de ValènciaUniversitat de ValènciaCamino de Vera s/n46022ValenciaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)50018ZaragozaSpain
- Unidad Mixta de Investigación en Nanomedicina y SensoresUniversitat Politècnica de València, Instituto de Investigación Sanitaria La Fe46022ValenciaSpain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y NanomedicinaUniversitat Politècnica de València, Centro de Investigación Príncipe Felipe46022ValenciaSpain
| | - Teresa Pardo
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de ValènciaUniversitat de ValènciaCamino de Vera s/n46022ValenciaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)50018ZaragozaSpain
- Unidad Mixta de Investigación en Nanomedicina y SensoresUniversitat Politècnica de València, Instituto de Investigación Sanitaria La Fe46022ValenciaSpain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y NanomedicinaUniversitat Politècnica de València, Centro de Investigación Príncipe Felipe46022ValenciaSpain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de ValènciaUniversitat de ValènciaCamino de Vera s/n46022ValenciaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)50018ZaragozaSpain
- Unidad Mixta de Investigación en Nanomedicina y SensoresUniversitat Politècnica de València, Instituto de Investigación Sanitaria La Fe46022ValenciaSpain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y NanomedicinaUniversitat Politècnica de València, Centro de Investigación Príncipe Felipe46022ValenciaSpain
| | - Ramón Martínez‐Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de ValènciaUniversitat de ValènciaCamino de Vera s/n46022ValenciaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)50018ZaragozaSpain
- Unidad Mixta de Investigación en Nanomedicina y SensoresUniversitat Politècnica de València, Instituto de Investigación Sanitaria La Fe46022ValenciaSpain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y NanomedicinaUniversitat Politècnica de València, Centro de Investigación Príncipe Felipe46022ValenciaSpain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de ValènciaUniversitat de ValènciaCamino de Vera s/n46022ValenciaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)50018ZaragozaSpain
- Unidad Mixta de Investigación en Nanomedicina y SensoresUniversitat Politècnica de València, Instituto de Investigación Sanitaria La Fe46022ValenciaSpain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y NanomedicinaUniversitat Politècnica de València, Centro de Investigación Príncipe Felipe46022ValenciaSpain
| |
Collapse
|
32
|
Joshi S, Zuilhof H, van Beek TA, Nielen MWF. Biochip Spray: Simplified Coupling of Surface Plasmon Resonance Biosensing and Mass Spectrometry. Anal Chem 2017; 89:1427-1432. [PMID: 28208290 PMCID: PMC5348099 DOI: 10.1021/acs.analchem.6b04012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
A simplified coupling
of surface plasmon resonance (SPR) immuno-biosensing
with ambient ionization mass spectrometry (MS) was developed. It combines
two orthogonal analysis techniques: the biosensing capability of SPR
and the chemical identification power of high resolution MS. As a
proof-of-principle, deoxynivalenol (DON), an important mycotoxin,
was captured using an SPR gold chip containing an antifouling layer
and monoclonal antibodies against the toxin and, after washing, the
chip could be taken out and analyzed by direct spray MS of the biosensor
chip to confirm the identity of DON. Furthermore, cross-reacting conjugates
of DON present in a naturally contaminated beer could be successfully
identified, thus showing the potential of rapid identification of
(un)expected cross-reacting molecules.
Collapse
Affiliation(s)
- Sweccha Joshi
- Laboratory of Organic Chemistry, Wageningen University & Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands.,TI-COAST , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University & Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Teris A van Beek
- Laboratory of Organic Chemistry, Wageningen University & Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Michel W F Nielen
- Laboratory of Organic Chemistry, Wageningen University & Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands.,RIKILT, Wageningen University & Research , P.O. Box 230, 6700 AE Wageningen, The Netherlands
| |
Collapse
|