1
|
Kostelecka K, Bryliński Ł, Komar O, Michalczyk J, Miłosz A, Biłogras J, Woliński F, Forma A, Baj J. An Overview of the Spices Used for the Prevention and Potential Treatment of Gastric Cancer. Cancers (Basel) 2024; 16:1611. [PMID: 38672692 PMCID: PMC11049028 DOI: 10.3390/cancers16081611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Gastric cancer (GC) ranks third in terms of cancer-related deaths and is the fifth most commonly diagnosed type of cancer. Its risk factors include Helicobacter pylori infection, Epstein-Barr virus infection, the consumption of broiled and charbroiled animal meats, salt-preserved and smoke-enhanced foods, alcohol drinking, tobacco smoking, exposure to ionizing radiation, and positive family history. The limited effectiveness of conventional therapies and the widespread risk factors of GC encourage the search for new methods of treatment and prevention. In the quest for cheap and commonly available medications, numerous studies focus on herbal medicine, traditional brews, and spices. In this review, we outline the potential use of spices, including turmeric, ginger, garlic, black cumin, chili pepper, saffron, black pepper, rosemary, galangal, coriander, wasabi, cinnamon, oregano, cardamom, fenugreek, caraway, clove, dill, thyme, Piper sarmentosum, basil, as well as the compounds they contain, in the prevention and treatment of GC. We present the potential molecular mechanisms responsible for the effectivity of a given seasoning substance and their impact on GC cells. We discuss their potential effects on proliferation, apoptosis, and migration. For most of the spices discussed, we also outline the unavailability and side effects of their use.
Collapse
Affiliation(s)
- Katarzyna Kostelecka
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Łukasz Bryliński
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Olga Komar
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Justyna Michalczyk
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Agata Miłosz
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Jan Biłogras
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Filip Woliński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| |
Collapse
|
2
|
Ogino M, Yamada K, Sato H, Onoue S. Enhanced nutraceutical functions of herbal oily extract employing formulation technology: The present and future. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Yücel Ç, Karatoprak GŞ, Açıkara ÖB, Akkol EK, Barak TH, Sobarzo-Sánchez E, Aschner M, Shirooie S. Immunomodulatory and anti-inflammatory therapeutic potential of gingerols and their nanoformulations. Front Pharmacol 2022; 13:902551. [PMID: 36133811 PMCID: PMC9483099 DOI: 10.3389/fphar.2022.902551] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Ginger (Zingiber officinale Roscoe), a member of the Zingiberaceae family, is one of the most popular spices worldwide, known since ancient times, and used both as a spice and a medicinal plant. The phenolic compounds found in ginger are predominantly gingerols, shogaols, and paradols. Gingerols are the major phenolic compounds found in fresh ginger and contain mainly 6-gingerol as well as 4-, 5-, 8-, 10-, and 12-gingerols. Gingerols possess a wide array of bioactivities, such as antioxidant and anticancer, among others. Regarding the different array of biological activities and published data on the mechanisms underlying its action, the complex interaction between three key events, including inflammation, oxidative stress, and immunity, appears to contribute to a plethora of pharmacological activities of this compound. Among these, the immunomodulatory properties of these compounds, which attract attention due to their effects on the immune system, have been the focus of many studies. Gingerols can alleviate inflammation given their ability to inhibit the activation of protein kinase B (Akt) and nuclear factor kappa B (NF-κB) signaling pathways, causing a decrease in proinflammatory and an increase in anti-inflammatory cytokines. However, given their low bioavailability, it is necessary to develop new and more effective strategies for treatment with gingerols. In order to overcome this problem, recent studies have addressed new drug delivery systems containing gingerols. In this review, the immunomodulatory activities of gingerol and its underlying mechanisms of action combined with the contributions of developed nanodrug delivery systems to this activity will be examined.
Collapse
Affiliation(s)
- Çiğdem Yücel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | | | | | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
- *Correspondence: Esra Küpeli Akkol, ; Eduardo Sobarzo-Sánchez,
| | - Timur Hakan Barak
- Department of Pharmacognosy, Faculty of Pharmacy, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Eduardo Sobarzo-Sánchez
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
- *Correspondence: Esra Küpeli Akkol, ; Eduardo Sobarzo-Sánchez,
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Park Avenue Bronx, NY, United States
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Ogino M, Nakazawa A, Shiokawa KI, Kikuchi H, Sato H, Onoue S. Krill oil-based self-emulsifying drug delivery system to improve oral absorption and renoprotective function of ginger extract. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2021.100285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Kaewkroek K, Petchsomrit A, Wira Septama A, Wiwattanapatapee R. Development of starch/chitosan expandable films as a gastroretentive carrier for ginger extract-loaded solid dispersion. Saudi Pharm J 2022; 30:120-131. [PMID: 35528854 PMCID: PMC9072700 DOI: 10.1016/j.jsps.2021.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/27/2021] [Indexed: 11/09/2022] Open
Abstract
Gastroretentive expandable films were developed to provide controlled release of ginger extract (GE) for treatment of gastric diseases. The dosage form consisted of ginger extract solid dispersion (GE-SD) loaded in a starch/chitosan composite film, which was subsequently folded and inserted into a hard gelatin capsule. GE-SD was prepared by solvent evaporation using an optimum weight ratio of 1:1 for GE and PVP K30. Expandable films containing GE-SD were prepared by solvent casting combinations of chitosan and either rice-, glutinous rice - or pregelatinized maize starch with glycerin incorporated as a plasticizer. The optimized film formulation prepared from glutinous rice starch, exhibited tensile strength of 5.4 N/cm2 and high expansion in simulated gastric fluid (SGF), resulting in a 2.8-fold increase in area. The films resulted in sustained release of up to 90% of the content of 6-gingerol during 8 h exposure to SGF. Furthermore, the 6-gingerol released from the film displayed dose-dependent cytotoxic activity against AGS human gastric adenocarcinoma cells and anti-inflammatory activity by inhibiting the production of nitric oxide (NO) in LPS-stimulated RAW264.7 cells.
Collapse
|
6
|
Mohapatra D, Agrawal AK, Sahu AN. Exploring the potential of solid dispersion for improving solubility, dissolution & bioavailability of herbal extracts, enriched fractions, and bioactives. J Microencapsul 2021; 38:594-612. [PMID: 34338596 DOI: 10.1080/02652048.2021.1963342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Most drugs' poor aqueous solubility has emerged as a significant challenge in achieving proper therapeutic response following oral administration. Herbal drugs are being used from time immemorial to prevent, mitigate, and cure multiple diseases. However, most of the bioactives phytoconstituents possess limited aqueous solubility & poor oral bioavailability. Solid dispersion (SD) has been realised as an efficient formulation to overcome hydrophobic candidates' solubility issues and improve their oral bioavailability. The current review mainly explores the potential of SD for improving solubility, dissolution & bioavailability of herbal extracts, enriched fractions, and isolated bioactives. Hence, basics of SD, selection of excipients, need for SD of plant products, SD of plant products, selection of preparation method, the chemistry of phytoconstituent-excipient interaction, and hurdles associated with SD of herbal extract/enriched fraction were explored in this review. The SD has the potential to overcome solubility, dissolution, and oral bioavailability issues of poorly soluble phytoconstituents.
Collapse
Affiliation(s)
- Debadatta Mohapatra
- Phytomedicine Research Lab., Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi, India
| | - Ashish K Agrawal
- Phytomedicine Research Lab., Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi, India
| | - Alakh N Sahu
- Phytomedicine Research Lab., Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi, India
| |
Collapse
|
7
|
Tian C, Song Y, Xu H, Yao X, Niu S, Shen L, He L. Chemical characterization of ginger and vinegar soaked ginger: Changes in volatiles and chemical profile. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Cheng‐piao Tian
- College of Chemistry and Chemical Engineering Guangxi University for Nationalities Nanning China
| | - Ya‐ling Song
- College of Chemistry and Chemical Engineering Guangxi University for Nationalities Nanning China
| | - Hai‐tang Xu
- College of Chemistry and Chemical Engineering Guangxi University for Nationalities Nanning China
| | - Xing‐dong Yao
- College of Chemistry and Chemical Engineering Guangxi University for Nationalities Nanning China
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products Guangxi University for Nationalities Nanning China
| | - Si‐qi Niu
- College of Chemistry and Chemical Engineering Guangxi University for Nationalities Nanning China
| | - Li‐qun Shen
- College of Chemistry and Chemical Engineering Guangxi University for Nationalities Nanning China
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products Guangxi University for Nationalities Nanning China
| | - Li‐li He
- National Engineering Institute for the Research and Development of Endangered Medicinal Resources in Southwest China Guangxi Botanical Garden of Medicinal Plants Nanning China
| |
Collapse
|
8
|
Yakushiji K, Ogino M, Suzuki H, Seto Y, Sato H, Onoue S. Physicochemical and biopharmaceutical characterization of celecoxib nanoparticle: Avoidance of delayed oral absorption caused by impaired gastric motility. Int J Pharm 2018; 552:453-459. [PMID: 30253211 DOI: 10.1016/j.ijpharm.2018.09.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 10/28/2022]
Abstract
The present study aimed to develop a celecoxib (CEL) nanoparticle with improved dissolution/dispersion and consistent absorption even in the presence of impaired gastric motility. CEL was pulverized by a wet-milling with hydroxypropyl cellulose (HPC), and the prepared nanoparticles were physicochemically characterized after freeze-drying. CEL nanoparticle with HPC-SSL (NP/CEL) exhibited better dissolution/dispersion behavior in pH1.2 solution compared with CEL nanoparticles with other polymers, as evidenced by a 21.8-fold higher initial dissolution/dispersion rate than crystalline CEL. The mean particle diameter of water suspended-NP/CEL was 250 nm, and the CEL nanoparticle existed in an amorphous state. Even after storage at 40 °C for 4 weeks, there were no significant changes in the dissolution/dispersion behavior. Oral absorption of CEL samples (5 mg-CEL/kg) was evaluated in normal and propantheline (PPT)-treated rats with simulated gastric motility impairment. In PPT-treated rats, oral crystalline CEL led to a decrease in oral absorption by 12% of the AUC0-4 compared with that in normal rats, whereas NP/CEL suppressed the pharmacokinetic transition of CEL by 43% of the AUC0-4 due to the improved dissolution/dispersion behavior of CEL. The NP/CEL system might be promising to avoid decreased absorption of CEL caused by impaired gastric motility.
Collapse
Affiliation(s)
- Keisuke Yakushiji
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Mizuki Ogino
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroki Suzuki
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshiki Seto
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hideyuki Sato
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Satomi Onoue
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
9
|
Abdu SB, Abdu F, Khalil WKB. Ginger Nanoparticles Modulate the Apoptotic Activity in Male Rats Exposed to Dioxin-Induced Cancer Initiation. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.946.957] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|